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Combines in-situ and satellite data sources to derive daily air 
temperatures across the globe with quantified uncertainties.

• Daily mean air temperature (2 m) estimates from the mid-
late 19th century at ¼ degree resolution.

• Observational dataset for use in climate monitoring, services 
and research.

– Quantify bias and uncertainty arising from observational sampling 
(in space and time);

– Quantify uncertainty from instrumental effects/network changes.

• Higher resolution daily gridded analyses for regional climate:

– Combine in situ and remote sensing data to support high 
resolution analysis.

– Absolute temperature rather than anomaly product.

EUSTACE ANALYSIS



Partial hierarchical representation
Observations of mean, max, min. Model mean and range.
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Standardised observation uncertainty models

I Each data source may have complicated dependence structure

I To facilitate information blending, use a common error term structure

Common satellite derived data error model framework
The observational&calibration errors are modelled as three error components:

I independent (ε0),

I spatially and/or temporally correlated (ε1), and

I systematic (ε2),

with distributions determined by the uncertainty information from satellite calibration models.
E.g., yi = Tm(si, ti) + ε0(si, ti) + ε1(si, ti) + ε2(si, ti)

In practice, each data source might have several different components of each type; independent components
can be merged, but not necessarily correlated or systematic components.



Station observation&homogenisation model
Daily means

For station k at day ti,
yk,im = Tm(sk, ti) +

Jk∑
j=1

Hk
j (ti)e

k,j
m + εk,im ,

where Hk
j (t) are temporal step functions, ek,jm are latent bias variables, and εk,im are independent

measurement and discretisation errors.

Daily mean/max/min

For station k at day ti, yk,im = Tm(sk, ti) + H̃k
m(ti) + εk,im ,

yk,ix = Tm(sk, ti) +
exp[H̃k

r (ti)]

2
Tr(sk, ti) + εk,ix ,

yk,in = Tm(sk, ti)−
exp[H̃k

r (ti)]

2
Tr(sk, ti) + εk,in ,

where H̃ ·· are the total bias correction variables for each observation.



Observed data
Observed daily Tmean and Trange for station FRW00034051

1955 1960 1965

−10
0

10
20

FRW00034051

time (year)

Tm
ean

1955 1960 1965

0
5

10
15

20

FRW00034051

time (year)

Tra
nge



Combined model samples for Tm and Tr
(Proof of concept; no actual data was involved in this figure)
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Estimates of median & scale for Tm and Tr
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Matérn driven heat equation on the sphere
The iterated heat equation is a simple non-separable space-time SPDE family:

(κ2 −∆)γ/2
[
φ
∂

∂t
+ (κ2 −∆)α/2

]β
x(s, t) = Ẇ(s, t)/τ

For constant parameters, x(s, t) has spatial Matérn covariance (for each t).

Discrete domain Gaussian Markov random fields (GMRFs)

x = (x1, . . . , xn) ∼ N (µ,Q−1) is Markov with respect to a neighbourhood structure {Ni, i = 1, . . . , n}
if Qij = 0 whenever j 6= Ni ∪ i.
I Project the SPDE solution space onto local basis functions:

random Markov dependent basis weights (Lindgren et al, 2011).

A finite element approximation has structure

x(s, t) =
∑
i,j

ψ
[s]
i (s)ψ

[t]
j (t)xij , x ∼ N (0,Q−1), Q =

α+β+γ∑
k=0

Qt,k ⊗Qs,k

even, e.g., if the spatial scale parameter κ is spatially varying.



Linearised inference
All Spatio-temporal latent random processes combined into x = (u,β, b), with joint expectation µx and
precisionQx:

(x | θ) ∼ N (µx,Q
−1
x ) (Prior)

(y | x,θ) ∼ N (h(x),Q−1y|x) (Observations)

p(x | y,θ) ∝ p(x | θ) p(y | x,θ) (Conditional posterior)

Non-linear and/or non-Gaussian observations

For a non-linear h(x) with Jacobian J at x = µ̃, iterate:

(x | y,θ)
approx∼ N (µ̃, Q̃

−1
) (Approximate conditional posterior)

Q̃ = Qx + J>Qy|xJ

µ̃′ = µ̃+ aQ̃
−1 {

J>Qy|x [y − h(µ̃)]−Qx(µ̃− µx)
}

for some a > 0 chosen by line-search.



Multiscale precision structure
Two-level model with coarse scale x1 and fine scale x0 = z0 +Bx1, observations linked linearly to the fine
scale only, y = Ax0.

A priori independent blocks

Blocks (z0,x1), J =
[
A AB

]
:

Qz0,x1|y =

[
Q0 +A>Qy|xA A>Qy|xAB

B>A>Qy|xA Q1 +B>A>Qy|xAB

]

Accumulative blocks

Blocks (x0,x1), J =
[
A 0

]
.

Qx0,x1|y =

[
Q0 +A>Qy|xA −Q0B

−B>Q0 Q1 +B>Q0B

]



Multiscale Schur complement approximation

SolvingQx|yx = b can be formulated using two solves with the upper (fine) blockQ0 +A>Qy|xA, and
one solve with the Schur complement

Q1 +B>Q0B −B>Q0

(
Q0 +A>Qy|xA

)−1

Q0

By mapping the fine scale model onto the coarse basis used for the coarse model, we get an approximate (and
sparse) Schur solve via [

Q̃B +B>A>Qy|xAB −Q̃B

−Q̃B Q1 + Q̃B

] [
ignored
x1

]
=

[
0

b̃

]

where Q̃B = B>Q0B.
The block matrix can be interpreted as the precision of a bivariate field on a common, coarse spatio-temporal
scale, and the same technique applied to this system, with x1,1 = B1|2x1,2 + finer scale variability.

Problem: Requires reading the observation metadata multiple times
for matrix-free iterations.



Iterative solutions for∼ 1011 latent variables
I Nonlinear Newton iteration with robust line-search

I Preconditioned conjugate gradient (PCG) iteration for
Q(µ− µ̂) = r = b−Qµ̂

I Approximate posterior sampling with PCG:Q(x− µ̂) = Lw
Requires only a rectangular pseudo-Cholesky factorisationLL> = Q.
Possible due to the kronecker product sum precision structure. Simplified example:

Q0 = Qt,1 ⊗Qs,1 +Qt,2 ⊗Qs,2,

Qt,k = Lt,kL
>
t,k, Qs,k = Ls,kL

>
s,k, Q1 = L1L

>
1 , Qy|x = Ly|xL

>
y|x,

Lx0,x1|y =

[
Lt,1 ⊗Ls,1 Lt,2 ⊗Ls,2 0 A>Ly|x

−B>(Lt,1 ⊗Ls,1) −B>(Lt,2 ⊗Ls,2) L1 0

]

I Current implementation uses multiscale-blockwise Gauss-Seidel with temporally independent fine scale

I Ongoing work on overlapping space-time block preconditioning within each level
for temporally dependent fine scale



Statistical model for temperature variations and different 
scales (space and time):

• Climatological variation: local seasonal cycle with effects 
of latitude, altitude and coastal influence.

• Large-scale variation: Slowly varying climatological mean 
temperature field. Station homogenisation.

• Daily Local: daily variability associated with weather. 
Satellite retrieval biases.

Simultaneously estimates observational biases of known 
bias structures:

• e.g. satellite biases, station homogenisation.

Processed on STFC’s LOTUS cluster www.jasmin.ac.uk:

• Largest solves processed on 20 core/256GB RAM node.

• Highly parallel observation pre-processing.

MULTI-SCALE ANALYSIS 
MODEL

Element Resolution N Variables

Seasonal Bimonthly x  1° SPDE 245,772

Slow-scale* 5 year x 5° SPDE 107,604

Latitude 0.5° latitude SPDE 721

Altitude (0.25° grid) 1

Coastal (0.25° grid) 1

Grand mean Analysis mean 1

Element Resolution N Variables

Large-scale 3 monthly x 5° SPDE 1,752,408

Station bias NA 82,072

Element Resolution N Variables per 
day

Daily local ~0.5 degree SPDE 162,842

Satellite bias 
(marine)

Global 1

Satellite bias 
(land)

Global + 2.5 degree 
SPDE

1 + 40,962

Satellite bias 
(ice)

Hemispheric + 2.5 
degree SPDE*

2 + 40,962



Condition on expected 
value of other components

ITERATIVE SOLUTION

(1) Climatology:
Global mean T
Seasonal cycle
Latitude
Altitude
Water fraction

(2) Large-scale:
Multi-annual SPDE
Multi-month SPDE
Station biases (3) Daily local:

Daily fields
Satellite land bias
Satellite marine bias
Satellite ice bias

(3) Daily local:
Daily fields
Satellite land bias
Satellite marine bias
Satellite ice bias

(3) Daily local:
Daily fields
Satellite land bias
Satellite marine bias
Satellite ice bias

(3) Daily local:
Daily fields
Satellite land bias
Satellite marine bias
Satellite ice bias

𝑻 𝑙𝑎𝑟𝑔𝑒 (𝒔 , 𝑡 ) 

𝑻 𝑙𝑜𝑐𝑎𝑙(𝒔 ,𝑡 ) 

𝑻 𝑐𝑙𝑖𝑚 (𝒔 ,𝑡 ) 



Statistical model for temperature variations and 
different scales (space and time):

• Climatological variation: local seasonal cycle with 
effects of latitude, altitude and coastal influence.

• Large-scale variation: Slowly varying 
climatological mean temperature field.

• Daily Local: daily variability associated with 
weather.

Simultaneously estimates observational biases of 
known bias structures:

• e.g. satellite biases, station homogenisation.

MULTI-SCALE ANALYSIS 
MODEL

Central England Temperature Decomposition



ENSEMBLE ANALYSIS

• Samples drawn from joint posterior distribution of 

temperature and bias variables.

• Temperature model samples projected onto analysis 
grid.

• Spatial/temporal correlation in analysis errors is encoded 

into the ensemble.

• Summary statistics can be derived from the ensemble.  

Expected value, total uncertainty and observation 

constraint information also available.
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Summary
I Challenging statistical problem, in both size and complexity
I Methods related to but different from traditional PDE solvers
I Approximate calculation techniques allows some of the complexity

to be handled with reasonable computational resources
I SPDEs and Gaussian Markov random fields
I Fast local sparse solves
I Global multiscale block iteration

I Close collaboration between climate scientistis, statisticians,
and software engineers is essential

I Project information and links to the CEDA archive: https://www.eustaceproject.org/
Only partially mentioned in this talk:
I Pure conditional block updates risk getting stuck; need for convergence acceleration
I Overlapping space-time blocks for preconditioning
I Non-stationary random field parameter estimation
I Direct&iterative variance calculations to eliminate or reduce

Monte Carlo error in the reconstruction uncertainties
I Fast approximate handling of correlated observation components

https://www.eustaceproject.org/

