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Traditionally, Markov models in im-
age analysis and spatial statistics have
been largely confined to discrete spa-
tial domains, such as lattices and re-
gional adjacency graphs. However, as
discussed in [3], one can express a large
class of random field models as solu-
tions to continuous domain stochastic
partial differential equations (SPDEs),
and write down explicit links between
the parameters of each SPDE and
the elements of precision matrices for
weights in a discrete basis function rep-
resentation. As shown by Whittle in
1963, such models include those with
Matérn covariance functions, which are
ubiquitous in traditional spatial statis-
tics, but in contrast to covariance
based models it is far easier to intro-
duce non-stationarity into the SPDE
models. This is because the differential
operators act locally, similarly to lo-
cal increments in Gibbs-specifications
of Markov models, and only mild reg-
ularity conditions are required. The
practical significance of this is that we
can merge the classical Gaussian ran-
dom fields with methods based on the
Markov property, providing continuous
domain models that are computation-
ally efficient, and where the parame-
ters can be specified locally without
having to worry about positive defi-
niteness of covariance functions.

In this brief note, I present the ba-
sic ingredients of the link between con-

tinuous domains and Markov models,
and show how to perform Bayesian in-
ference for the simplest of these mod-
els, using the R-INLA software pack-
age (http://www.r-inla.org). Spe-
cial emphasis is placed on the abstrac-
tions necessary to simplify the practi-
cal bookkeeping for the user of the soft-
ware.

Think continuous

When building and using hierarchical
models with latent random fields it is
important to remember that the la-
tent fields often represent real-world
phenomena that exist independently of
whether they are observed in a given
location or not. Thus, we are not
building models solely for discretely ob-
served data, but for approximations of
entire processes defined on continuous
domains. For a spatial field x(s), while
the data likelihood typically depends
only on the values at a finite set of lo-
cations, {s1, . . . , sm}, the model itself
defines the joint behaviour for all lo-
cations, typically s ∈ R2 or s ∈ S2 (a
sphere/globe). In the case of lattice
data, the discretisation typically hap-
pens in the observation stage, such as
integration over grid boxes (e.g. pho-
ton collection in a camera sensor). Of-
ten, this is approximated by point-
wise evaluation, but there is nothing
apart from computational challenges
preventing other observation models.

As discussed in the introduction, an
alternative to traditional covariance
based modelling is to use SPDEs, but
carry out the practical computations
using Gaussian Markov random field
(GMRF) representations. This is done
by approximating the full set of spa-
tial random functions with weighted
sums of simple basis functions, which
allows us to hold on to the continu-
ous interpretation of space, while the
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computational algorithms only see dis-
crete structures with Markov proper-
ties. Beyond the main paper [3], this
is further discussed in [5] and [6].

The simplest model for x(s) cur-
rently implemented in R-INLA is the
SPDE/GMRF version of the station-
ary Matérn family,

(κ2 −∆)α/2(τx(s)) = E(s), s ∈ R2,

where ∆ is the Laplacian, κ is the
spatial scale parameter, α controls the
smoothness of the realisations, and
τ controls the variance. The right-
hand side of the equation, E(s) is spa-
tial white noise process. The link to
the Matérn smoothness ν and vari-
ance σ2 is ν = α − d/2 and σ2 =
Γ(ν)(Γ(α)(4π)d/2κ2ντ2)−1, where d is
the spatial dimension. From this we
can identify the exponential covariance
with ν = 1/2 and α = 3/2, and note
that fields with α ≤ 1 give ν ≤ 0 and
that such fields have no point-wise in-
terpretation (but do have well-defined
integration properties). From spec-
tral theory one can show that integer
values for α gives continuous domain
Markov fields, and these are the eas-
iest for which to provide discrete ba-
sis representations. In R-INLA, the de-
fault value is α = 2, but 0 ≤ α < 2
are also available, though not as ex-
tensively tested (for the non-integer α
values the approximation method in-
troduced in the authors’ discussion re-
sponse in [3] is used).

The models discussed in [3] and imple-
mented in R-INLA are built on a basis
representation

x(s) =

n∑
i=1

ψi(s)xi,

where the joint distribution of x =
{x1, . . . , xn} is chosen so that the dis-
tribution of the functions x(s) approx-
imates the distribution of solutions to

the SPDE. To obtain a Markov struc-
ture, and to preserve it when condi-
tioning on observations, we use ba-
sis function with local support. The
construction is done by projecting the
SPDE onto the basis representation in
what is essentially a Finite Element
method. To allow easy and explicit
evaluation, we use piece-wise linear ba-
sis functions defined by a triangulation
of the domain of interest. This yields a
diagonal matrix C and a sparse matrix
G such that the appropriate precision
matrix for the weights is given by

Q = τ2(κ4C + 2κ2G + GC−1G)

for the default case α = 2, so that the
elements of Q have explicit expressions
as functions of κ and τ . The default in-
ternal representation of the parameters
in the model interface we will use here
is log(τ) = θ1 and log(κ) = θ2, where
θ1 and θ2 have a joint normal prior dis-
tribution (by default independent).

There is a vast range of possible ex-
tensions to the simple model described
here, including non-stationary versions
(see [3] and [1] for examples). For
currently implemented models, the re-
cent paper [2] is a case-study using
a straightforward space-time version
including the full R code. A non-
stationary extension by defining spa-
tially varying models for κ(s) and τ(s)
is also implemented, and will be men-
tioned briefly later on.

While the full theory behind fractional
stochastic partial differential equations
is challenging at best, the major chal-
lenge when designing a general soft-
ware package for practical use of these
models is rather that of bookkeeping.
To solve this, a bit of abstraction is
needed to avoid cluttering the interface
with details of internal storage. Thus,
instead of visibly keeping track of map-
pings between triangle mesh node in-
dices and data locations, one can use
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sparse matrices to encode these rela-
tionships, and provide wrapper func-
tions to manipulate these matrices and
associated index and covariate vectors.

The first step is to create the tri-
angulated mesh on top of which the
SPDE/GMRF representation is to be
built. The example here illustrates
a common usage case, which is to
have semi-randomly scattered obser-
vation locations in a region of space
such that there is no physical bound-
ary, just an limited observation re-
gion. When dealing with only covari-
ances between data points, this dis-
tinction is often unimportant, but here
it becomes a possibly vital part of
the model, since the SPDE will ex-
hibit boundary effects. In the R-INLA
implementation, Neumann boundaries
are used, which increases the vari-
ance near the boundary. If we in-
tend to model a stationary field across
the entire domain of observations, we
must therefore extend the model do-
main far enough so that the bound-
ary effects don’t influence the obser-
vations. However, note that the re-
verse is also true: if there is a physical
boundary, the boundary effects may
actually be desirable. The helper func-
tion inla.mesh.create.helper() al-
lows us to create a mesh with small
triangles in the domain of interest,
and use larger triangles in the exten-
sion used to avoid boundary effects.
This minimises the extra computa-
tional work needed due to the exten-
sion.

m = 100

points = matrix(runif(m*2),m,2)

mesh = inla.mesh.create.helper(

points=points,

cutoff=0.05,

offset=c(0.1,0.4),

max.edge=c(0.05,0.5) )

plot(mesh)

points(points[,1],points[,2])

The cutoff parameter is used to avoid
building many small triangles around
clustered input locations, offset spec-
ifies the size of the inner and outer

extensions around the data locations,
and max.edge specifies the maximum
allowed triangle edge lengths in the in-
ner domain and in the outer extension.
The overall effect of the triangulation
construction is that, if desired, one
can have smaller triangles, and hence
higher accuracy of the field represen-
tation, where the observation locations
are dense, larger triangles where data
is more sparse (and hence provides less
detailed information), and large trian-
gles where there is no data and spend-
ing computational resources would be
wasteful. However, note that there is
neither any guarantee nor any require-
ment that the observation locations are
included as nodes in the mesh. If one
so desires, the mesh can be designed
from different principles, such as lat-
tice points with no relation to the pre-
cise measurement locations. This em-
phasises the decoupling between the
continuous domain of the field model
and the discrete data locations.

Defining an SPDE model object can
now be as simple as

spde=inla.spde2.matern(mesh,alpha=2)

but in practice we need to also specify
the prior distribution for the parame-
ters, and/or modify the parameterisa-
tion to suit the specific situation. This
is true in particular when the models
are used as simple smoothers, as there
is then rarely enough information in
the likelihood to fully identify the pa-
rameters, giving more importance to
the prior distributions.

The empirically derived expression√
8ν/κ can be used as a measure of

the spatial range of the model, which
allows us to construct a model with
known range and variance (= 1) for
(θ1, θ2) = (0, 0), via

sigma0 = 1 ## field std.dev.

range0 = 0.2

kappa0 = sqrt(8)/range0

tau0 = 1/(sqrt(4*pi)*kappa0*sigma0)
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spde=inla.spde2.matern(mesh,

B.tau=cbind(log(tau0),1,0),

B.kappa=cbind(log(kappa0),0,1),

theta.prior.mean=c(0,0),

theta.prior.prec=1)

Here, B.tau and B.kappa can be gen-
eralised into matrices where the first
column specifies a spatially varying off-
set for log(τ) and log(κ), and the other
columns specify basis functions, to-
gether defining a non-stationary SPDE
model with parameters given by the
log-linear models

log(τ(s)) = bτ0(s) +

p∑
k=1

bτk(s)θk

log(κ(s)) = bκ0 (s) +

p∑
k=1

bκk(s)θk

where B·
ik = b·k(si), with the columns

indexed from 0 and si are the locations
of the mesh nodes. Setting sensible pri-
ors for θ in these models in general is
beyond the scope of this note, and the
default priors in the package are likely
to change in the near future as we gain
more experience with their behaviour,
in particular for non-stationary mod-
els. The model defined here will give
an approximate prior mean variance of
σ2
0 = 1 for for the field, and approxi-

mate prior mean range 0.2 with a prior
variance for the range distribution to
reach the size of the domain, but not
very far beyond.

Models with range larger than the do-
main size are usually indistinguishable
from intrinsic random fields, which
can be modelled by fixing κ to zero
(or rather some small positive value)
with B.tau=cbind(log(tau0),1)

and B.kappa=cbind(log(small),0).
Note that the sum-to-zero constraints
often used for lattice based intrinsic
Markov models is inappropriate due
to the irregular mesh structure, and
a weighted sum-to-zero constraint is
needed to reproduce such models. A

future version of the software will in-
clude an automatic option to construct
such appropriate constraints.

Helper functions in the package can
produce precision matrices for given
parameter values, as well as samples,
so we can generate a synthetic sample:

Q=inla.spde2.precision(

spde,theta=c(0,0))

x=as.vector(inla.qsample(n=1,Q))

proj = inla.mesh.projector(mesh)

image(inla.mesh.project(

proj,field=x))

Here, the inla.mesh.project/or()
functions are used to map between the
basis function weights for the mesh
nodes and a lattice format more suited
to the standard plotting routines, by
default a 100×100 lattice covering the
mesh domain.

Bayesian inference

We will now look at a simple exam-
ple of how to use the SPDE models in
latent Gaussian models when doing di-
rect Bayesian inference based on inte-
grated nested Laplace approximations
as introduced in [4].

Let’s consider a simple Gaussian linear
model involving two independent real-
isations (replicates) of a latent spatial
field x(s), observed at the samem loca-
tions, {s1, . . . , sm}, for each replicate.
For each i = 1, . . . ,m,

yi = β0 + ciβc + x1(si) + ei,

yi+m = β0 + ci+mβc + x2(si) + ei+m,

where ci is an observation-specific co-
variate, ei is measurement noise, and
x1(·) and x2(·) are the two field repli-
cates. Note that the offset, β0, can be
interpreted as a spatial covariate effect,
constant over the domain.
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We use the basis function representa-
tion of x(·) to define a sparse matrix of
weights A such that x(si) =

∑
j Aijxj ,

where {xj} is the joint set of weights
for the two replicate fields. If we
only had one replicate, we would have
Aij = ψj(si). The matrix can be gen-
erated by inla.spde.make.A(), which
locates the points in the mesh and or-
ganises the evaluated values of the ba-
sis functions for the two replicates:

A=inla.spde.make.A(

mesh,

loc=points,

index=rep(1:m,times=2),

repl=rep(1:2,each=m) )

For each observation, index gives the
corresponding index into the matrix
of measurement locations, and repl

determines the corresponding replicate
index. In case of missing observations,
one can either keep this A-matrix while
setting the corresponding elements of
the data vector y to NA, or omit the cor-
responding elements from y as well as
from the index and repl parameters
above. Also note that the row-sums of
A are 1, since the piece-wise linear ba-
sis functions we use sum to 1 at each
location.

Rewriting the observation model on
vector form gives

y = 1β0 + cβc + Ax + e

= A(x + 1β0) + cβc + e

Using the helper functions, we can
generate a synthetic sample from our
model for the latent fields and obser-
vations:

Q=inla.spde.precision(

spde,theta=c(0,0))

x=as.vector(inla.qsample(n=2,Q))

covariate = rnorm(m*2)

y = 5 + covariate*2 +

as.vector(A %*% x) +

rnorm(m*2)*0.01

The formula in inla() defines a lin-
ear predictor η as the sum of all ef-
fects, and an NA in a covariate or index

vector is interpreted as no effect. To
accommodate predictors that involve
more than one element of a random ef-
fect, one can specify a sparse matrix
of weights defining an arbitrary linear
combination of the elements of η, giv-
ing a new predictor vector η∗. The
linear predictor output from inla()

then contains the joint vector (η∗, η).
To implement our model, we separate
the spatial effects from the covariate by
defining

ηe =

[
x + 1β0
cβc

]
,

and construct the predictor as

η∗e = A(x + 1β0) + cβc

=
[
A I

]
ηe = Aeηe

so that now E(y|ηe) = η∗e . The book-
keeping required to describe this to
inla() involves concatenating matri-
ces and adding NA elements to the co-
variates and index vectors:

Ae =
[
A I2m

]
field0 = (1, . . . , n, 1, . . . , n)

field = (field0, NA, . . . , NA)

offset = (1, . . . , 1, NA, . . . , NA)

cov = (NA, . . . , NA, c1, . . . , c2m)

Doing this by hand with cBind(), c(),
and rep() quickly becomes tedious
and error-prone, so one can instead
use the helper function inla.stack(),
which takes blocks of data, weight
matrices, and effects and joins them,
adding NA where needed. Identity ma-
trices and constant covariates can be
abbreviated to scalars, with a com-
plaint being issued if the input is in-
consistent or ambiguous.

We also need to keep track of
the two field replicates, and use
inla.spde.make.index(), which
gives a list of index vectors for indexing
the full mesh and its replicates (it can
also be used for indexing Kronecker
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product group models, e.g. in simple
multivariate and spatio-temporal mod-
els). The code

mesh.index=inla.spde.make.index(

name="field",

n.mesh=mesh$n, n.repl=2)

generates a list mesh.index with three
index vectors,

field = (1, . . . , n, 1, . . . , n),

field.repl = (1, . . . , 1, 2, . . . , 2),

field.group = (1, . . . , 1, 1, . . . , 1).

The predictor information for the ob-
served data can now be collected, using

st.est=inla.stack(

data=list(y=y),

A=list(A,1),

effects=list(

c(mesh.index,list(offset=1)),

list(cov=covariate)),

tag="est")

Each “A” matrix must have an asso-
ciated list of “effects”, in this case
A:(field, field.repl, field.group,
offset) and 1:(cov). The data list
may contain anything associated with
the “left hand side” of the model, such
as exposure E for Poisson likelihoods.
By default, duplicates in the effects are
identified and replaced by single copies
(compress=TRUE), and effects that do
not affect η∗ are removed completely
(remove.unused=TRUE), so that each
column of the resulting A matrix has
a least one non-zero element.

If we want to obtain the posterior pre-
diction of the combined spatial effects
at the mesh nodes, x(si) + β0, we can
define

ηp = x + 1β0

η∗p = Iηp = Apηp

and construct the corresponding infor-
mation stack with

st.pred=inla.stack(

data=list(y=NA),

A=list(1),

effects=list(

c(mesh.index,list(offset=1))),

tag="pred")

We can now join the estimation and
prediction stack into a single stack,

stack = inla.stack(st.est,st.pred)

This stacks the information, and sim-
plifies the result by removing dupli-
cated effects:

η∗s =

[
Ae 0
0 Ap

] [
ηe
ηp

]

=

[
A I 0
0 0 I

]x + 1β0
cβc

x + 1β0


=

[
A I
I 0

] [
x + 1β0
cβc

]
= Asηs

In this simple example, the sec-
ond block row of As (generat-
ing x + 1β0) isn’t strictly needed,
since the same information would be
available in ηs itself if we speci-
fied remove.unused=FALSE when con-
structing stack.pred and stack, but
in general such special cases can be
hard to keep track of.

We are now ready to do the actual es-
timation. Note that we must explicitly
remove the default intercept from the
η-model, since that would otherwise be
applied twice in the construction of η∗,
and the constant covariate offset is
used instead:

formula =

y ~ -1 + offset + cov +

f(field, model=spde,

replicate=field.repl)

inla.result =

inla(formula,

data=inla.stack.data(stack),

family="normal",

control.predictor=

list(A=inla.stack.A(stack),

compute=TRUE))
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The function inla.stack.data()

produces the list of variables
needed to evaluate the formula (use
inla.stack.data(stack)$E to ex-
tract the Poisson exposures mentioned
earlier) and inla.stack.A() extracts
the As matrix.

Since the SPDE-related contents
of inla.result can be hard
to interpret, the helper function
inla.spde2.result() can be used to
extract the relevant bits and transform
them into more user-friendly informa-
tion, such as posteriors for range and
variance instead of raw distributions
for θ:

result = inla.spde2.result(

inla.result, "field", spde)

plot(result[

"marginals.range.nominal"][[1]])

The posterior means and standard
deviations for the latent fields can
be extracted and plotted as follows,
where inla.stack.index() provides
the necessary mappings between the
inla() output and the original data
stack specifications:

index=inla.stack.index(

stack,"pred")$data

image(inla.mesh.project(proj,

inla.result[[

"summary.linear.predictor"

]]$mean[

index[mesh.index$field.repl==1]]))

As a final note, the R-INLA package
is in constant development, with new
models added as they are needed and
developed. The current work for the
SPDE models is focusing on complet-
ing the documentation, as well as tying
together the last bits of the interface
for one-dimensional models and simple
space-time models. Most of the code
for this is already in place, but still in
a slightly esoteric form. Also in the
pipeline is a separate package for com-
puting level excursion sets with joint
excursion probabilities, as well as con-
tour uncertainty regions, mainly devel-
oped by David Bolin.
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Figure 2: Simulated true field
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Figure 1: Triangulated mesh
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Figure 1: Posterior mean
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