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Enriched categories
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Enriched categories
A monoidal category is a category V equipped with some kind of product.

A category enriched in V is like an ordinary category, with a set/class of
objects, but the ‘hom-sets’ Hom(A, B) are now objects of V.
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Enriched categories

A monoidal category is a category V equipped with some kind of product.

i . , The category of categories
A category enriched in V is like an ordinary category, with a set/class of i
objects, but the ‘hom-sets’ Hom(A, B) are now objects of V. and functors is Cat.
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Categorifying magnitude

Magnitude

Magnitude homology

Given. ..
* a monoidal category (V,®)
* aring (R,+,")

® a 'size homomorphism’

=1 (.®) = (R)

Given. ..

* a semicartesian monoidal category (V,®)
* a monoidal abelian category (A, ®)

® a strong symmetric monoidal ‘size
functor’ ¥ : (V,®) — (A, ®)

élinear algebra

éhomological algebra

Magnitude for finite V-categories

Magnitude homology for V-categories
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Magnitude homology
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Definition (Leinster & Shulman, 2017, after Hepworth & Willerton, 2015)

Let ¥ : V — A be a strong symmetric monoidal functor. The magnitude nerve of a
V-category X is given for n € N by

MBE(X)= @ IX(x0,x1)® -+ ®IX(Xp_1,Xn)

X0y---,XnEX

with face maps ¢’ induced by composition in X and terminal maps in V.
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Magnitude homology
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MC*

Definition (Leinster & Shulman, 2017, after Hepworth & Willerton, 2015)
The magnitude complex of X has MCX(X) = MBZ(X), with boundary maps

On - MCZ(X) — MCZ {(X)

given by 0, = Y7 o(—1)/".
The magnitude homology of X is MHZ (X) = H,(MC*(X)).
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Magnitude homology for categories, posets and groups

Small categories are categories enriched in Set. We take the size of a set to be its
cardinality and the size functor X : Set — Ab to be the free abelian group functor.

The magnitude complex of a category X is then given in degree n > 0 by
MCEX) =Z - {(x0 2 31 2 - 5 x) | %, f in XJ.
The differential is 0, = 27;11(*1)"5,- where §; is induced by composing f; with f; 1.

So, by standard facts:
e If Cis a category then MHZX(C) is the homology of its classifying space.
* If P is a poset then MHZ(P) is the homology of its order complex.
* If G is a group then MHX(G) is is ordinary group homology.



Magnitude homology for metric spaces

For a metric space X the magnitude complex is an [0, c0]-graded chain complex:
n—1
MCE(X) = Z- {(xo,...,x,,) | x; € X and x; # xj+1, and Z d(xi,xj+1) = E}
i=0

for ne N and £ € [0, 0], with 8, = 3.7 (~1); where

(X05 -+ s Xiy oo xn) if d(Xi—1,%7) + d(xi, xi11) = d(Xi—1,Xi41)
0 otherwise.
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Magnitude homology for metric spaces

For a metric space X the magnitude complex is an [0, c0]-graded chain complex:
n—1
MCE(X) = Z- {(xo,...,x,,) | x; € X and x; # xj+1, and Z d(xi,xj+1) = E}
i=0

for ne N and £ € [0, 0], with 8, = 3.7 (~1); where

8i(x Xp) = (X0y -« s Xiy oo Xn) i d(Xi—1, ;) + d(xi,xi41) = d(Xi—1, Xi+1)
R 0 otherwise.

Basic theorem (Leinster & Shulman) Call (x,y) € X x X an adjacent pair if x # y
and there is no point z # x, y such that d(x,z) + d(z,y) = d(x, y). Then

MH{(X) = Z - {adjacent pairs (x,y) | d(x,y) = £.}
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Groups with structure

Often a group comes equipped with interesting additional structure. For instance. ..

e A partially ordered group is a group G equipped with a partial order < such
that if g < h then gk < hk and kg < kh for all k€ G.

Example Every Coxeter group is partially ordered by the Bruhat order.
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Groups with structure

Often a group comes equipped with interesting additional structure. For instance. ..

e A partially ordered group is a group G equipped with a partial order < such
that if g < h then gk < hk and kg < kh for all k€ G.

Example Every Coxeter group is partially ordered by the Bruhat order.

® A norm on a group G is a function | — | : G — R satisfying
®* |g|>0forallge Gandle|]=0
* |gh| < |g|+ |h| forall g,he G.

Every group norm induces a metric: d(g, h) = |h™1g]|.
Examples Any generating set S € G determines a word-length norm on G.

Asao (2023) uses a normed fundamental group to classify metric fibrations.
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Enriched groups

Definition

Let (V,®, /) be a symmetric monoidal category. A group enriched in ), or V-group,
is a one-object V-category whose underlying ordinary category is a group.

If V = Cat, Poset or Met, a V-group is an object G of
V equipped with V-morphisms

* m:G®G — G (multiplication)

® e:/ — G (selecting the identity element e € G)

¢ O o6
(.d,(frl)l \ lm

GxG—""35G

and a function (=)~1 : ob(G) — ob(G) making this diagram commute in Set _t

Example Every group object in a Cartesian category V is a group enriched in (V, x).

But enriched groups are more general.




Poset-groups and Met-groups

Example Every partially ordered group (G, <) is a group enriched in (Poset, x ).

Exercise The map (=)' : G — G is monotone if and only if g < h implies g = h.
So only the trivial partial order makes G a group object in (Poset, x).



Poset-groups and Met-groups

Example Every partially ordered group (G, <) is a group enriched in (Poset, x ).

Exercise The map (=)' : G — G is monotone if and only if g < h implies g = h.
So only the trivial partial order makes G a group object in (Poset, x).

Example Every normed group (G, | — |) carries a metric specified by
d(g,h) = |h'gl.
This gives an enrichment in (Met, x,1) if and only if | — | is conjugation-invariant.

Exercise The map (Id, (—)71) : G — G xy, G is 1-Lipschitz if and only if d(g,h) =0
for all g, h. So only the ‘indiscrete’ metric makes G a group object in (Met, x,, ).



Strict 2-groups
Definition A strict 2-group is a group object in (Cat, x).
Theorem (Mac Lane & Whitehead, 1950) Strict 2-groups classify homotopy 2-types.
B(-)
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Strict 2-groups
Definition A strict 2-group is a group object in (Cat, x).
Theorem (Mac Lane & Whitehead, 1950) Strict 2-groups classify homotopy 2-types.
B(-)

e

~ Spaces X such that
« |mp(X)=0forn>2

Strict 2-groups

Example From a normal subgroup N <1 G we can construct a strict 2-group Gy with
® objects the elements of the group G
* arrows the elements of N x G, with (k,g) : g — kg

® the functor m: G x G — G defined on objects by multiplication in G and on
arrows by multiplication in N x G.

Theorem (Mac Lane & Whitehead) For any N <t G we have 71 (B(Gy)) =~ G/N.
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Taking enrichment into account

Observation In each of these examples, G has a ‘second-order’ enrichment.
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Taking enrichment into account

Observation In each of these examples, G has a ‘second-order’ enrichment.

Strict 2-group

[

Enrichment in
the category of
Set-categories

Partial ordering

[

Conjugation-invariant norm

Enrichment in

+—— | the category of

(0 — 1)-categories

|

Enrichment in
the category of
[0, o0]-categories

For these, 2-category theory provides a notion of classifying space.
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Define a simplicial set AX by
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AX, = BiCatNLaX([n],X).
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normal lax 2-functors




The classifying space of a 2-category X

The Duskin or Street approach

Define a simplicial set AX by

(Ml = (=1 —n)

AX, = BiCatNLaX([n],X).

bicategories and
normal lax 2-functors

Call the topological space |AX|
the classifying space of X.
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Define a simplicial set AX by
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— n’)

AX, = BiCatNLaX([n],X).

bicategories and
normal lax 2-functors

Call the topological space |AX]
the classifying space of X.
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take the classifying space
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The classifying space

The Duskin or Street approach

Define a simplicial set AX by

[ = (0 —1— -

AX, = BiCatNLaX([n],X).

—n)

bicategories and
normal lax 2-functors

Call the topological space |AX]
the classifying space of X.

of a 2-category X

The Segal approach

o 2Cat
take the classifying space
of each hom-category in X Bi
TopCat
take the internal nerve
of the Top-category B.X N
[A°P, Top]
geometrically realize |—]
Top

Call BX the classifying space of X.

Theorem (Bullejos & Cegarra, 2003) There's a natural equivalence BX ~ |AX].



The classifying space

The Duskin or Street approach

Define a simplicial set AX by

=0 —1

AXn = BicatNLax([n]7x)‘

bicategories and
normal lax 2-functors

— n)

Call the topological space |AX|
the classifying space of X.

of a 2-category X

The Segal approach

L 2Cat
take the classifying space
of each hom-category in X Br
TopCat
take the internal nerve
of the Top-category B, X N
[A°P, Top]
geometrically realize =]
Top

Call BX the classifying space of X.

Proof Compares both constructions to the diagonal of the bisimplicial ‘double nerve'.



The double magnitude nerve

Let (V,®, /) be semicartesian and ¥ : V — A a strong symmetric monoidal functor.
Proposition The magnitude nerve defines a strong symmetric monoidal functor
MB* : (VCat,®y) — ([A%,A],®pw)

so we can employ it as a size functor.



The double magnitude nerve

Let (V,®, /) be semicartesian and ¥ : V — A a strong symmetric monoidal functor.

Proposition The magnitude nerve defines a strong symmetric monoidal functor
MB* : (VCat,®y) — ([A%,A],®pw)

so we can employ it as a size functor.

Definition The double magnitude nerve of a VCat-category X is

MBMB™ (X) € [A%, [A%P, A]] = [A% x A%, A].



Iterated magnitude homology
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Definition The iterated magnitude nerve of a VCat-category X is

IMB(X) = diag (MBMBz (X)) .
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\//

IMB

Definition The iterated magnitude nerve of a VCat-category X is
IMB(X) = diag (MBMBz (X)) .
The iterated magnitude homology of X is
IMH.(X) = H, C(IMB(X)).

Theorem For any 2-category X, IMH,(X) is the homology of its classifying space.



lterated magnitude homology

IMH

2VCat MBZ, [A0P x AP A] 25, [A°P A] —S Ch(A) —=3 AN

\//

IMB

Definition The iterated magnitude nerve of a VCat-category X is
IMB(X) = diag (MBMBz (X)) .
The iterated magnitude homology of X is
IMH.(X) = H, C(IMB(X)).

Corollary For any strict 2-group G we have IMH,(G) =~ H,(B(G)).
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g
A Cat-group G has a category of elements with objects g, h, ... and morphisms lo-
h

Definition The connected components of G are the elements of mo(G) = ob(G)/ ~
where ~ is the equivalence relation generated by “g ~ h if there’s a morphism g = h".

Lemma The set {g | g ~ e} is a normal subgroup, so my(G) is a group.
Theorem We have IMH{(G) = (mo(G))ap, the abelianization of mo(G).
Sketch proof IMH,(G) is isomorphic to the total homology of this double complex 73
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g
A Cat-group G has a category of elements with objects g, h, ... and morphisms lo-
h

Definition The connected components of G are the elements of mo(G) = ob(G)/ ~
where ~ is the equivalence relation generated by “g ~ h if there’s a morphism g = h".

Lemma The set {g | g ~ e} is a normal subgroup, so my(G) is a group.
Theorem We have IMH{(G) = (mo(G))ap, the abelianization of mo(G).
Sketch proof IMH,(G) is isomorphic to the total homology of this double complex 73

Facts about spectral sequences imply that

IMHL(G) =~ H"H"(Co1).
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g
A Cat-group G has a category of elements with objects g, h, ... and morphisms lo-
h

Definition The connected components of G are the elements of mo(G) = ob(G)/ ~
where ~ is the equivalence relation generated by “g ~ h if there’s a morphism g = h".

Lemma The set {g | g ~ e} is a normal subgroup, so m(G) is a group.
Theorem We have IMH{(G) = (mo(G))ap, the abelianization of mo(G).
Sketch proof IMH,(G) is isomorphic to the total homology of this double complex 73

Facts about spectral sequences imply that
IMHL(G) =~ H"H"(Co1).

Vertical homology imposes the quotient by ~.




The iterated magnitude homology of a Cat-group

g
A Cat-group G has a category of elements with objects g, h, ... and morphisms lo-
h

Definition The connected components of G are the elements of mo(G) = ob(G)/ ~
where ~ is the equivalence relation generated by “g ~ h if there’s a morphism g = h".

Lemma The set {g | g ~ e} is a normal subgroup, so m(G) is a group.
Theorem We have IMH{(G) = (mo(G))ap, the abelianization of mo(G).
Sketch proof IMH,(G) is isomorphic to the total homology of this double complex 73

Facts about spectral sequences imply that
IMHL(G) =~ H"H"(Co1).

Vertical homology imposes the quotient by ~.
Horizontal homology abelianizes. O




Normal subgroups and partial orders

Corollary | Let G be a group and N a normal subgroup of G. Then
IMHl(GN) = (G/N)ab .

We can also deduce this from the fact that m1(Gy) = G/N via the Hurewicz theorem.



Normal subgroups and partial orders

Corollary | Let G be a group and N a normal subgroup of G. Then
IMHl(GN) = (G/N)ab .

We can also deduce this from the fact that m1(Gy) = G/N via the Hurewicz theorem.

Definition The positive cone of a preordered group (G,<)is P< = {ge G | e < g}.
This is a normal subgroup if and only if < is symmetric.

Corollary Il Let G = (G, <) be a partially ordered group. Let ~ be the equivalence
relation generated by <. Then P. = {g e G | e ~ g} is a normal subgroup of G, and

IMHl(G) = (G/Pw)ab.



The iterated magnitude complex of a Met-group
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The iterated magnitude complex of a Met-group

Let G = (G, d) be a Met-group. lts iterated magnitude complex is [0, o0]-graded, with

810 - 8no n -1l
IMCY(G) = Z - : | lgjeGand > > dlgj giji1) =1L
8in " 8nn i=1j=0
The boundary map is &, = Y71 (—1)¥k, where
[g10 -+ 8ko8k+10 “*  &no |
g0 - &no : :
ok | Cl =] & o Enk
8in - &nn
| 81n ** Bkn8k+1,n -  8nn

if this preserves the sum of the column-lengths, and 0 otherwise.



The iterated magnitude homology of a Met-group G = (G, d)

Definition An element g € G is primitive if for all h € G we have

d(g,e) <d(g,h)+d(he).

Example
For a word metric with respect to S < G, the primitive elements are the elements of S.
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The iterated magnitude homology of a Met-group G = (G, d)

Definition An element g € G is primitive if for all h€ G we have

d(g,e) <d(g,h)+d(he).

Example
For a word metric with respect to S < G, the primitive elements are the elements of S.

Theorem
In real grading 0, the magnitude homology of G is the ordinary group homology of G:

IMH?(G) = H,(G).
In real gradings ¢ > 0 we have IMH(G) = IMH{(G) = 0 and

IMHS(G) = Z - {conjugacy classes of primitive elements of norm ¢}.
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Sketch of the proof for ¢ > 0

In each grading £ > 0, we have IMH!(G) = H,(Tot(C’,)) where C’, looks like this =

Since Cg2 = CQZO = 0, we have
IMH(G) = H'HY(C,). |
Column 1 is MC!(G) for the metric space G, so 0 %Z{

v/ ~0~ . | adjacent pairs (g, h)
HY(Cyp) = { such that d(g,h) = ¢ |~

Exercise Elements g and h are adjacent if and
only if gh™! is primitive.

Finally, taking horizontal homology H" identifies conjugate elements.
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Summary

Various valuable structures on groups are instances of second-order enrichment.

Strict 2-group Partial ordering Conjugation-invariant norm
Enrichment in Enrichment in Enrichment in

the category of | «—— | the category of the category of
Set-categories (0 — 1)-categories [0, co]-categories

1

For these, iterated magnitude homology captures ‘the homology of a classifying space’.

For a group G with a conjugation-invariant norm, IMH,(G) is sensitive to the topology
of the ordinary classifying space and the geometry of the group under the norm.



Thank you.
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