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EUSTACE ANALYSIS

Combines in-situ and satellite data sources to derive daily air

temperatures across the globe with quantified uncertainties. Analysis Best Estimate 01/01/1990

« Daily mean air temperature (2 m) estimates from the mid-
late 19th century at % degree resolution.

« Observational dataset for use in climate monitoring, services
and research.

— Quantify bias and uncertainty arising from observational sampling
(in space and time);

— Quantify uncertainty from instrumental effects/network changes.

« Higher resolution daily gridded analyses for regional climate

— Combine in situ and remote sensing data to support high
resolution analysis.
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— Absolute temperature rather than anomaly product. Temperature {K)
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Assimilated Observations 01/01/1880 Assimilated Observations 01/01/1955

OBSERVATIONS

In situ air temperature:

« EUSTACE station dataset (UBERN) (GHCN-D,
ECA&D, ISTI, DECADE, ERA-CLIM)

« HadNMAT-2 ship air temperatures (NOCS/Met
Office)

Satellite skin temperature derived air temperature:

« Marine: ATSR (ESA CCI SST)

« Land: MODIS (USGS/NASA via ESA
GlobTemperature)

o Ice: AVHRR (NOAA/FP7 NACLIM)

Assimilated Observations 01/01/1855
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Statistical model and method building blocks

Basic system components

» Temperature processes on different spatial and temporal scales

> Seasonal

> Slow climate processes

> Medium-scale variability

> Daily
> Vast model size (~ 10! unknowns); need computationally efficient tools
P Hierarchical statistical model structure based on Gaussian processes

> Stochastic PDEs translates to sparse precisions in Gaussian Markov random fields
»  Propagated uncertainty via a Bayesian approach

> Dependence structure parameters

> Spatio-temporal process priors

> Observation models; Multiple observation sources, with complex error uncertainty structure
> Goals:

P a pest estimate,

> a collection of samples, and *
> more precise (and accurate) uncertainty estimates.
EUSTACE




Example model: atérn driven heat equation on the sphere

The iterated heat equation is a simple non-separable space-time SPDE family:

B
(k2 — A)V/2 gb% + (K2 = A2 a(s,t) = W(s, t)/T

For constant parameters, x(s, t) has spatial Matérn covariance (for each ?).

Discrete domain Gaussian Markov random fields (GMRFs)

x=(x1,...,25) ~N(u, Q_l) is Markov with respect to a neighbourhood structure {A;, i =1,...,n}
if Qi; = 0 whenever j # N; U1i.
» Project the SPDE solution space onto local basis functions:
random Markov dependent basis weights (Lindgren et al, 2011).

A finite element approximation has structure

(s a+B+y
-1 t
Zw Wy, z~NO.Q), Q=Y MIeM
k=0 *
_even, e. g., if the spatlal scale parameter k is spatially varying.
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Partial hierarchical representation

Observations of mean, max, min. Model mean and range.

@ @ @
Lol

Data sources )

Conditional specifications, e.g.
(T, Q) ~ N (Th, @5 ) ¥
T = exp(T}) G[U2(s,1)], U2~ N (0,Q07)
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Standardised observation uncertainty models

» Each data source may have complicated dependence structure

> To facilitate information blending, use a common error term structure

Common satellite derived data error model framework

The observational&calibration errors are modelled as three error components:

> independent (o),
> spatially and/or temporally correlated (¢1), and
> systematic (€2),

with distributions determined by the uncertainty information from satellite calibration models.
Eg. ¥i = Tm(si, ti) + €o(si, ts) + €1(si, ti) + €2(si, ti)

In practice, each data source might have several different components of each type; independent components
can be merged, but not necessarily correlated or systematic components.

*
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Station observation & homogenisation model

Daily means

For station k at day t;, 4 Tk . .
yht = Ton(skoti) + Y HE (t:)el? + b,

where H jk (t) are temporal step functions, efﬁj are latent bias variables, and efn‘ are independent
measurement and discretisation errors.

Daily mean/max/min

For station k atday ti,y%" — T, (s, t;) + H* (t;) + €,

. . i ,
y.];’l = Tm(skv ti) + Hr]?,m(ti) + %TT(SM ti) + 6.’;’17

yn" = TSk, 1) + HY o (85) = =5

Tr(sk> tz) + 6ﬁ7i7
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Observed data

Observed daily 7 ean and 71ange for station FRW00034051
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Multiscale model component samples
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Combined model samples for 7, and 7’

(Proof of concept; no actual data was involved in this figure)
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Estimates of median & scale for 1}, and 7',

Feb Feb

February climatology 7.

(Preliminary estimates, using only in-situ land station data) EUSTACEM




Linearised inference

All Spatio-temporal latent random processes combined into * = (u7 3, b), with joint expectation /¢, and
precision Q) :
(] 0) ~N(p,,Q,")  (Prior)
(y | z,0) ~N(h(x),Q,')  (Observations)

ylx

p(x|y,0) xplx|0)p(y|x,0) (Conditional posterior)

Non-linear and/or non-Gaussian observations

For a non-linear /() with Jacobian J at x = p, iterate:

(x| y,0) "X N(, 6271) (Approximate conditional posterior)
~/ ~ == =il T ~ ~
B =h+aQ {I7Qy. ly—h(i)] - Qui — )}

w\w =

.. for some a > (0 chosen by line-search. ’ﬁ
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lterative solutions for ~ 10! latent variables

» Full non-linear models solver components:

> Nonlinear Newton iteration with robust line-search

> Preconditioned conjugate gradient (PCG) iteration for
Qu-p)=r=b-Qp

> Local and multiscale approximations for preconditioning: M ' Q ~ I

» Sampling with PCG: Q(x — 1) = Lw
Requires only a rectangular pseudo-Cholesky factorisation LL" =
Possible due to the kronecker product sum precision structure.

P Pragmatic implementation:

> Daily mean temperature only

>~ 60, 000 conditionally independent days (on the fine temporal scale):
embarrassingly parallel daily direct solves

> Multiscale component grouped into three superblocks

> Reduced spatial resolution

7‘.
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Triangulations for all corners of Earth
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MULTI-SCALE ANALYSIS

Seasonal Bimonthly x 1° SPDE 245,772
M O D E L Slow-scale™ 5 year x 5° SPDE 107,604
Latitude 0.5° latitude SPDE 721
Statistical model foir temperature variations and different Altitude (0.25° grid) 1
scales (space and time): Constal e .

: local seasonal cycle with effects _
of latitude, altitude and coastal influence. Grand mean Analysis mean 1
: Slowly varying climatological mean
temperature field. Station homogenisation.
+ Daily Local: daily variability associated with weather. el 3 monthly x 5° SPDE 1,752,408
Satellite retrieval biases.

Station bias NA 82,072
Simultaneously estimates observational biases of known Resolution N Variables
bias structures: day
« e.g. satellite biases, station homogenisation. Daily local ~0.5 degree SPDE 162,842

Satellite bias Global 1

(marine)

Processed on STFC’s LOTUS cluster www.jasmin.ac.uk:
« Largest solves processed on 20 core/256GB RAM node. patellitelbiasil §Globall2 lerlee 1irdmoe

A X A (land) SPDE
« Highly parallel observation pre-processing.
Satellite bias Hemispheric + 2.5 2+ 40,962
(ice) degree SPDE*

Met Office EUSTACE



ITERATIVE SOLUTION

(1) Climatology:

Global mean T /
Seasonal cycle
Latitude

Altitude

Water fraction <

(2) Large-scale:
Multi-annual SPDE
Multi-month SPDE
Station biases

Tidi’@@ Ks, ,tD)

T@limts’ ,tlj )

Model Factorisation

The model is factorised into . = 1, ..., 3 components that are estimated interatively,

substituting ¥,,, for y:

:’)m =Y—- Z Jn)u'wn\f/n

n#Em
Met Office

Condition on expected
value of other components

[«

[«

: (3) Daily local:

Daily fields

1 Satellite land bias
1 Satellite marine bias
1 Satellite ice bias

TIOC@JI(@ , ,tD)

A
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Central England Temperature Decomposition

Surface Air Temperature - 52.125N, 1.375W

MULTI-SCALE ANALYSIS e
MODEL .
Statistical model for temperature variations and 20 ~ ~ T crmnton
different scales (space and time): - /N /0 /
: local seasonal cycle with e \ /
effects of latitude, altitude and coastal influence. =/ \/ N/
: Slowly varying § .
climatological mean temperature field. .
* Daily Local: daily variability associated with * o
weather.
Simultaneously estimates observational biases of E e
known bias structures: .o
* e.g. satellite biases, station homogenisation. N

2003 2004 l:
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SATELLITE BIAS MODELS

* Simplified model of known error structures
in satellite air temperature retrievals:
— Global/hemispheric systematic bias covariates.

— Daily estimates of spatially varying bias as a
spatial random field.

Estimated jointly with daily temperature
variability.

Met Office
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ENSEMBLE ANALYSIS

* Samples drawn from joint posterior distribution of
temperature and bias variables.

* Temperature model samples projected onto analysis
grid.

* Spatial/temporal correlation in analysis errors is encoded
into the ensemble.

* Summary statistics can be derived from the ensemble.
Expected value, total uncertainty and observation
constraint information also available.

Met Office

EUSTACE Ensemble 04/08/2003-13/08/2003
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ENSEMBLE ANALYSIS

* Samples drawn from joint posterior distribution of
temperature and bias variables.

* Temperature model samples projected onto analysis
grid.

* Spatial/temporal correlation in analysis errors is encoded
into the ensemble.

* Summary statistics can be derived from the ensemble.
Expected value, total uncertainty and observation
constraint information also available.

Met Office

EUSTACE Ensemble 01/01/2006-14/01/2006
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Summary

Not covered in this talk:
» Pure conditional block updates risk getting stuck;
need for convergence acceleration
P Overlapping space-time blocks for preconditioning
P Non-stationary random field parameter estimation
> Direct&iterative variance calculations to eliminate or reduce
Monte Carlo error in the reconstruction uncertainties
P Fast approximate handling of correlated error components
Summary:
> Challenging statistical problem, in both size and complexity

P Approximate calculation techniques allows some of the complexity
to be handled with reasonable computational resources
» SPDEs and Gaussian Markov random fields
> Fast local sparse solves
> Global multiscale block iteration

:» P Close collaboration between climate scientistis, statisticians, !£

EUSTACE



Modelling non-Gaussian quantities

Power tail quantile (POQ) model

The quantile function Fgl (p) pE [0, 1], is defined through a quantile blend of left- and right-tailed generalised
Pareto distributions:

1=Cn~" g
fe(p>:{1 20 # 0,
5 log(2p), 6 =0,
2(1—p)) -1
{“ e U

i) =-fy0-p =9 , log(2(1 —p)), 6 =0.

1 T _
Fy'(p) =00+ 5 [(1 =) fo, () + (1 + )5, ()] -
The parameters @ = (0, 01 = log 7,0, = logit[(y + 1)/2], 03, 64) control the median, spread/scale,
skewness, and the left and right tail shape.

This model is also known as the five parameter lambda model (Gilchrist, 2000).

NIV
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% S

" Copula transformation: G~ [u(s, t)] = F&i,t){(b[“(sv t)]} *
: EUSTACE




Diurnal range distributions
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; For these stations, POQ does a slightly better job than a Gamma distribution.
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Diurnal range distributions

Density

DTR values (deg C)
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. For these stations only POQ comes close to representing the distributions.
=B~ Note: Some shapes may be due to unmodeled station inhomogeneities.
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Overlapping blocks and multigrid

Overlapping block preconditioning

Let DZ be a restriction matrix to subdomain )., and let W, be a diagonal weight matrix. Then an additive

Schwartz preconditioner is K

M™'z =) W;Dy(D]QD;) ' D{W;x
k=1

Multigrid and/or approximate multiscale Schur complements
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The hierarchy of scales and preconditioning (x(y = B, + fine scale variability):

Multiscale Schur complement approximation

Solving Q3| T = b can be formulated using two solves with the upper (fine) block Q) + ATQEA, and one
solve with the Schur complement

Q+B"QB-BQ(Q+47Q.4) Q,

By mapping the fine scale model onto the coarse basis used for the coarse model, we get an approximate (and

sparse) Schur solve via
ignored| _ |0
i b
where QB =B'Q,B.

The block matrix can be interpreted as the precision of a bivariate field on a common, coarse spatio-temporal
scale, and the same technique applied to this system, with 1 1 = B1\21’1.2 -+ finer scale variability.
2 ’

Q;+B'AQAB -Q;
-Qp Q:+Qp

ORLVE

;Also applies to the station data bias homogenisation coefficients. ;I I
EUSTACE



Variance calculations

Sparse partial inverse: Takahashi recursions postprocesses Cholesky

Takahashi recursions compute S such that S;; = (Q_l)ij for all ();; 7 0. Postprocessing of the (sparse)
Cholesky factor.

Basic Rao-Blackwellisation of sample estimators

Let ) be samples from a Gaussian posterior and let a ' x be a linear combination of interest. Then, for any
subdomain €2, C 2,

EUSTACE



