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EUSTACE ANALYSIS

Combines in-situ and satellite data sources to derive daily air

temperatures across the globe with quantified uncertainties. Analysis Best Estimate 01/01/1990

« Daily mean air temperature (2 m) estimates from the mid-
late 19th century at % degree resolution.

« Observational dataset for use in climate monitoring, services
and research.

— Quantify bias and uncertainty arising from observational sampling
(in space and time);

— Quantify uncertainty from instrumental effects/network changes.

« Higher resolution daily gridded analyses for regional climate

— Combine in situ and remote sensing data to support high
resolution analysis.
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— Absolute temperature rather than anomaly product. Temperature {K)
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ENSEMBLE ANALYSIS

* Samples drawn from joint posterior distribution of
temperature and bias variables.

* Temperature model samples projected onto analysis
grid.

* Spatial/temporal correlation in analysis errors is encoded
into the ensemble.

* Summary statistics can be derived from the ensemble.
Expected value, total uncertainty and observation
constraint information also available.

Met Office
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ENSEMBLE ANALYSIS

* Samples drawn from joint posterior distribution of
temperature and bias variables.

* Temperature model samples projected onto analysis
grid.

* Spatial/temporal correlation in analysis errors is encoded
into the ensemble.

* Summary statistics can be derived from the ensemble.
Expected value, total uncertainty and observation
constraint information also available.
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Central England Temperature Decomposition

Surface Air Temperature - 52.125N, 1.375W

MULTI-SCALE ANALYSIS e
MODEL .
Statistical model for temperature variations and 20 ~ ~ T crmnton
different scales (space and time): - /N /0 /
: local seasonal cycle with e \ /
effects of latitude, altitude and coastal influence. =/ \/ N/
: Slowly varying § .
climatological mean temperature field. .
* Daily Local: daily variability associated with * o
weather.
Simultaneously estimates observational biases of E e
known bias structures: .o
* e.g. satellite biases, station homogenisation. N

2003 2004 l:

Met Office EUSTACE



SATELLITE BIAS MODELS

* Simplified model of known error structures
in satellite air temperature retrievals:
— Global/hemispheric systematic bias covariates.

— Daily estimates of spatially varying bias as a
spatial random field.

Estimated jointly with daily temperature
variability.
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COMPARING EUSTACE WITH CENTRAL ENGLAND TEMPERATURE

Central England Temperature 2006
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MULTI-SCALE ANALYSIS

Seasonal Bimonthly x 1° SPDE 245,772
M O D E L Slow-scale™ 5 year x 5° SPDE 107,604
Latitude 0.5° latitude SPDE 721
Statistical model foir temperature variations and different Altitude (0.25° grid) 1
scales (space and time): Constal e .

: local seasonal cycle with effects _
of latitude, altitude and coastal influence. Grand mean Analysis mean 1
: Slowly varying climatological mean
temperature field. Station homogenisation.
+ Daily Local: daily variability associated with weather. el 3 monthly x 5° SPDE 1,752,408
Satellite retrieval biases.

Station bias NA 82,072
Simultaneously estimates observational biases of known Resolution N Variables
bias structures: day
« e.g. satellite biases, station homogenisation. Daily local ~0.5 degree SPDE 162,842

Satellite bias Global 1

(marine)

Processed on STFC’s LOTUS cluster www.jasmin.ac.uk:
« Largest solves processed on 20 core/256GB RAM node. patellitelbiasil §Globall2 lerlee 1irdmoe

A X A (land) SPDE
« Highly parallel observation pre-processing.
Satellite bias Hemispheric + 2.5 2+ 40,962
(ice) degree SPDE*
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GAMs and general kriging

» Linear GAMs with GPs on space and covariates:

n, = Z fk:(zik:) + U’(S’IZ)’
k

each fi(+) and u(-) represented with basis expansions with jointly Gaussian coefficients .
> Linear observations with additive Gaussian observation noise: y =1 + € = Ax + €

P Covariance kriging
¥, =AS, AT + 3,
E(zly) = p+Z, A2, (y — Ap)
> Precision kriging
Qry = Qs + ATQEA
E(zly) = n+ QA Q.(y — Ap)

\“> Non-Gaussian observations with link function: E(y;|6, ) = h(1;) *

EUSTACE



Observation level covariance vs latent level precision

> Covariance kriging: linear solve with a 33, ¥;; = Cov(y;, y;)
Vecchia approximation:
S '~ LL fora given observation ordering, and sparse lower triangular L with given sparsity pattern;

p(l0) = p(y1) [T—s p(yilyg,). Gi S {1,...,i—1},

aTEfla ~ Z( Z a,,;L,L'j)Z

i jeG;

L obtained sequentially from 32 for each observation.
> Precision kriging: linear solve with a Q, Q;; = Prec(z;, x;|y)
Q= LL" for a given latent variable ordering, and sparse lower triangular L with the sparsity from Q
plus Cholesky infill.
The prior Q. for SPDE process components is obtained via a local Finite Element construction, giving the
model in a chosen finite function space closest to the full model.
<t
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Example model: Matérn driven heat equation on the sphere

The iterated heat equation is a simple non-separable space-time SPDE family:

(627

¢% + (2= A)*/2| x(s,t)dt = d&(2_pyee (s,t)/T

For constant parameters, I(s, t) has spatial Matérn covariance (for each t) in a Matérn-Whittle sense on S2.

Discrete domain Gaussian Markov random fields (GMRFs)

x = (21,...,2,) ~N(p, Q") is Markov with respect to a neighbourhood structure {N;,i = 1,...,n}
if Qi; = 0 whenever j # N; U1i.
» Project the SPDE solution space onto local basis functions:
random Markov dependent basis weights (Lindgren et al, 2011).

A finite element approximation has structure
artastae

Zl/) ;L”, $NN(O,Q71), Q: Z ME‘]@MES]

k=0 *
_even, e. g., if the spatlal scale parameter k is spatially varying.
EUSTACE




Classic and compact INLA methods (~ description)

» |aplace approximation at the conditional posterior mode x*, and uncertainty integration:

p(0)p(z|0)p(y|6, z) . PO)p(z|0)p(y|6, z)
p(z(6.y) N p(10,y)  [pep-

p(wily) = / p(:10.y)p(Bly) A0 ~ Y ;10" 4)p(0" [y)wi = plx;ly)
k

p(0ly) = p(Oly)

> Letp = E(x(0,y) and Q, = —V.,V, logp(y|6, z*)

> Classic method: Laplace approximation of each p(x; |60, y), and

Az Afi] [Q.+ 01 —sA 17"\
{|:x:||0,y}NN<|:ﬁ:|,|:_6AT Q7—|—(SATA:| ),Wlth5>>0

» Compact method: Variational approximation of ﬁ(w|9, y) and

{z|0,y} ~ NV (ﬁ, Q. + ATQEA]*l)

N1Ve
@0 s
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Before satellites you had to go measure in person

"The Discovery", Dundee, Scotland (Photos: Finn Lindgren, August 2022)
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Hydrology lab from the 1925-27 Antarctic ocean expedition

"The Discovery", Dundee, Scotland (Photos: Finn Lindgren, August 2022) *
EUSTACE




What’s that in the corner?

"The Discovery", Dundee, Scotland (Photos: Finn Lindgren, August 2022) *
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It's a Nansen-Pettersson water sampling bottle!

The Nansen-Pettersson
sampling bottle

Temperature and water samples
down to 100m were taken with the
Nansen-Pettersson water sampling
bottle. The bottle is sent down on a
wire to the desired depth. Then the
‘Messenger’ weight is sent down to
close the bottle to collect the
sample. The insulation helps to
keep the temperature constant to
allow the scientists to gather the
data about the temperature using
the thermometer. Water is released
from the tap at the bottom for
testing.

"The Discovery", Dundee, Scotland (Photos: Finn Lindgren, August 2022) *
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Station observation & homogenisation model

Daily mean air temperature measurements

For station k at day t;, 4 Tk . .
uh' = T(sk,ti) + Y HY (t)ery? + ey

where H jk (t) are temporal step functions, efﬁj are latent bias variables, and efn‘ are independent
measurement and discretisation errors.

Daily mean/max/min

For station k atday ti,y%" — T, (s, t;) + H* (t;) + €,

. . HE (1)
y.];’l = Tm(skv ti) + Hfl?,m(ti) + SR

yn" = TSk, 1) + HY o (85) = =5

Tr(sk> tz) + 6ﬁ7i7

EUSTACE



Modelling non-Gaussian quantities

Power tail quantile (POQ) model

The quantile function Fgl (p) pE [0, 1], is defined through a quantile blend of left- and right-tailed generalised
Pareto distributions:

L6/ B A
fe(p>:{1 20 # 0,
5 log(2p), 6 =0,
2(1—p)) -1
{“ e U

i) =-fy0-p =9 , log(2(1 —p)), 6=0.

1 T _
Fg'(p) =00+ 5 [(1 =) fo, () + (1 + )5, (0)] -
The parameters @ = (0o, 01 = log 7,0, = logit[(y + 1)/2], 03, 64) control the median, spread/scale,
skewness, and the left and right tail shape.

This model is also known as the five parameter lambda model (Gilchrist, 2000).

NIV
- G
% S

- Transformation: 7. (s, t) = Fg_(i’t){q)[u(s,t)]}, E[u(s,t)] =0, Var[u(s,t)] = 1 *
: EUSTACE




Diurnal range distributions
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; For these stations, POQ does a slightly better job than a Gamma distribution.
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Diurnal range distributions
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. For these stations only POQ comes close to representing the distributions.
=B~ Note: Some shapes may be due to unmodeled station inhomogeneities.

Gamma predicted DTR (deg C)
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Estimates of median & scale for 1}, and 7',

Feb Feb

February climatology 7.

(Preliminary estimates, using only in-situ land station data) EUSTACEM




Linearised inference
All spatio-temporal latent random processes combined into x = (u, 3, b), with joint expectation f¢,, and
precision Q) :
(x| 0) ~N(u,, Q")  (Prior)
(y |z, 0) ~N(h(x), Q;‘i) (Observations)
p(x|y,0) xp(x|0)p(y|x,0) (Conditional posterior)

Non-linear and/or non-Gaussian observations

For a non-linear /() with Jacobian J at = p*, iterate:

(x| y,0) "X N(i, E)_l) (INLA posterior from h(z) = h(u*) + J(x — p*))
Q= Q, + JTQyL,EJ (Generally: Q, — V.,V logp(y|z, )
Hrew = W+ (i — p7) - argmin [|A() = h(u” + (i — w)a)

*
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P Video illustrating the results, produced by Philip Brohan:

https://twitter.com/philipbrohan/status/1253411283598073867

https://player.vimeo.com/video/403663259

Links to EUSTACE project reports and data: *

https://www.eustaceproject.org/
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Standardised observation uncertainty models

» Each data source may have complicated dependence structure

» To facilitate information blending, use a common error term structure

Common satellite derived data error model framework

The observational&calibration errors are modelled as three error components:
» independent (¢(),
> gpatially and/or temporally correlated (¢1), and
> systematic (€o),

with distributions determined by the uncertainty information from satellite calibration models.
Eg. Yi = Tin(si, ti) + eo(si, i) + e1(si, ti) + ea(si, ti)

In practice, each data source might have several different components of each type; independent components
can be merged, but not necessarily correlated or systematic components.

*
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