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EUSTACE ANALYSIS

Combines in-situ and satellite data sources to derive daily air

temperatures across the globe with quantified uncertainties. Analysis Best Estimate 01/01/1990

« Daily mean air temperature (2 m) estimates from the mid-
late 19th century at % degree resolution.

« Observational dataset for use in climate monitoring, services
and research.

— Quantify bias and uncertainty arising from observational sampling
(in space and time);

— Quantify uncertainty from instrumental effects/network changes.

« Higher resolution daily gridded analyses for regional climate

— Combine in situ and remote sensing data to support high
resolution analysis.
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— Absolute temperature rather than anomaly product. Temperature {K)
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Partial hierarchical representation

Observations of mean, max, min. Model mean and range.
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Conditional specifications, e.g.
(T, Q) ~ N (Th, @5 ) ¥
T = exp(T}) G[U2(s,1)], U2~ N (0,Q07)
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Standardised observation uncertainty models

» Each data source may have complicated dependence structure

> To facilitate information blending, use a common error term structure

Common satellite derived data error model framework

The observational&calibration errors are modelled as three error components:

> independent (o),
> spatially and/or temporally correlated (¢1), and
> systematic (€2),

with distributions determined by the uncertainty information from satellite calibration models.
Eg. ¥i = Tm(si, ti) + €o(si, ts) + €1(si, ti) + €2(si, ti)

In practice, each data source might have several different components of each type; independent components
can be merged, but not necessarily correlated or systematic components.
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Station observation&homogenisation model

Daily means

For station k at day t;, 4 Tk . .
yht = Ton(skoti) + Y HE (t:)el? + b,

where H jk (t) are temporal step functions, efﬁj are latent bias variables, and efn‘ are independent
measurement and discretisation errors.

Daily mean/max/min

Forstation k atday t;,  y%¢ =T, (s, t;) + HF (t;) + €'

7

: ex ﬁk ti ;
yf;:z = Tm(sk,ti) + MTT(Skati) + Ei,z’
) HF (¢ g
gkt = T (s, t) — wﬂ(sk’ti) + ek,
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Observed data

Observed daily 7 ean and 71ange for station FRW00034051
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Combined model samples for 7, and 7’

(Proof of concept; no actual data was involved in this figure)
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Estimates of median & scale for 1}, and 7',

Feb Feb

February climatology 7.

(Preliminary estimates, using only in-situ land station data) EUSTACEM




Matérn driven heat equation on the sphere

The iterated heat equation is a simple non-separable space-time SPDE family:

B
(k2 — A)V/2 gb% + (K2 = A2 a(s,t) = W(s,t)/T

For constant parameters, x(s, t) has spatial Matérn covariance (for each ?).

Discrete domain Gaussian Markov random fields (GMRFs)

x=(x1,...,25) ~N(u, Q_l) is Markov with respect to a neighbourhood structure {A;, i =1,...,n}
if Qi; = 0 whenever j # N; U1i.
» Project the SPDE solution space onto local basis functions:
random Markov dependent basis weights (Lindgren et al, 2011).

A finite element approximation has structure

[ ] atpB+y
t -1
Zw Yz, z~N0,QY), Q= > Q,®Q,,
k=0 *
_even, e. g., if the spatlal scale parameter k is spatially varying.
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Linearised inference

All Spatio-temporal latent random processes combined into * = (u7 3, b), with joint expectation /¢, and
precision Q) :
(] 0) ~N(p,,Q,")  (Prior)
(y | z,0) ~N(h(x),Q,')  (Observations)

ylx

p(x|y,0) xplx|0)p(y|x,0) (Conditional posterior)

Non-linear and/or non-Gaussian observations

For a non-linear /() with Jacobian J at x = p, iterate:

(x| y,0) "X N(, 6271) (Approximate conditional posterior)
~/ ~ == =il T ~ ~
B =h+aQ {I7Qy. ly—h(i)] - Qui — )}

w\w =

.. for some a > (0 chosen by line-search. ’ﬁ
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Multiscale precision structure

Two-level model with coarse scale @1 and fine scale () = z(y + Bx1, observations linked linearly to the fine

scale only, y = Ax.

A priori independent blocks
Blocks (Z(), iL'l), J = [A AB]

Q+A'Q,.A A'Q,,AB

on,wﬂy = BTATQU‘wA Q] + BTATlexAB]

| A

Accumulative blocks
Blocks (xg, 1), J = [A 0.

0,21y _BTQO Q1 Sl BTQOB

*

EUSTACE




Multiscale Schur complement approximation

Solving Q| = b can be formulated using two solves with the upper (fine) block Q, + ATQ,, A, and

one solve with the Schur complement

ylz

Q+B QBB Q (2 +47Q,,4)

By mapping the fine scale model onto the coarse basis used for the coarse model, we get an approximate (and
sparse) Schur solve via

-Qp Q,+Qp x1 b
where @B = BTQOB.

The block matrix can be interpreted as the precision of a bivariate field on a common, coarse spatio-temporal
scale, and the same technique applied to this system, with 1 1 = Bl‘gxm -+ finer scale variability.

*
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lterative solutions for ~ 10! latent variables

» Nonlinear Newton iteration with robust line-search

P Preconditioned conjugate gradient (PCG) iteration for
Qp—p)=r=b-Qu

> Approximate posterior sampling with PCG: Q(x — 1) = Lw
Requires only a rectangular pseudo-Cholesky factorisation LLT = Q.
Possible due to the kronecker product sum precision structure. Simplified example:

Qo = Qm ® Qs,l + Qt,z ® Qs,27
Qt,k = Lt,kLZka Q&k = Ls,k‘LIk7 Ql = LlLI7 Qy|:1: = LU‘ILI—/F\CW

o LL.l & Ls,l LL,2 & L52 0 ATLy:I;:|

Lx x -
ol T BT (L @ Lyy) ~B(Lip®Lys) L 0

P Current implementation uses multiscale-blockwise Gauss-Seidel with temporally independent fine scale

*
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MULTI-SCALE ANALYSIS

Seasonal Bimonthly x 1° SPDE 245,772
M O D E L Slow-scale™ 5 year x 5° SPDE 107,604
Latitude 0.5° latitude SPDE 721
Statistical model foir temperature variations and different Altitude (0.25° grid) 1
scales (space and time): Constal e .

: local seasonal cycle with effects _
of latitude, altitude and coastal influence. Grand mean Analysis mean 1
: Slowly varying climatological mean
temperature field. Station homogenisation.
+ Daily Local: daily variability associated with weather. el 3 monthly x 5° SPDE 1,752,408
Satellite retrieval biases.

Station bias NA 82,072
Simultaneously estimates observational biases of known Resolution N Variables
bias structures: day
« e.g. satellite biases, station homogenisation. Daily local ~0.5 degree SPDE 162,842

Satellite bias Global 1

(marine)

Processed on STFC’s LOTUS cluster www.jasmin.ac.uk:
« Largest solves processed on 20 core/256GB RAM node. patellitelbiasil §Globall2 lerlee 1irdmoe

A X A (land) SPDE
« Highly parallel observation pre-processing.
Satellite bias Hemispheric + 2.5 2+ 40,962
(ice) degree SPDE*
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ITERATIVE SOLUTION

(1) Climatology:

Global mean T /
Seasonal cycle
Latitude

Altitude

Water fraction <

(2) Large-scale:
Multi-annual SPDE
Multi-month SPDE
Station biases

Tidi’@@ Ks, ,tD)

T@limts’ ,tlj )

Model Factorisation

The model is factorised into . = 1, ..., 3 components that are estimated interatively,

substituting ¥,,, for y:

:’)m =Y—- Z Jn)u'wn\f/n

n#Em
Met Office

Condition on expected
value of other components

[«

[«

: (3) Daily local:

Daily fields

1 Satellite land bias
1 Satellite marine bias
1 Satellite ice bias

TIOC@JI(@ , ,tD)

A
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Central England Temperature Decomposition

Surface Air Temperature - 52.125N, 1.375W

MULTI-SCALE ANALYSIS e
MODEL .
Statistical model for temperature variations and 20 ~ ~ T crmnton
different scales (space and time): - /N /0 /
: local seasonal cycle with e \ /
effects of latitude, altitude and coastal influence. =/ \/ N/
: Slowly varying § .
climatological mean temperature field. .
* Daily Local: daily variability associated with * o
weather.
Simultaneously estimates observational biases of E e
known bias structures: .o
* e.g. satellite biases, station homogenisation. N

2003 2004 l:
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ENSEMBLE ANALYSIS

* Samples drawn from joint posterior distribution of
temperature and bias variables.

* Temperature model samples projected onto analysis
grid.

* Spatial/temporal correlation in analysis errors is encoded
into the ensemble.

* Summary statistics can be derived from the ensemble.
Expected value, total uncertainty and observation
constraint information also available.

Met Office

EUSTACE Ensemble 04/08/2003-13/08/2003

f ﬁjgf

- 10 15 20 25 30 35
Temperature (deg C)

EUSTACE Ensemble 30/07/2010-05/08/2010

2 10 15 20 25
Temperature (deg C)



ENSEMBLE ANALYSIS

* Samples drawn from joint posterior distribution of
temperature and bias variables.

* Temperature model samples projected onto analysis
grid.

* Spatial/temporal correlation in analysis errors is encoded
into the ensemble.

* Summary statistics can be derived from the ensemble.
Expected value, total uncertainty and observation
constraint information also available.

Met Office

EUSTACE Ensemble 01/01/2006-14/01/2006
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EUSTACE Ensemble 30/07/2010-05/08/2010
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Summary

P Challenging statistical problem, in both size and complexity
> Methods related to but different from traditional PDE solvers

» Approximate calculation techniques allows some of the complexity
to be handled with reasonable computational resources
» SPDEs and Gaussian Markov random fields
> Fast local sparse solves
> Global multiscale block iteration
> Close collaboration between climate scientistis, statisticians,
and software engineers is essential
> Project information and links to the CEDA archive: https://www.eustaceproject.org/
Only partially mentioned in this talk:
» Pure conditional block updates risk getting stuck; need for convergence acceleration
» Overlapping space-time blocks for preconditioning
> Non-stationary random field parameter estimation
> Direct&iterative variance calculations to eliminate or reduce
Monte Carlo error in the reconstruction uncertainties
P Fast approximate handling of correlated observation components *
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