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Regional observations: ~ 20,000,000 from daily timeseries over 160 years
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______________intro SPDE_GWMRF_Numerical Bavesian inference _Scaling itup EUSTACE References |
Overview

m Spatial statistics (but perhaps not like you're used to if you've seen it before)

m From models to numerics with the help of Markov in space

m MCMC-free Bayesian inference with direct numerical approximations

m Assessing numerical and approximate methods; principled method assessment

m Probabilistic model assessment with proper scoring rules

m Scaling it up; Likelihood and covariance matrix for a 10'!-dimensional vector? No thank you!

m Some R demonstrations (INLA, inlabru, excursions)
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Spatio-temporal modelling framework

Spatial statistics framework
m Spatial domain D, or space-time domain D x T, T C R.
m Random field u(s), s € D, oru(s,t), (s,t) € D x T.

m Observations y;. In the simplest setting, y; = u(s;) + ¢;, but more generally y; ~ GLMM, with u(-) as
a structured random effect.

m Needed: models capturing stochastic dependence on multiple scales

m Partial solution: Basis function expansions, with large scale functions and covariates to capture static and
slow structures, and small scale functions for more local variability

Two basic model and method components
m Stochastic models for w(-).

m Computationally efficient (i.e. avoid MCMC whenever possible) inference methods for the posterior
distribution of (-) given data y.
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Covariance functions and stochastic PDEs

The Matérn covariance family on R¢

1—v

ov{u uls :(722
Cov(u(0), u(s)) = 0* s

Scale k > 0, smoothness v > 0, variance o2 > 0

(slls))” Ko (x]1s]])

Whittle (1954, 1963): Matérn as SPDE solution
Matérn fields are the stationary solutions to the SPDE
(52 =V -V)*? u(s) = W(s), a=v+d/2

W(-) white noise, V - V = Zl 1892’02:%
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Generalised Spectrum Markov

Gaussian random field (or Gaussian process)
A Gaussian random field u. : D + R is defined via
E(u(s)) = m(s),
Cov(u(s),u(s")) = K(s,s’), (covariance kernel)
[u(si),i = 1,...,n] ~N(m = [m(si),i = 1,...,n] ,
) = [K(s“sj),i,j = 1,...,n})
for all finite location sets {s1, ..., S, }, and K (-, -) symmetric positive definite.
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Generalised Spectrum Markov

Generalised random field

A generalised Gaussian random field v, : D — R is defined via a random measure,
(f,u)p =u*(f) : Hr(D) — R, R a covariance operator,

E((f,u)p) = (fm)p = /D f(s)m(s) ds,

Cov({f,u)p » (68 p) = (. Rg)p = / /D K (s.5)g(s) dsds’
() p ~ N((fam) p (F RS p)

forall f,g € Hr(D) ={f: D —R; (f,Rf)p < oco}.
This allows for singular covariance kernels K (-, -).
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White noise vs independent noise

Gaussian white noise on continuous domains

Standard Gaussian white noise V() is a generalised random field, with

m(s) =0, K(S,S/) = 65(5/)’ <f7 W>D ~ N(Oa <fa f>D)a

forall f € Lo(D). Since (s, ds) , = oo foralls € D, W(-) does not have pointwise meaning. We can only
do calculus!

| A\

Independent Gaussian noise on continuous domains

Spatially independent Gaussian noise w(-) is a random field, with
m(s) =0, K(s,8') =1p—gy}, w(s)~N(0,1),
forall's,s’ € D. However, for every set A C D with | A|iepp) > 0,

P(iggw(s) =00) = P(Siggw(s) =—00) =1,

and the generalised calculus is not applicable.
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Spectral properties

Bochner’s theorem on R¢

A symmetric kernel K (s, s'), s,s’ € R is a positive (semi-)definite stationary covariance kernel if and only if
there exists a non-negative spectral measure S™(w) such that

K(s,s') = /Rd exp(i(s’ —s) - w) dS* (w)

If the measure has a density S'(w),

K(s,s') = ./Rd exp(i(s’ — s) - w)S(w) dw

1

S(w) = @) -/Rd exp(—is - w)K(0,s)ds

White noise on R has spectral density Sy (w) = 1/(27)%.
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Spectral properties

Spectral representation
Let Z*(w) be a complex Gaussian random measure on 1) = R% with independent increments and

A7+ (w) = dZ*(~w), E[dZ*(w)] =0, E [dZ*(w) dZ*(w)} = dS* (w).

Then

u(s) = /]Rd exp(is - w) dZ* (w)

is a stationary Gaussian random field with spectral measure S™*(w).

Lot (&) = (F)(@) = gy fw exp(—is - ) £(5) ds:
Informally, 7(w) dw = dZ* (w), and the spectral density is S, (w) = E(|u(w)|?).
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Spectral properties

Generalised Spectrum Markov

Spectra and linear differential operators

Differential operators can also be interpreted spectrally:
Lf | f Vf -V-Vf L[?f
LF=F(Lf) | F iwf lwIPf  |L1°2F

The rightmost column is a definition of a fractional operator!

Exercise: Use the spectral field representation to derive the middle two results above.
Exercise: What would happen on a different manifold, such as the sphere? Hint: the harmonic functions in the
Fourier transform are eigenfunctions of the Laplacian.
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Covariance functions and stochastic PDEs

The Matérn covariance family on R¢

ov{u uls :(7221711
Cov(u(0), u(s)) = 0* s

Scale k > 0, smoothness v > 0, variance o2 > 0

(slls))” Ko (x]1s]])

Whittle (1954, 1963): Matérn as SPDE solution
Matérn fields are the stationary solutions to the SPDE
(52 =V -V)*? u(s) = W(s), a=v+d/2

W(-) white noise, V - V = Zl 1892’02:%
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Spectral properties

For the Whittle-Matérn SPDE, informally,

4%

(K2 =V - V) %u(s s)

(
W(

)
(K + [lw]*)*?Ti(w) = W(w)
E(I(k2 + [|lw]*)*/*a@(w)|?) = E(IW(w)]?)
(K + [|lw]*)*Su(w) = Sw(w)
Su(w) = !

(2m)? (k% + [lw]|?)*

Whittle (1954, 1963) showed that K (s, s’) = (F15,(+))(s’ — s) is equal to the Matérn covariance (up to a
known scaling constant), with smoothness v = o« — d/2.
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Simple heat equation

For space-time fields, we write u(s, t), (s,t) € R? x R, and S, (k,w), (k,w) € R? x R.
We drive a heat equation with a noise process £ that is white noise in time and Matérn noise in space, with
parameters matching the heat operator:

ot
(K% =V, - V,)2E(s, 1) = W(s, t).

{’ya + K% =V, - VS}U(S) = &(s, 1),

The Fourier domain version is
{iw + &2 + | k||*} Gk, w) = E(k,w),
(6% + k][22 (k. w) = Wk, w),
and

1

Su(k,W) = (27r)d+1(’72w2 + (KQ + HkH?)Q)(HQ + HkHQ)a

How differentiable are the realisations?
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Simple heat equation (cont)

Using that, in the standardised Whittle-Matérn SPDE, the variance is

I'(v)
. i A —a—d/2
g F(a)ﬁ2”(47r)d/2’ v @ / ’

the marginal spatial spectrum for the heat model is

1 1
Su(k) = /]Rsu(k:,W) dw = m(2ﬂ_)d(n2 + Hk||2)a+15

which is a scaled Whittle spectrum for a Matérn covariance with smoothness v = o + 1 — d /2.

A generalised generalised case

If« = 0, d = 2, then v = 0, which is just outside of the allowed range of the Matérn family. However, for every
11

t,u(-,t) is a generalised random field with singular kernel K (s, s") = =5 Ko(x|s" — s|)).
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Simple heat equation (cont)

To help understand the temporal properties, take the Fourier transform in only the spatial directions:

0 9 9| ~ W(k,t)
— k kt)= ————— -
{’Yat + w5+ | Kl }“( t) (K2 + |[Kk|[2)/2’

so for each spatial frequency k, the temporal evolution of ﬂ(k, t) is an Ornstein-Uhlenbeck process with
covariance

1 ( |tf<&2+||k2)
exp | —|t|——— | .
Ay (w2 k) 7

There is one more property we need to understand: Markov in space
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First order Markov in time

Filtration o-algebras:

a € F oy =0(u(s),s<t), beFf . =o(u(s)s=1)
P(anb|u(t)) = P(a | u(®))P(b | u(t))

Higher order Markov on spatial and spatio-temporal domains

Let A, B, S C D, such that .S separates A and 3.

Fe=o(u(s),s€S), acFy, beFz,
Planb|Fg) =Pla| FGPO| F3)

A\

Markov for generalised random fields

‘Fg O-(<f7u>5af6HR(S))y CLEFZ, be./—‘g,
Planb | Fg) =P(a| FSP[® | FZ)
Numerical computation for statistics
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Markov in space

Markov properties

S'is a separating set for A and B: u(A) L u(B) | u(S)
Solutions to

(k2 =V~ V)u/z u(s) = W(s)

are Markov when v is an integer.

More generally, when the reciprocal of the

spectral density is a polynomial, Rozanov, 1977

In graphs with no edges between A and B (Q = X~ '):
Qap=0

Qs =Qaa

Hajs,B = Ma — Q14Qas(us — pg)

Generally: Markov iff the precision operator Q = R~ Lislocal.
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Markov in space

Qan Quas 0
The precision matrix block structure | Qg4 Qgg Qgp | has important implications for practical
0 Qps @ps

computation (Cholesky, see later)
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A partial history of Markov random fields

Rozanov (1977)

Generally: Markov iff the precision operator Q = R~ is local.

Stationary case:
u(s) is stationary Markov <> S, (k) < P(k)~!
where P(k) > 0 is a symmetric polynomial

Matérn/Whittle is Markov for v = 1,2,3...: S, (k) o< (k% + || k[|?)

GMRF Covariance on R?

SAR(1
{ O wllull Ky (ks — ') Whitdle (1954)

CAR(2)
CAR(1) = Ko(kl|s — s'|]) Besag (1981)
ICAR(1) — - log(||s — 8||) Besag & Mondal (2005)

On lattices, classical CAR — Matérn models (limits of).
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m Finite elements Examples Hierarchical Markov Example Multiscale
Hilbert space approximation ("The SPDE approach” from Lindgren et al, 2011)

Can extend to (non-)stationary SPDE models on irregular triangulations.

From continuous to discrete

We want to construct finite dimensional approximations to the distribution of u() where

[(fi, (K2 =V -V)*2u(-)) pi=1,...,m] £ [(fu W())p,i=1,...,m]

for all finite collections of test functions f; € Hg,, (D).

A finite basis expansion

u(s) =Y ()
j=1
can only hope to achieve this for a subspace of size n.
Two main approaches:
m Galerkin: {f; = ¢, i=1,...,n}
m Leastsquares: {fi = (k> — V- V)24 i =1,...,n}
We use least squares for &« = 1, Galerkin for o« = 2, and a recursion for o« > 3.
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Stochastic Green’s first identity

On any sufficiently smooth manifold domain D,

<f7 =V ¢ v.g>D = <vfa v9>D - <f7 ang>6D

holds, even if either V f or —V - Vg are as generalised as white noise.

For now, we’ll impose deterministic Neumann boundary conditions, informally 8nu(s) = Oforalls € 9D. For
« = 2 and Galerkin,

<’(/Ji, (52 — V . V) ijuj>

=N "8 (i) p + (Vi Vi) p Yy
b
= (HQC +Gu

The covariance for the RHS of the SPDE is
[COV(W% W>D ) <’¢1j, W)p] = [<¢}1v ¢J>D] =C

by the definition of V.
Numerical computation for statistics
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We seek u ~ N(0, X) such that Var{(x*C + G)u} = C:
(R*C + E(K*C +G)=C
Y= (kC+G)'Cr’C+a)!

If 1); are piecewise linear on a triangulation of D, then C' and G are both very sparse, and in addition,
C = diag((1;, 1) ;) is a valid approximation. Then, the precision matrix is also sparse,

Q= (K’C+G)C ' (k*C +G)

and w is Markov on the adjacency graph given by the non-zero structure of Q.
Least squares and Galerkin recursion gives precisions forall v = 1,2, .. .
" Q= (R’C+G)
m Q, = (K’C +G)C ' (k’C + Q) = k*C 4+ 2r*G + GC™'G
" Q= (K*’C+@)C'Q, ,C '(k*C+G)
a Ay >0:Q, =C? {2 eC + G)C’W}a c'/?

(non-sparse for non-integer o)
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Basis function representations for Gaussian Matérn fields

Basis definitions

Finite basis set (k: =1,...,n)
Karhunen-Lodve (k% — V- V) %, k(s) = Ae.k€r k(8)
Fourier —V - Ver(s) = Aex(s
Convolution (k2 =V -V)*2g,(s) = §(s)
General Vi(s)
Field u(s) Weights
Karhunen-Loéve o< ), e, i(s)zk 2k ~ N(0, Ap )
Fourier X Y ek(8)2k 2k ~ N(O, (k% + Ag)™%)
Convolution X Y p9r(8— 8Kz 2 ~ N(O, \cellk|)
General X Yo Vk(8)ug u~N(©0,Q.")

Note: Harmonic basis functions (as in the Fourier approach) give a diagonal @ ., but lead to dense posterior
precision matrices.
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SPDE/GMRF realisations and non-stationary models
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Finite elements Examples Hierarchical Markov Example Multiscale

SPDE/GMRF realisations and non-stationary models

(k2 exp(if) — V - V)u(s) = W(s), s € D, Re(u) independent of Im(u)
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Finite elements Examples Hierarchical Markov Example Multiscale

Link to Sampson&Guttorp (1992) deformation non-stationarity

k(s)W(s), s€Q
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Link to Sampson&Guttorp (1992) deformation non-stationarity

(k(s)2 — V- V)u(s) = k(s)W(s), seQ
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Link to Sampson&Guttorp (1992) deformation non-stationarity

(R =V -V)u(3) =rW(3), 5€0
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Link to Sampson&Guttorp (1992) deformation non-stationarity

(72— V- V)u@E) =VE), 5€0
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SPDE/GMRF realisations and non-stationary models

(k2 =V -HV)u(s) =W(s), se€D
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Finite elements Examples Hierarchical Markov Example Multiscale

SPDE/GMRF realisations and non-stationary models
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SPDE/GMRF realisations and non-stationary models

(k2 =V -V)u(s) =W(s), s€D
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SPDE/GMRF realisations and non-stationary models

(k2 =V -V)u(s) =W(s), s€D
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SPDE/GMRF realisations and non-stationary models

(k* =V -V)u(s) =W(s), seD=S§?
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SPDE/GMRF realisations and non-stationary models

(k* exp(if) — V - V)u(s) = W(s), s€ D=5
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Markov does not mean that dependence is only local

(k(8)? =V - H(s)V)u(s) = k(s)W(s), s€Q
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Covariances for four reference points
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Hierarchical models

Continuous Markovian spatial models (Lindgren et al, 2011)

Local basis: u(s) = >, ¥ (S)u, (compact, piecewise linear)
Basis weights: u ~ N(0,Q '), sparse Q based on an SPDE
Special case: (k2 — V - V)u(s) = W(s), s€Q
Precision: Q = k1C + 2k*°G + Gy (k* + 2k2|w|? + |w|%)

v

Conditional distribution in a jointly Gaussian model
u ~ N(l'l’ua Q;1)7 y‘u ~ N(Aua Q;hlL) (Az] - %(Sz))
uly ~ Ny, Q)
Quy=Q.+ ATQy‘uA (~"Sparse iff 1}, have compact support”)
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The computational GMRF work-horse
Cholesky decomposition (Cholesky, 1924)
Q= LL", L lower triangular (~ O(n(‘”l)/z) ford =1,2,3)

Q lx= LiTLfla;, via forward/backward substitution

logdet @ = 2logdet L = QZlog L;;

André-Louis Cholesky (1875-1918)

"He invented, for the solution of the condition equations in the method of least squares, a very
ingenious computational procedure which immediately proved extremely useful, and which most
assuredly would have great benefits for all geodesists, if it were published some day." (Euology
by Commandant Benoit, 1922)
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GMRF

Example: 2D georeferenced data

(a) True field

10.0-

75-

> 50-

100-

Finite elements Examples Hierarchical Markov Example Multiscale

(b) Posterior mean

(c) Posterior sample

10.0- 100~
7.5 75
> 50- > 50-
25- 25-
0.0- 0.0~
O.D 2.5 5.0 75 10.0 0.0 25 5.0 75 10.0
X X
—
L 3
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.. P
3 o
e g
so s 180
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How to choose a triangulation mesh?

m SPDE solutions with Neumann boundary conditions are not stationary processes; there is a boundary
effect on the covariance structure; visible as inflated variance (factor 2 for straight boundaries)

m Easy workaround: extend the domain boundary
m Small triangles lead to good continuous function approximation properties
m Small triangles lead to expensive calculations

m Resolve the tradeoff by choosing the triangles to be small enough in relation to the correlation length. Need
intuition!

m Exercise: Given E(ug) = E(uy) = 0, Var(ug) = o, Var(uy) = 0%, and Cov(ug, u1) = pooo,
what is the variance of the linear interpolation (1 — 2)ug + zuq, z € [0,1]?

m When the triangle edge lengths decrease, the "p" values increase and the continuous/discrete model

discrepancy decreases. This can be visualised:
The interactive tool INLA: :meshbuilder () can help build intuition
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A multiscale model example

m A temporally slow, stochastic heat equation (non-separable)

0

&Z(‘% IL) + 72(1 - ’YEV ! V)Z(87 f) - 5(33 f)
(1 - ng : V)1/25(S, f) = Wg(S, f)

m A temporally quick, spatially non-stationary SPDE/GMRF (separable)
(& + %) (5(s)? = V- V) (r(s)a(s,1)) = Wa(s.t)
m Measurements
y; = a(s;, t;) + z(s;, t;) + €, discretised into
y=A(a+(BaI)z)+¢€e~N0Q ")
where B maps from long-term basis functions to short-term, and A maps from short-term basis functions
to the observations.

The posterior precision can be formulated for (a + z, 2)|y:

o _[Q®Q,+A7Q.A -QB®Q,
(atz.2)ly -B'Q,®Q, Q.+B'QB®Q,
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Locally isotropic non-stationary precision construction

Finite element construction of basis weight precision
Non-stationary SPDE:

(5(8)* = V- V) (r(s)u(s)) = W(s)

The SPDE parameters are constructed via spatial covariates:
P P

log 7(s) = bl (s) + Z b7 (s)0;, logr(s)=bg(s)+ Z by

j=1 j=1

Finite element calculations give

T = diag(7(s;)), K = diag(x(s;))
Cy = /1/)1'(3) ds, Gij :/V%’(S)'V%‘(S) ds
Q=T (K°CK*+K°G+GK*+GC™'G)T

(8)0;

Combining this with an AR(1) discretisation of the temporal operator, we get Q, ® Q.

Finn Lindgren - finn.lindgren@ed.ac.uk Numerical computation for statistics



Finite elements Examples Hierarchical Markov Example Multiscale

GMREF precision for stochastic heat equation

Q.=MP e M” + M © MY + M © M)
M§ =C +7G
M = 7.(C +7:G)C~(C +1:G)
M) =~2(C +7:G)C~H(C + v G)C ' (C + 1:G)

The precision structure can be used to formulate sampling as

Q.z=L.w, w~N(0,1I)
where 1~}z is a pseudo Cholesky factor,
L.=|[t{eLe, L@l LY ®GLS|,

W e Le, L eGLy, LY © GCT'Lg||
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S 111 7o ol o = 1 1| T e e PR T e AN S VA M IOl Finite clements Examples Hierarchical Markov Example Multiscale
Posterior calculations

Write @ = (a + z, z) for the full latent field.

Q,®Q,+A'Q.A -QB®Q, }

Q:1:|y = _BTQt ®Q, Q.+ BTQtB ®Q,

can be pseudo-Cholesky-factorised:

= =T ~ L,®L, 0 A'L.
Qx\y - LT|!/LT|y’ L-’E‘ZI = —BTLt @ L, iz 0 :|

Posterior expectation, samples, and marginal variances (with A= [A 0]):

Qupy By — Hy) = a' Q.(y — Ap,),
Quy(@ — pypy) = xlyw w ~N(0,1I), or
Qupy(® — p,) = A'Q.ly—Ap,) + Loyw, w~N(©.I),
Var(z;|y) = ( ) . (Ouch! Don't do this!! Use Takahashi!!l)
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Laplace LGCP Method assessmen it Model assessment it

Part 2: Fast Bayesian inference & method and model assessment
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Laplace LGCP Method assessment Model assessment
Laplace approximations for non-Gaussian observations

Quadratic posterior log-likelihood approximation

pu|0) ~ N, Q,"), y|u,0~ply|u)
pa(u|y,0) ~ N Q )

0= V. {Inp(u| 6) + Inp(y | w)
Q=Q,— Vilnp(y|u

s

]

Direct Bayesian inference with INLA (r-inla.org & inlabru. org)

p(0)p(u | 6)p(y | u,0)
pc(ul|y,0) u=Fi(0)

Blu: | ) o / pec(u: | y,0)5(0 | y) do

p(0 | y) o

The main practical limiting factors for the INLA method are the number of latent variables and the number model
parameters.
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Numerical Bayesian inference Laplace LGCP Method assessment Model assessment

Integrated Nested Laplace Approximation (INLA) basics

El Estimate the posterior mode for p(6|y) by optimisation of the approximation

p(@)p(u | 0)p(y | u,0)
pc(uly,0) u=[1(0)

PO | y)

where pi(u | y, @) is a Gaussian approximation matching the low order derivatives at the mode of the
exact conditional log-posterior for w. (In a fully Gaussian model this is exact.)
This is a Laplace approximation of p(6 | y).

B Construct a numerical integration grid/scheme (Bk., wk) for 0, where w, are integration weights; this step
also estimates the normalisation constant.

B Construct p(u; | y, 0)) as Laplace approximations of the marginal conditional posterior densities,
integrating out w_; = {u;, j # i}.
A Combine to form marginal posterior densities:
Plui [ y) o< > pac(ui | y,0k) B0k | y) ws
k

This is a Gaussian mixture distribution.



Numerical Bayesian inference Laplace LGCP Method assessment Model assessment

Example: Point process data
Log-Gaussian Cox processes
Point intensity:
_exp<Zb )Bi + u( ))

Inhomogeneous Poisson process log-likelihood:

np({yy} | A) = |D| - /D As)ds + 3 nA(y,)

k=1

The likelihood can be approximated numerically, e.g.
n

/D A(s)ds ~ Z)\(sj)wj,

j=1

where s are mesh nodes, and w; = (¢;,1)
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Numerical Bayesian inference Laplace LGCP Method assessment Model assessment

Example: Point process data (cont)

Discretised field and likelihood:

) = exp Zb )B; +Zwi
p({yek | A) ~ D] = A(s;)w; + me

Then, with Ap = [/\(SL)], Ap = [Q/JJ(SL)] , and AU = [wj (yi)],

Vulnp({y,} | A) = —A}], diag(w)Ap + A, 1
Vi lnp({y} | A) ~ —A}, diag(w) diag(Ap) Ap

and similarly for Vg, V%, and V, Vg.
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Numerical Bayesian inference Laplace LGCP Method assessment Model assessment

Concept illustration: rogue waves

Finn Lindgren dgren@ed. Numerical computation for statistics



Mesh of the ocean subset of the globe

lindgren@ed.ac.uk

Laplace LGCP Method assessment Model assessment
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umerical Bayesian i

Posterior mean of the log-intensity

Laplace LGCP Method assessmen it Model assessment it

4.0 4.5 5.0 55 6.0




Numerical Bayesian inference Laplace LGCP Method assessment Model assessment

Marginal posterior probabilities for exceeding a threshold

0.0
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Laplace LGCP Method assessment Nodel assessment
Bias and skewness improvement

m For skewed posteriors, the Normal approximation pgg(-) at the mode is biased
m Can use higher order derivatives at the mode to find better approximations

m Example: Match 2nd and 3rd order derivatives of the log-posterior density to a skew-Normal distribution, at
the posterior mode.

m The R-INLA implementation uses a different but related approach.

Skew-Normal distribution

Letz = (x —m)/s.
The skew-Normal density is defined by p(7) = 2¢(2)®(az), wh € R controls the sk
Y IS defined by p(x = z az),where v controls the skewness.

The first order derivative of the log-density is —z + (;ggzz; .

Higher order derivatives are straightforward (but tedious) to derive.
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Laplace LGCP Method assessment Model assessment
Densities

1.004
—
Type
0.754 yp
? == Approx
g === Exact
©
8 m== Prior
£ 0.504
[
€ A imati
‘g pproximation
c
5 = Normal
0.25 = SkewNormal
0.00 4
T T T T T
-1 0 1 2 3

Finn Lindgren - finn.lindgren@ed.ac.uk Numerical computation for statistics



Laplace LGCP Method assessment Model assessment
Log-densities

le-02+4
Type

== Approx
=== Exact
1e-06 A == Prior

Approximation

Unnormalised density

= Normal

le-104 = SkewNormal
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Cumulative distribution functions (CDF)

Laplace LGCP Method assessment Model assessment

1.00+

0.754
LL
0 0.504
O

0.254

0.004
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Laplace LGCP Method assessment Model assessment
Bayesian method correctness assessment

The aim is to assess the correctness of the computed posterior distribution for some functional 7.(6, w).
Foreachk =1,..., K,

EH Sample o) ~ p(8)

wu® ~ pu | g(k))

y ™ ~ply [0, u®)
B The method being assessed has posterior density approximation p(h/(6, u)|y*))
B Compute The CDF value w*) = F5(h(6,uly™) (h(O™) uk)))

If the method recovers the correct posterior distributions, then w®) ~ Unif (0, 1), independent over

k=1,...,K.
If the rr;etho’d does not recover the correct posterior distributions, then we expect to see some deviation from
Unif (0, 1).
Example: u ~ N(0, 42)’
(yilu) ~ Po(e"), independentoveri =1,...,n =75,
h(u) = u.
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CDF comparison

1.00

0.75+
Method
m Exact

3 0.50+

=== Normal
== SkewNormal

0.254

0.00 4

T T T T
0. E)O 0.25 0.50 0.75 1.00
w
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Laplace LGCP Method assessment Nodel assessment
Kolmogorov-Smirnov diagnostic plots

3 -

2 -
%‘:f Method
g wes Exact
|§ 14 \ === Normal
= we  SkewNormal
>

O -

_l -
T T T T T
0.00 0.25 0.50 0.75 1.00
w
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Exact vs Approximate w

1.004
0.75+
= Method
i)
g ® Exact
= 0.50 4
o ® Normal
<3
S ® SkewNormal
<
0.25+
0.00 4
T
O.IOO 0.I25 O.ISO 0.I75 1.00
Exact w
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® SkewNormal

m ooo.ooosouov U 20, o Wy’ E
| TS0 5 0,
N ° oo ° o® o o
g °2 3. 0 et o e
- AR R U
m PoabT oWl o 2
4 * e g o® Yo 03 o e i
; o B waM”w e |, £
3 * ® L .*-'o' w® g Yo & £
» b © 3
5 ® o oue 0 Fooee &’o P 2 2
S .. l.’l.&r".u.u Qlﬁ‘“? ?‘1 L] Mm.
I RV |
-} L 3
: WoEISeC opennnts S 2
*-'IM.. Wﬂ.’ ..C.M..Ol Ql’-...‘.fl h
Ras sET L gsive w8 = |
)‘ e © o‘s‘l ‘Q"..CU..“ |Mm M
®e @mm, "o% o0y 8% a 2
L M lﬁ.t ‘e g, °° 5
%N W™ o ® Suy o .“.%.l'. (3 m
E 3
E
2 -
9
g
® 3 ° 2 2 8
> — ) <} o (=}
mw M 10118)S0d
o




Laplace LGCP Method assessment Model assessment
Prior vs Posterior w difference

0.004

-0.054

-0.101

Approx w — Exact w

-0.154

0.00 0.25 050 0.75 1.00
Prior w
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Laplace LGCP Method assessment Nodel assessment
Procedure for sampling based Bayesian methods

MCMC and other Monte Carlo methods do not provide CDF values, which then need to be estimated.

Posterior correctness assessment from samples (inspired by Talts et al, 2018)

Generate samples (8, w(%) | y(¥)) from the full model, as before.
Foreachk = 1,..., K, generate .J samples from (/%) w10y ~ p(@, u | y™*).
Compute the approximate CDF value as an empirical CDF for the samples:

J
1 1
w® = = gUIF) 4Gk < (k) (L~
]Zi { u?) < RO, u )} 27

which is a normalised order statistic.

Notes:
m The assessment approach assumes we can sample exactly (and independently) from the prior model.
® MCMC methods capable of posterior samples are not necessarily good at generating from the prior.
m The null distribution for the K-S test now depends on both K and .J, as well as the dependence between
the Monte Carlo samples.
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Laplace LGCP Wethod assessment Model assessment
Model vs method vs implementation

m The Bayesian method correctness assessment method specifically targets the implementation of a method

B Model assessment based on output from a method implementation is meaningless if we we don’t have
some trust in the method and implementation

m Information criteria based on the full model likelihood are popular but are often hard to interpret

m Probabilistic predictions can be easier to interpret, and are often cheap to compute (in particular if one is
already doing expensive Bayesian inference)

m We let I denote the CDF of a probabilistic prediction of an observation y

m The context can be cross-validation or estimation/validation/test data splits
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Numerical Bayesian inference Laplace LGCP Method assessment Model assessment

m We want to quantify how well our predictions represent the test data.

m We define scores S(F), y) that in some way measure how well the prediction F' matched the actual value,
Y.
m The scores defined here are negatively oriented, meaning that the lower the score, the better.

Squared errors and log-likelihood scores

m Squared Error (SE): Sse(F,y) = (y — yr)?,
where @F is a point estimate under [, e.g. the expectation fif.

m Logarithmic/Ignorance score (LOG/IGN): S o (F, y) = — log f(y),
where f(+) is the predictive density.

m Dawid-Sebastiani (DS): Sps(F,y) = (y;# + log(c%).
F
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Laplace LGCP Wethod assessment Model assessment
Score expectations and proper scoring rules

m What functions of the predictive distributions are useful scores?

m We want to reward accurate (unbiased) and precise (small variance) predictions, but not at the expense of
understating true uncertainty.

m First, we define the expectation of a score under a true distribution GG as

S(F,G) = Eyc[S(F,y)]

Proper scores/scoring rules

A negatively oriented score is proper if it fulfils
S(F,G) > S(G,Q).

A proper score that has equality of the expectations only when F' and G are the same, F'(-) = G(-), is said to
be strictly proper.

The practical interpretation of this is that a proper score does not reward cheating; stating a lower (or higher)
forecast/prediction uncertainty will not, on average, give a better score than stating the truth.
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Laplace LGCP Method assessment Model assessment
Absolute error and CRPS

Absolute error and Continuous Ranked Probability Score

m Absolute Error (AE): Sae(F,y) = |y — UF
F~1(1/2).

m CRPS: Scres(F, y) = ]fooo My <z)-— F(x)]2 dx

, where - is a point estimate under F', e.g. the median
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Laplace LGCP Wethod assessment Model assessment
Average scores

Average score

Given a collection of prediction/truth pairs, { (F;, y;),7 = 1, ..., n}, define the average or mean score:

n

S{(F,yi),i=1,...,n}) = %ZS(mei)

i=1

m When comparing prediction quality, we often look at the difference in average scores across the test data
set.

m For modern, complex models with explicit spatial and temporal model components, the pairwise differences
may be useful: For two prediction methods, /" and F’,

SA(F;, Fl,y:) = S(Fi,yi) — S(F,y:)

3

—A . A .
We can have S~ = 0 at the same time as all | S| >> 0, if the two models/methods are both good, but
e.g. at different spatial locations.
m How can we assess whether the score differences are indistinguishable?
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Laplace LGCP Wethod assessment Model assessment
How good are confidence/prediction interval procedures?

Tradeoffs for Cls

Desired properties for methods generating Cls for a quantity Y:
El Appropriate coverage under the true distribution, G: Po(Y € CIp) > 1 — «

H Narrow intervals

= A wide prediction F helps with 1 but makes 2 difficult
m A narrow prediction F' helps with 2 but makes 1 difficult

A proper score for interval predictions

The Interval Score For a Cl (L, Ur) is defined by
2 2
Sni(Fyy) =Up — Lr + E(LF —y)l(y < Lp) + E(y —Ur)l(y > Ur)
It is a proper scoring rule, consistent for equal-tail error probability intervals:
S(F, @) is minimised for the narrowest C'I that has expected coverage 1 — .
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Laplace LGCP Method assessment Model assessment
Proper scores

See(F, G) = Eya[Sse(F, )] = Eyncl(y — 1r)?) = Eyncl(y — pa + pe — pr)?]
=Ey~cl(y — na)® +2(y — pe)(pe — pr) + (pe — pr)’]
= Eyncly — 16)°) + 2(uc — pr)Ey~cly — pal + (ne — pr)?
= o0&+ (pe — 1r)’

This is minimised when (1= = fi¢;. Therefore Sse(F, G) > Sse(G, G) = o2, so the score is proper. Is it
strictly proper?

Ey~cly — nr)?

SDS(F7 G) = EyNG[SDS(Fv y)] = o
F

+log(F)

0& + (he — pir)
2

OF

2
+log (o)

This is minimised when /- = ji and 0 = 0. Therefore Sps(F, G) > Sps(G, G) = 1 + log(c?), so
the score is proper. Is it strictly proper?
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Scaling it up

Part 3: Lessons from the EUSTACE project
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EUSTACE ANALYSIS

Combines in-situ and satellite data sources to derive daily air

temperatures across the globe with quantified uncertainties. Analysis Best Estimate 01/01/1990

« Daily mean air temperature (2 m) estimates from the mid-
late 19th century at % degree resolution.

« Observational dataset for use in climate monitoring, services
and research.

— Quantify bias and uncertainty arising from observational sampling
(in space and time);

— Quantify uncertainty from instrumental effects/network changes.

« Higher resolution daily gridded analyses for regional climate

— Combine in situ and remote sensing data to support high
resolution analysis.

220 230 240 250 260 270 280 290 300 310
— Absolute temperature rather than anomaly product. Temperature {K)

Met Office *

EUSTACE R



Assimilated Observations 01/01/1880 Assimilated Observations 01/01/1955

OBSERVATIONS

In situ air temperature:

« EUSTACE station dataset (UBERN) (GHCN-D,
ECA&D, ISTI, DECADE, ERA-CLIM)

« HadNMAT-2 ship air temperatures (NOCS/Met
Office)

Satellite skin temperature derived air temperature:

« Marine: ATSR (ESA CCI SST)

« Land: MODIS (USGS/NASA via ESA
GlobTemperature)

o Ice: AVHRR (NOAA/FP7 NACLIM)

Assimilated Observations 01/01/1855

300

Met Office 220 230 250 250 300 220 2a0 260 280 300 220 240 260 280
Temperature (K)

Temperature (K) Temperature (K)



Variances Preconditioning
Statistical model and method building blocks

Basic system components

m Temperature processes on different spatial and temporal scales
m Seasonal
m Slow climate processes
® Medium-scale variability
m Daily

Vast model size (~ 101t unknowns); need computationally efficient tools

Hierarchical statistical model structure based on Gaussian processes

m Stochastic PDEs translates to sparse precisions in Gaussian Markov random fields

Propagated uncertainty via a Bayesian approach
m Dependence structure parameters
m Spatio-temporal process priors
m Observation models; Multiple observation sources, with complex error uncertainty structure
m Goals:
m a best estimate,
m a collection of samples, and
B more precise (and accurate) uncertainty estimates.
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Variances Preconditioning
Matérn driven heat equation on the sphere

The iterated heat equation is a simple non-separable space-time SPDE family:

B
(52 = AP/ |6 4 (62— A)P2] (s, 1) = Wis, 1)/

For constant parameters, CC(S, t) has spatial Matérn covariance (for each ).

Discrete domain Gaussian Markov random fields (GMRFs)

@ = (x1,...,2,) ~ N(u, Q") is Markov with respect to a neighbourhood structure {\;,7 = 1,...,n}
if Qi; = 0 whenever j # N; U1i.
m Project the SPDE solution space onto local basis functions:
random Markov dependent basis weights (Lindgren et al, 2011).

A finite element approximation has structure

a+pB+y
(s,0) = Y el )l (e, z~N©0,Q7Y), Q= Y M oM
i.j k=0

even, e.g., if the spatial scale parameter x is spatially varying.
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EUSTACE

Partial hierarchical representation

Variances Preconditioning

Observations of mean, max, min. Model mean and range.

QO

.

Q

€

Q2
€
Data sources )

Conditional specifications, e.g.

-1
(L0175, Q) ~ N (T4, Q1)

T = exp(T}) G U(s,0)] . U2 ~N(0,Q) ")
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EUSTACE

Standardised observation uncertainty models
m Each data source may have complicated dependence structure

m To facilitate information blending, use a common error term structure

Common satellite derived data error model framework

The observational&calibration errors are modelled as three error components:
m independent (€q),
m spatially and/or temporally correlated (¢1), and
m systematic (€2),

with distributions determined by the uncertainty information from satellite calibration models.
Eg. Yi = Tim(si, ti) + €o(si, i) + €1(si, i) + ea(si, t:)

In practice, each data source might have several different components of each type; independent components
can be merged, but not necessarily correlated or systematic components.
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EUSTACE

Station observation&homogenisation model

Variances Preconditioning

For station k at day ¢;, ' Ik _ .
bt =T (se, t:) + Y HE (t:)ek + b,
j=1

where H J" (t) are temporal step functions, ef;’/ are latent bias variables, and ef;;’ are independent
measurement and discretisation errors.

Daily mean/max/min

For station k at day ?,, yrlcr;i = T (sk, t:) + ﬁf;(ﬂ) 4 kit

L3 ex ﬁ’? g 5
it = T(onot) + SR g gy 1 s
. H*(t; .
yf{’l - Tm(skati) - eXP[ 27 ( )]TT(Sk’vti) + EI:L’Za

where H ' are the total bias correction variables for each observation.
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EUSTACE Variances Preconditioning

Observed data
Observed daily 7 inean and Tiange for station FRW00034051

FRWO00034051
g
=
1055 1060 1065
tme (vear
FRWO00034051

1055 1960 1965

time (vear)
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Variances Preconditioning
Multiscale model component samples

Time
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Combined model samples for 1}, and 7.

Variances

(Proof of concept; no actual data was involved in this figure)
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Variances Preconditioning
Linearised inference
All Spatio-temporal latent random processes combined into = (u, (3, b), with joint expectation tt,. and
precision Q.
(z]6) ~N(p,,Q;")  (Prior)
(y|x,0) ~N(h(Ax), Q;li) (Observations)
p(x|y,0) xplx|0)p(y|x,0) (Conditional posterior)

Non-linear and/or non-Gaussian observations

For a non-linear h(Ax) with Jacobian J at = p, iterate:

(z|y,0) e N(zz, é_l) (Approximate conditional posterior)
~ ~ == =il ~ ~
B =f+aQ {JTQW [y — h(Ap)] — Q. (1 — ux)}

for some a > 0 chosen by line-search.
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Variances Preconditioning
lterative solutions for ~ 10! latent variables

m Nonlinear Newton iteration with robust line-search

Basic Newton, eta Robust Newton, eta Partially Robust Newton, et
50- 50- 50-
40 / 40 40
30 30 30
g g g
T ] 1]
20 20 20
!
e ®
10 € 10 —— " 10 o
0 0-, - 0
08 1.0 12 14 0.8 1.0 12 14 0.8 1.0 12 14
etal etal etal
type Linear e~ Quadratic e~ True

m Preconditioned conjugate gradient (PCG) iteration for
Qu—-—p)=r=b-Qpu

= Local and multiscale approximations for preconditioning: M ~'Q ~ T

m Sampling with PCG: Q(x — 1) = Lw
Requires only a rectangular pseudo-Cholesky factorisation LL" = Q.
Possible due to the kronecker product sum precision structure.
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MULTI-SCALE ANALYSIS

Seasonal Bimonthly x 1° SPDE 245,772
M O D E L Slow-scale™ 5 year x 5° SPDE 107,604
Latitude 0.5° latitude SPDE 721
Statistical model foir temperature variations and different Altitude (0.25° grid) 1
scales (space and time): Constal e .

: local seasonal cycle with effects _
of latitude, altitude and coastal influence. Grand mean Analysis mean 1
: Slowly varying climatological mean
temperature field. Station homogenisation.
+ Daily Local: daily variability associated with weather. el 3 monthly x 5° SPDE 1,752,408
Satellite retrieval biases.

Station bias NA 82,072
Simultaneously estimates observational biases of known Resolution N Variables
bias structures: day
« e.g. satellite biases, station homogenisation. Daily local ~0.5 degree SPDE 162,842

Satellite bias Global 1

(marine)

Processed on STFC’s LOTUS cluster www.jasmin.ac.uk:
« Largest solves processed on 20 core/256GB RAM node. patellitelbiasil §Globall2 lerlee 1irdmoe

A X A (land) SPDE
« Highly parallel observation pre-processing.
Satellite bias Hemispheric + 2.5 2+ 40,962
(ice) degree SPDE*

Met Office EUSTACE



ITERATIVE SOLUTION

(1) Climatology:

Global mean T /
Seasonal cycle
Latitude

Altitude

Water fraction <

(2) Large-scale:
Multi-annual SPDE
Multi-month SPDE
Station biases

Tidi’@@ Ks, ,tD)

T@limts’ ,tlj )

Model Factorisation

The model is factorised into . = 1, ..., 3 components that are estimated interatively,

substituting ¥,,, for y:

:’)m =Y—- Z Jn)u'wn\f/n

n#Em
Met Office

Condition on expected
value of other components

[«

[«

: (3) Daily local:

Daily fields

1 Satellite land bias
1 Satellite marine bias
1 Satellite ice bias

TIOC@JI(@ , ,tD)

A

EUSTACE




Central England Temperature Decomposition

Surface Air Temperature - 52.125N, 1.375W

MULTI-SCALE ANALYSIS e
MODEL .
Statistical model for temperature variations and 20 ~ ~ T crmnton
different scales (space and time): - /N /0 /
: local seasonal cycle with e \ /
effects of latitude, altitude and coastal influence. =/ \/ N/
: Slowly varying § .
climatological mean temperature field. .
* Daily Local: daily variability associated with * o
weather.
Simultaneously estimates observational biases of E e
known bias structures: .o
* e.g. satellite biases, station homogenisation. N

2003 2004 l:

Met Office EUSTACE



ENSEMBLE ANALYSIS

* Samples drawn from joint posterior distribution of
temperature and bias variables.

* Temperature model samples projected onto analysis
grid.

* Spatial/temporal correlation in analysis errors is encoded
into the ensemble.

* Summary statistics can be derived from the ensemble.
Expected value, total uncertainty and observation
constraint information also available.

Met Office
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ENSEMBLE ANALYSIS

* Samples drawn from joint posterior distribution of
temperature and bias variables.

* Temperature model samples projected onto analysis
grid.

* Spatial/temporal correlation in analysis errors is encoded
into the ensemble.

* Summary statistics can be derived from the ensemble.
Expected value, total uncertainty and observation
constraint information also available.
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Variances Preconditioning
Variance calculations

Sparse partial inverse: Takahashi recursions postprocesses Cholesky

Takahashi recursions compute S such that S;; = (Qfl),;j for all ();; # 0. Postprocessing of the (sparse)
Cholesky factor. See INLA: :inla.qinv (). Allows computing e.g. {% log[det(Q)] = tr (Qfl‘g—g).

v

Basic Rao-Blackwellisation of sample estimators

Let (/) be Gaussian samples and let a' x be a linear combfatlon of interest. For any subdomain €2, C €2,

E(a'x) =E[E(a’ o | zo;)] JZ a as|:cQ)

Var(a'x) =E [Var(aTm | £ox)] + Var [E(a x| zq:)]

1 , 2
~ Var(a 'z | mg*) j Z [ a'z | azgz) — E(aTw)}

Efficient if aa | sparsity matches S, on each subdomain:

Var(a'z)=a' Q 'a=tr(Q 'aa’) = Z [Q_l O] aaTLj = Z [S ® aaTLJ
ij ij
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Variances Preconditioning
Preconditioning for e.g. conjugate gradient solutions

Solving Qx = b is equivalent to solving M ~'Qax = M ~'b. Choosing M ' as an approximate inverse to
Q gives a less ill-conditioned system. Only the action of M lis needed, e.g. one or more fixed point iterations:

Block Jacobi and Gauss-Seidel preconditioning

=L+D+L"

Matrix split: Q |,

Jacobi: zF 1) = D! (_(L +L7)z® 4+ b)

Gauss-Seidel: z*+1) = (L+D)™! (fLTa;(k) + b)

4

Remark: Block Gibbs sampling for a GMRF posterior

WthQ=Q,..b=A"Q (y— Ap,)andZ =z — _,
x|y € x x

") = (L + D)! (—LTE“) + b+ipw) . w~ N(0,I)

Gauss-Seidel and Gibbs are both very inefficient on their own.
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Overlapping block preconditioning

For ease of notation, write the two-level model xqg = B + fine scale variability posterior precision as

Q,+A'Q.A -Q.B }

Q:[ “B'Q, Q,+B'Q,B

Overlapping block preconditioning

Let Dz be a restriction matrix to subdomain €2, and let W, be a diagonal weight matrix. Then a useful
additive Schwartz preconditioner is

K
M 'z =Y W;Dy(D; QD) 'D{ Wz
=il

The domain overlap may need to be substantial:
m Typical off-the-shelf preconditioning is aimed at at most 2nd order operators (Laplacian)
m In the example model, the spatial precision operator order is 6
m In a hierarchical triangle subdivision mesh, neighbouring hexagonal macro-domains overlap by 2
macro-triangles
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Multigrid

Multigrid

Let B: be a projection matrix to a coarse approximative model. Then a basic multigrid step for Qx = b is

1. Apply high frequency preconditioner to get Zo, let 7o = b — QX

2. Project the problem to the coarser model: @, = BCTQBC, T, = BCTTO
3. Apply multigridto Q .. = 7.
4. Update the solution: 1 = Ty + B.Z.
5. Apply high frequency preconditioner to get
3 o -
<@
c —
2
£~
x
S _
Q.
Q.
2 _

I I I I
5 10 15 20
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EUSTACE Variances Preconditioning

The hierarchy of scales and preconditioning (x¢y = B + fine scale variability):

Multiscale Schur complement approximation

Solving Q| = b can be formulated using two solves with the upper (fine) block Q, + ATQEA, and one
solve with the Schur complement

Q+B'QB-B'Q(Q+47Q.4) Q,

By mapping the fine scale model onto the coarse basis used for the coarse model, we get an approximate (and sparse) Schur

solve via
ignored| 9
1 b
where @B =B'Q,B.

The block matrix can be interpreted as the precision of a bivariate field on a common, coarse spatio-temporal scale, and the
same technique applied to this system, with 1 1 = Bugml,z -+ finer scale variability.

Q;+B'A'QAB  -Q,
-Qs Q:+Qp

For realistic problems we need to combine all three techniques.
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