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Random fields

Contour map for US summer mean temperaire
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o Can we trust the apparent details af the level crossings?

e Can we put a number on the statistical quality of the contour map?

How many levels should we sensibly use?

Fundamental question:
What is the statistical interpretation of a contour map?

To answer these questions we need methods for efficient calculations
for random fields.



Random fields

GMRFs: Gaussian Markov random fields @
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Continuous domain GMRFs

If 2:(s) is a (stationary) Gaussian random field on €2 with covariance
function R, (s, s’), it fulfills the global Markov property

{z(A) L 2(B)|z(S), for all AB-separating sets S C 2}

if the power spectrum can be written as 1/5,(w) =
polynomial in w, for some polynomial order p.
(Rozanov, 1977)

A\

Discrete domain GMRFs

= (1,...,2,) ~ N(t, Q") is Markov with respect to a
neighbourhood structure {N;,i =1,...,n} if Q;; = 0 whenever
j#NiUi.

A\

e Continuous domain basis representation with Markov weights:
n
z(s) = 21 Yr(s)zk
e Many stochastic PDE solutions are Markov in continuous space, and
can be approximated by Markov weights on local basis functions.



GMRFS based on SPDES (Lindgren et al., 2011) @
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GMREF representations of SPDEs can be constructed for oscillgtingyrcn

anisotropic, non-stationary, non-separable spatio-temporal, and multivari-
ate fields on manifolds.

(k2 — A)(rz(s)) = W(s), seR?
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Spatial latent Gaussian models 52
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Consider a simple hierarchical spatial generalised linear model o

B~ N(0.T02),
&(s) ~ Gaussian (Markov) random field,
z(s) = z(s)B + &(s),
(yilz) ~ m(yila(-),0),  eg. N(z(s), 0?),
where z(-) are spatially indexed explanatory variables, and y; are
conditionally independent observations.

e A contour curve for a level u crossing is typically calculated as the
level u crossing of z = E[z(s)|y].

e In practice, we want to interpret it as being informative about the
potential level crossings of the random field z(s) itself.

e We need access to high dimensional joint probabilities in the
posterior density 7(x|y).



Computing probabilities

Posterior probabilities
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e Assuming that 7(x|y, 0) is, or can be approximated as, Gaussian,
there are several ways to calculate probabilities, one of which is

Numerical integration

Numerically approximate the excursion probability by approximating the
posterior integral as

P(a <x < bly) =E[P(a <z < bly,0)] = > wiP(a <z < bly,6k),
[5

where each parameter configuration 6, is provided by R-INLA and the
weights wy, are chosen proportional to m(6|y).

e Often only a few configurations 6, are needed.

e Quantile corrections and other techniques from INLA can be added



A sequential Monte-Carlo algorithm 2
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o A GMRF can be viewed as a non-homogeneous AR-process definadsurch

backwards in the indices of & ~ N(u, Q).
Let L be the Cholesky factor in @ = LL". Then

.I,,;|I,;,+1, RN i N Wi — 5 E le L_
Z Jj=i+1

Denote the integral of the last n — ¢ components as I;,

bi bn—1 by,
L= / (@[T 1om) - / . / 7(an) da,
a; Ay — a

3 n—1 n

xi|wiy1., only depends on the elements in /A fit1:m)-

Estimate the integrals using sequential importance sampling.

In each step x; is sampled from the truncated Gaussian density
X H{a,j<:1;j<bj}W(wj|xj+1:7l)-
The importance weights can be updated recursively.



Contours and excursions 52
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o Lindgren, Rychlik (1995): How reliable are contour curves?
Confidence sets for level contours, Bernoulli
Regions with a single expected crossing

e Polfeldt (1999) On the quality of contour maps, Environmetrics
How many contour curves should one use?

e Neither paper considered joint probabilities

e A credible contour region is a region where the field transitions from
being clearly below, to being clearly above.

e Solving the problem for excursions solves it for contours.

(a) () (@ (®)

2.5 2.5 2.5 2.




Contour maps
Level sets 2
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Given a function f(s), s € Q and levels u; < up < -+ < ug, the level
sets are G (f) = {s; ur < f(s) < upt1}

Uk+2




Joint and marginal probabilities
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Now, consider a contour map based on a point estimate Z(-). /

Intuitively, we might consider the joint probability
Plup < z(s) < ugy1, forall s € Gi(z) and all k)
Unfortunately, this will nearly always be close to or equal to zero!
Polfeldt (1999) instead considered the marginal probability field
p(8) = P(ug < 2(8) < ugyq for k such that s € G, ()

The argument is then that if p(s) is close to 1 in a large proportion of
space, the contour map is not overconfident.

We extend this notion to alternative joint probability statements.



Contour avoiding sets and the contour map
function 2
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Contour avoiding sets

The contour avoiding sets My o = (M, ..., M[ ) are given by
K
M, o = argmax Z |Dy|: P ﬂ{Dk CGip(x)} ]| 21—«
(D1,.-:Dx) | =1 k=1

where D, are disjoint and open sets. The joint contour avoiding set is
K
then Cy o (z) = Ui_, Mffa

Note: Cy. () is the largest set so that with probability at least 1 — «,
the intuitive contour map interpretation is fulfilled for s € Cy, o (2).

The contour map function F,(s) = sup{l —a; s € Cy o} is a joint
probability extension of the Polfeldt idea.



Quality measures )
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Let C, (%) denote a contour map based on a point estimate of z. ¢

Three quality measures

Py: The proportion of space where the intuitive contour map
interpretation holds jointly: Py(z, Cy (7)) = ﬁ Jo Fu(s)ds

Py: Joint credible regions for uj crossings:
Py (x,Cy(T)) = P (Nk{z(s) < uy where Z(s) < ug—1}N
{z(s) > u where Z(s) > up41})

Uk +Ug41
2

P5: Joint credible regions for uj = crossings:

Py(z,Cy(Z)) = P (Ni{x(s) < uf, where Z(s) < uy}n
{z(s) > uj, where T(8) > up41})




Contour maps

Interpretation of P, and P, i)
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Five realisations of contour curves from the posterior distribution for x
are shown.

Note the fundamental difference in smoothness between the contours of
7 and z!



Mean summer temperature measurements for
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Contour map quality for different K and dlfferent
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Number of contours
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The spatial predictions are more uncertain in a model without spatial
explanatory variables (left) than in a model using elevation (right).

Py consistently admits about double the number of contour levels in
comparison with P», as expected from the probabilistic interpretations.
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Contour map quality measure: P, = 0.958
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