

UNIVERSITÄT

Challenges and solutions for multiscale global temperature reconstruction

Finn Lindgren (finn.lindgren@ed.ac.uk)
The University of Edinburgh, Scotland

with Colin Morice, John Kennedy, Christopher Merchant, and the EUSTACE team

THE UNIVERSITY of EDINBURGH

EUSTACE ANALYSIS

Combines in-situ and satellite data sources to derive daily air temperatures across the globe with quantified uncertainties.

- Daily mean air temperature (2 m) estimates from the midlate 19th century at ¼ degree resolution.
- Observational dataset for use in climate monitoring, services and research.
 - Quantify bias and uncertainty arising from observational sampling (in space and time);
 - Quantify uncertainty from instrumental effects/network changes.
- Higher resolution daily gridded analyses for regional climate
 - Combine in situ and remote sensing data to support high resolution analysis.
 - Absolute temperature rather than anomaly product.

OBSERVATIONS

In situ air temperature:

- EUSTACE station dataset (UBERN) (GHCN-D, ECA&D, ISTI, DECADE, ERA-CLIM)
- HadNMAT-2 ship air temperatures (NOCS/Met Office)

Satellite skin temperature derived air temperature:

- Marine: ATSR (ESA CCI SST)
- Land: MODIS (USGS/NASA via ESA GlobTemperature)
- Ice: AVHRR (NOAA/FP7 NACLIM)

Temperature (K)

Temperature (K)

Temperature (K)

Statistical model and method building blocks

Basic system components

- Temperature processes on different spatial and temporal scales
 - Seasonal
 - Slow climate processes
 - Medium-scale variability
 - Daily
- Vast model size ($\sim 10^{11}$ unknowns); need computationally efficient tools
- Hierarchical statistical model structure based on Gaussian processes
 - Stochastic PDEs translates to sparse precisions in *Gaussian Markov random fields*
- Propagated uncertainty via a Bayesian approach
 - Dependence structure parameters
 - Spatio-temporal process priors
 - Dbservation models; Multiple observation sources, with complex error uncertainty structure
- ▶ Goals:
 - a best estimate.
 - a collection of samples, and
 - more precise (and accurate) *uncertainty estimates*.

Example model: atérn driven heat equation on the sphere

The iterated heat equation is a simple non-separable space-time SPDE family:

$$(\kappa^2 - \Delta)^{\gamma/2} \left[\phi \frac{\partial}{\partial t} + (\kappa^2 - \Delta)^{\alpha/2} \right]^{\beta} x(\mathbf{s}, t) = \mathcal{W}(\mathbf{s}, t) / \tau$$

For constant parameters, $x(\mathbf{s},t)$ has spatial Matérn covariance (for each t).

Discrete domain Gaussian Markov random fields (GMRFs)

 $x = (x_1, \dots, x_n) \sim \mathcal{N}(\mu, Q^{-1})$ is Markov with respect to a neighbourhood structure $\{\mathcal{N}_i, i = 1, \dots, n\}$ if $Q_{i,j} = 0$ whenever $j \neq \mathcal{N}_i \cup i$.

Project the SPDE solution space onto local basis functions: random Markov dependent basis weights (Lindgren et al. 2011).

A finite element approximation has structure

Trinite element approximation has structure
$$x(s,t) = \sum_{i,j} \psi_i^{[s]}(s) \psi_j^{[t]}(t) x_{ij}, \quad \boldsymbol{x} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{Q}^{-1}), \quad \boldsymbol{Q} = \sum_{k=0}^{\alpha+\beta+\gamma} \boldsymbol{M}_k^{[t]} \otimes \boldsymbol{M}_k^{[s]}$$
 even, e.g., if the spatial scale parameter κ is spatially varying.

Partial hierarchical representation

Observations of mean, max, min. Model mean and range.

Conditional specifications, e.g.

$$\begin{aligned} & (T_m^0|T_m^1, \boldsymbol{Q}_m^0) \sim \mathcal{N}\left(T_m^1, \boldsymbol{Q}_m^{0}^{-1}\right) \\ & T_r^0 = \exp(T_r^1) \; G^{-1}\big[U_r^0(\mathbf{s},t)\big] \;, \quad U_r^0 \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{Q}_r^{0-1}\right) \end{aligned}$$

Standardised observation uncertainty models

- Each data source may have complicated dependence structure
- To facilitate information blending, use a common error term structure

Common satellite derived data error model framework

The observational&calibration errors are modelled as three error components:

- ightharpoonup independent (ϵ_0) ,
- \triangleright spatially and/or temporally correlated (ϵ_1), and
- systematic (ϵ_2),

with distributions determined by the uncertainty information from satellite calibration models.

E.g.,
$$y_i = T_m(\mathbf{s}_i, t_i) + \epsilon_0(\mathbf{s}_i, t_i) + \epsilon_1(\mathbf{s}_i, t_i) + \epsilon_2(\mathbf{s}_i, t_i)$$

In practice, each data source might have several different components of each type; independent components can be merged, but not necessarily correlated or systematic components.

Station observation & homogenisation model

Daily means

For station k at day t_i ,

$$y_m^{k,i} = T_m(\mathbf{s}_k, t_i) + \sum_{j=1}^{J_k} H_j^k(t_i) e_m^{k,j} + \epsilon_m^{k,i},$$

where $H^k_j(t)$ are temporal step functions, $e^{k,j}_m$ are latent bias variables, and $\epsilon^{k,i}_m$ are independent measurement and discretisation errors.

Daily mean/max/min

For station
$$k$$
 at day $t_i, y_m^{k,i} = T_m(\mathbf{s}_k, t_i) + \widetilde{H}_m^k(t_i) + \epsilon_m^{k,i},$
$$y_x^{k,i} = T_m(\mathbf{s}_k, t_i) + \widetilde{H}_{r,m}^k(t_i) + \frac{\widetilde{H}_{r,r}^k(t_i)}{2} T_r(\mathbf{s}_k, t_i) + \epsilon_x^{k,i},$$

$$y_n^{k,i} = T_m(\mathbf{s}_k, t_i) + \widetilde{H}_{r,m}^k(t_i) - \frac{\widetilde{H}_{r,r}^k(t_i)}{2} T_r(\mathbf{s}_k, t_i) + \epsilon_n^{k,i},$$

Observed data

Observed daily T_{mean} and T_{range} for station FRW00034051

EUSTACE

Multiscale model component samples

Combined model samples for T_m and T_r

(Proof of concept; no actual data was involved in this figure)

Estimates of median & scale for T_m and T_r

Linearised inference

All Spatio-temporal latent random processes combined into $x=(u,\beta,b)$, with joint expectation μ_x and precision Q_x :

$$egin{aligned} (m{x} \mid m{ heta}) &\sim \mathcal{N}(m{\mu}_x, m{Q}_x^{-1}) & ext{(Prior)} \ (m{y} \mid m{x}, m{ heta}) &\sim \mathcal{N}(h(m{x}), m{Q}_{y \mid x}^{-1}) & ext{(Observations)} \ p(m{x} \mid m{y}, m{ heta}) &\propto p(m{x} \mid m{ heta}) p(m{y} \mid m{x}, m{ heta}) & ext{(Conditional posterior)} \end{aligned}$$

Non-linear and/or non-Gaussian observations

For a non-linear h(x) with Jacobian J at $x = \widetilde{\mu}$, iterate:

$$egin{aligned} (m{x} \mid m{y}, m{ heta}) & ext{approx} \ \mathcal{N}(\widetilde{m{\mu}}, \widetilde{m{Q}}^{-1}) \end{aligned} \qquad ext{(Approximate conditional posterior)} \ \widetilde{m{Q}} &= m{Q}_x + m{J}^{ op} m{Q}_{y \mid x} m{J} \ \widetilde{m{\mu}}' &= \widetilde{m{\mu}} + a \widetilde{m{Q}}^{-1} \left\{ m{J}^{ op} m{Q}_{y \mid x} \left[m{y} - h(\widetilde{m{\mu}})
ight] - m{Q}_x (\widetilde{m{\mu}} - m{\mu}_x)
ight\} \end{aligned}$$

Iterative solutions for $\sim 10^{11}$ latent variables

- Full non-linear models solver components:
 - Nonlinear Newton iteration with robust line-search.
 - Preconditioned conjugate gradient (PCG) iteration for

$$Q(\mu - \widehat{\mu}) = r = b - Q\widehat{\mu}$$

- lacktriangle Local and multiscale approximations for preconditioning: $oldsymbol{M}^{-1}oldsymbol{Q}pproxoldsymbol{I}$
- Sampling with PCG: $Q(x-\widehat{\mu})=Lw$ Requires only a rectangular pseudo-Cholesky factorisation $LL^{\top}=Q$.
 Possible due to the kronecker product sum precision structure.
- Pragmatic implementation:
 - Daily mean temperature only
 - $\sim 60,000$ conditionally independent days (on the fine temporal scale): embarrassingly parallel daily direct solves
 - Multiscale component grouped into three superblocks
 - Reduced spatial resolution

Triangulations for all corners of Earth

MULTI-SCALE ANALYSIS MODEL

Statistical model for temperature variations and different scales (space and time):

- Climatological variation: local seasonal cycle with effects of latitude, altitude and coastal influence.
- Large-scale variation: Slowly varying climatological mean temperature field. Station homogenisation.
- Daily Local: daily variability associated with weather.
 Satellite retrieval biases

Simultaneously estimates observational biases of known bias structures:

• e.g. satellite biases, station homogenisation.

Processed on STFC's LOTUS cluster www.jasmin.ac.uk:

- Largest solves processed on 20 core/256GB RAM node.
- Highly parallel observation pre-processing.

Element	Resolution	N Variables
Seasonal	Bimonthly x 1° SPDE	245,772
Slow-scale*	5 year x 5° SPDE	107,604
Latitude	0.5° latitude SPDE	721
Altitude	(0.25° grid)	1
Coastal	(0.25° grid)	1
Grand mean	Analysis mean	1

Element	Resolution	N Variables
Large-scale	3 monthly x 5° SPDE	1,752,408
Station bias	NA	82,072

Element	Resolution	N Variables per day
Daily local	~0.5 degree SPDE	162,842
Satellite bias (marine)	Global	1
Satellite bias (land)	Global + 2.5 degree SPDE	1 + 40,962
Satellite bias (ice)	Hemispheric + 2.5 degree SPDE*	2 + 40,962

ITERATIVE SOLUTION

(1) Climatology:

Global mean T Seasonal cycle

Latitude Altitude

Water fraction $T^{clim}(s,t)$

(2) Large-scale: Multi-annual SPDE Multi-month SPDE

Tlarge (**s**,,t**)**

Station biases

Condition on expected value of other components

(3) Daily local:

Satellite land bias
Satellite marine bias
Satellite ice bias

Tlocall((S,,t))

Model Factorisation

The model is factorised into m=1,...,3 components that are estimated interatively, substituting \tilde{y}_m for y:

$$oldsymbol{ ilde{y}}_m = oldsymbol{y} - \sum_{n
eq m} oldsymbol{J}_n oldsymbol{\mu}_{oldsymbol{x}_n | ilde{oldsymbol{y}}_n}$$

MULTI-SCALE ANALYSIS MODEL

Statistical model for temperature variations and different scales (space and time):

- Climatological variation: local seasonal cycle with effects of latitude, altitude and coastal influence.
- Large-scale variation: Slowly varying climatological mean temperature field.
- Daily Local: daily variability associated with weather.

Simultaneously estimates observational biases of known bias structures:

• e.g. satellite biases, station homogenisation.

Central England Temperature Decomposition

EUSTAC

SATELLITE BIAS MODELS

- Simplified model of known error structures in satellite air temperature retrievals:
 - Global/hemispheric systematic bias covariates.
 - Daily estimates of spatially varying bias as a spatial random field.
- Estimated jointly with daily temperature variability.

ENSEMBLE ANALYSIS

- Samples drawn from joint posterior distribution of temperature and bias variables.
- Temperature model samples projected onto analysis grid.
- Spatial/temporal correlation in analysis errors is encoded into the ensemble.
- Summary statistics can be derived from the ensemble.
 Expected value, total uncertainty and observation constraint information also available.

Temperature (deg C)

ENSEMBLE ANALYSIS

- Samples drawn from joint posterior distribution of temperature and bias variables.
- Temperature model samples projected onto analysis grid.
- Spatial/temporal correlation in analysis errors is encoded into the ensemble.
- Summary statistics can be derived from the ensemble.
 Expected value, total uncertainty and observation constraint information also available.

Temperature (deg C)

Summary

Not covered in this talk:

- Pure conditional block updates risk getting stuck; need for convergence acceleration
- Overlapping space-time blocks for preconditioning
- Non-stationary random field parameter estimation
- Direct&iterative variance calculations to eliminate or reduce
 Monte Carlo error in the reconstruction uncertainties
- Fast approximate handling of correlated error components

Summary:

- Challenging statistical problem, in both size and complexity
- Approximate calculation techniques allows some of the complexity to be handled with reasonable computational resources
 - SPDEs and Gaussian Markov random fields
 - Fast local sparse solves
 - Global multiscale block iteration
- Close collaboration between climate scientistis, statisticians, and software engineers is essential

Modelling non-Gaussian quantities

Power tail quantile (POQ) model

The quantile function $F_{\theta}^{-1}(p)$, $p \in [0, 1]$, is defined through a quantile blend of left- and right-tailed generalised Pareto distributions:

$$f_{\theta}^{-}(p) = \begin{cases} \frac{1 - (2p)^{-\theta}}{2\theta}, & \theta \neq 0, \\ \frac{1}{2}\log(2p), & \theta = 0, \end{cases}$$

$$f_{\theta}^{+}(p) = -f_{\theta}^{-}(1-p) = \begin{cases} \frac{(2(1-p))^{-\theta}-1}{2\theta}, & \theta \neq 0, \\ -\frac{1}{2}\log(2(1-p)), & \theta = 0. \end{cases}$$

$$F_{\theta}^{-1}(p) = \theta_{0} + \frac{\tau}{2} \left[(1-\gamma)f_{\theta_{3}}^{-}(p) + (1+\gamma)f_{\theta_{4}}^{+}(p) \right].$$

The parameters $\theta = (\theta_0, \theta_1 = \log \tau, \theta_2 = \text{logit}[(\gamma + 1)/2], \theta_3, \theta_4)$ control the median, spread/scale, skewness, and the left and right tail shape.

This model is also known as the five parameter lambda model (Gilchrist, 2000).

Diurnal range distributions

 \lesssim For these stations, POQ does a slightly better job than a Gamma distribution.

Diurnal range distributions

Log-Normal predicted DTR (deg C)

Log-Normal predicted DTR (deg C)

For these stations only POQ comes close to representing the distributions.

Note: Some shapes may be due to unmodeled station inhomogeneities.

Gamma predicted DTR (deg C)

Gamma predicted DTR (deg C)

Overlapping blocks and multigrid

Overlapping block preconditioning

Let D_k^{\top} be a restriction matrix to subdomain Ω_k , and let W_k be a diagonal weight matrix. Then an additive Schwartz preconditioner is

 $oldsymbol{M}^{-1}oldsymbol{x} = \sum_{k=1}^K oldsymbol{W}_k oldsymbol{D}_k (oldsymbol{D}_k^ op oldsymbol{Q} oldsymbol{D}_k)^{-1} oldsymbol{D}_k^ op oldsymbol{W}_k oldsymbol{x}$

Multigrid and/or approximate multiscale Schur complements

The hierarchy of scales and preconditioning ($x_0 = Bx_1 +$ fine scale variability):

Multiscale Schur complement approximation

Solving $Q_{x|y}x = b$ can be formulated using two solves with the upper (fine) block $Q_0 + A^\top Q_\epsilon A$, and one solve with the *Schur complement*

$$oldsymbol{Q}_1 + oldsymbol{B}^ op oldsymbol{Q}_0 oldsymbol{B} - oldsymbol{B}^ op oldsymbol{Q}_0 \left(oldsymbol{Q}_0 + oldsymbol{A}^ op oldsymbol{Q}_\epsilon oldsymbol{A}
ight)^{-1} oldsymbol{Q}_0$$

By mapping the fine scale model onto the coarse basis used for the coarse model, we get an *approximate* (and sparse) Schur solve via

$$\begin{bmatrix} \widetilde{\boldsymbol{Q}}_B + \boldsymbol{B}^{\top} \boldsymbol{A}^{\top} \boldsymbol{Q}_{\epsilon} \boldsymbol{A} \boldsymbol{B} & -\widetilde{\boldsymbol{Q}}_B \\ -\widetilde{\boldsymbol{Q}}_B & \boldsymbol{Q}_1 + \widetilde{\boldsymbol{Q}}_B \end{bmatrix} \begin{bmatrix} \text{ignored} \\ \boldsymbol{x}_1 \end{bmatrix} = \begin{bmatrix} \boldsymbol{0} \\ \widetilde{\boldsymbol{b}} \end{bmatrix}$$

where $\widetilde{oldsymbol{Q}}_B = oldsymbol{B}^ op oldsymbol{Q}_0 oldsymbol{B}.$

The block matrix can be interpreted as the precision of a bivariate field on a common, coarse spatio-temporal scale, and the same technique applied to this system, with $x_{1,1} = B_{1|2}x_{1,2} + \text{finer scale variability}$.

 \lesssim Also applies to the station data bias homogenisation coefficients.

Variance calculations

Sparse partial inverse: Takahashi recursions postprocesses Cholesky

Takahashi recursions compute S such that $S_{ij} = (Q^{-1})_{ij}$ for all $Q_{ij} \neq 0$. Postprocessing of the (sparse) Cholesky factor.

Basic Rao-Blackwellisation of sample estimators

Let $x^{(j)}$ be samples from a Gaussian posterior and let $a^{\top}x$ be a linear combination of interest. Then, for any subdomain $\Omega_k \subset \Omega$,

$$\begin{split} \mathsf{E}(\boldsymbol{a}^{\top}\boldsymbol{x}) &= \mathsf{E}\left[\mathsf{E}(\boldsymbol{a}^{\top}\boldsymbol{x}\mid\boldsymbol{x}_{\Omega_{k}^{*}})\right] \approx \frac{1}{J}\sum_{j=1}^{J}\mathsf{E}(\boldsymbol{a}^{\top}\boldsymbol{x}\mid\boldsymbol{x}_{\Omega_{k}^{*}}^{(j)}) \\ \mathsf{Var}(\boldsymbol{a}^{\top}\boldsymbol{x}) &= \mathsf{E}\left[\mathsf{Var}(\boldsymbol{a}^{\top}\boldsymbol{x}\mid\boldsymbol{x}_{\Omega_{k}^{*}})\right] + \mathsf{Var}\left[\mathsf{E}(\boldsymbol{a}^{\top}\boldsymbol{x}\mid\boldsymbol{x}_{\Omega_{k}^{*}})\right] \\ &\approx \mathsf{Var}(\boldsymbol{a}^{\top}\boldsymbol{x}\mid\boldsymbol{x}_{\Omega_{k}^{*}}^{j}) + \frac{1}{J}\sum_{j=1}^{J}\left[\mathsf{E}(\boldsymbol{a}^{\top}\boldsymbol{x}\mid\boldsymbol{x}_{\Omega_{k}^{*}}^{(j)}) - \mathsf{E}(\boldsymbol{a}^{\top}\boldsymbol{x})\right]^{2} \end{split}$$

