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EUSTACE

EU Surface Temperatures for All Corners of Earth

EUSTACE will give publicly available daily estimates of surface air temperature since
1850 across the globe for the first time by combining surface and satellite data using
novel statistical techniques.
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Covariance functions and SPDEs

The Matérn covariance family on R?

21—u y
Cov(z(0),z(s)) = o ) (sllsl)” K (| s]l)
Scale k > 0, smoothness v > 0, variance 02 > 0

Whittle (1954, 1963): Matérn as SPDE solution

Matérn fields are the stationary solutions to the SPDE

—

(k= V- V)a/z (s)=W(s), a=v+d/2

‘%7'

W( )Whlte noise, V.-V = ZZ 1 852 0'2 = ﬁl&r)dm

White noise has K (s,s’) = (s — s). Do not confuse with independent noise,
v, K(s,s") =1(s = s’), which has non-integrable realisations.
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GMRFs: Gaussian Markov random fields

Continuous domain GMRFs

If 2:(s) is a (stationary) Gaussian random field on {2 with covariance
kernel K (s, s'), it fulfills the global Markov property

{z(A) L 2(B)|z(S), forall AB-separating sets S C Q}

if the power spectrum can be written as 1/.5,.(w) = polynomial
in w, for some polynomial order p. (Rozanov, 1977)

Generally: Markov iff the precision operator Q = R~ islocal.

Discrete domain GMRFs

x = (1,...,2,) ~N(m, Q") is Markov with respect to a neighbourhood
structure {N;,7 =1,...,n}if Q;; = 0 whenever j # N; U .

» Continuous domain basis representation with Markov weights:
n
2(8) = X p—y k()T
» Many stochastic PDE solutions are Markov in continuous space, and can be
approximated by Markov weights on local basis functions. f—
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GMRFs based on SPDES (indgren etal, 2011

GMRF representations of SPDEs can be constructed for oscillating, anisotropic,
non-stationary, non-separable spatio-temporal, and multivariate fields on manifolds.

(k2 — A)(T2(s)) = W(s), secR?
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GMRFs based on SPDES (indgren etal, 2011

GMRF representations of SPDEs can be constructed for oscillating, anisotropic,
non-stationary, non-separable spatio-temporal, and multivariate fields on manifolds.

(k2 — A)(T2(s)) = W(s), s€Q
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GMRFs based on SPDES (indgren etal, 2011

GMRF representations of SPDEs can be constructed for oscillating, anisotropic,
non-stationary, non-separable spatio-temporal, and multivariate fields on manifolds.

(% + Hg’t +V-mg; — V- Ms,tV) (tex(s,t)) = E(s,t), (s,t) e A xR

>
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Matérn driven heat equation on the sphere

> The iterated heat equation is a simple non-separable space-time SPDE family:

B
(K2 — A)V/2 (b% + (k2 = A2 x(s,t) = W(s,t)/T

> Fourier spectra are based on eigenfunctions e, (s) of —A.
onR? —Ae,(s) = ||w||*ew(s), and e, are harmonic functions.
onS?, —Aei(s) = Mper(s) = k(k + 1)ex(s), and ey, are spherical
harmonics.
> The isotropic spectrum on S? x Ris
ﬁ(k,w) « 2k +1
T2(K2 + M) [02w? + (K2 + Ag)e)”
which leads to Matérn covariances marginally in space, and in time for each
spatial frequency.
> The finite element approximation has precision matrix structure

a+p+y
Q= > M'eM!

i=0 *
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even, e.g., if K is spatially varying.



Partial hierarchical representation

Observations of mean, max, min. Model mean and range.

Data sources

Conditional specifications, e.g.

(TITL, Q) ~ N (Th, @0 )

Qs,

o~
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Basic latent multiscale structure

Daily mean temperatures

The daily means 7T, (s, t) are accumulation of independent fields and covariate

effects, Nx
Tin(s,t) = Up(s,8) + Upi(5,) + Uni(s,8) + Uni(s,1) + > _ Xi(s, )85
=1
T2,
71

m

\

Daily temperature range (diurnal range)

The diurnal ranges 7'-(s, t) are defined through N
X

g ur(s, D)) = UL (s, 8) + U2(s, ) + US(s,6) + 3 Xa(s, £)BL7,

=il

T2

r

T (s, t) = pr(s,t) G* {o [UE(s,t)]}

where G lisa spatially and seasonally varying quantile model.

Fa
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Observation models

Common satellite derived data error model framework

The observational&calibration errors are modelled as three error components:
independent (€), spatially correlated (¢1), and systematic (¢2), with distributions
determined by the uncertainty information, e.g.

Yi = Tm(su ) + GO(SL t; ) + 61(Sl,t ) + EQ(SH?LL)

| A\

Station homogenisation

For station k at day ;

y?ﬁwb Sk’ +2Hk kj+6k7

H’L
independent measurement and discretisation errors.

where H]k( ) are temporal step functions, e k.J are latent bias variables, and em re

o~
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Observed data

Observed daily 7 mean and Tiange for station FRW00034051

FRWO00034051
g
g
1955 1960 1965
time (vear)
FRWO00034051
]

time (vear) E U STAC E




Multiscale model component samples

The result of sampling based on hand-picked temporal process parameters

Time
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Combined model samples for 7}, and 7.
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Median & scale for daily means and ranges

February climatology
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Estimates of median & scale for /;,, and 7,

Feb Feb

February climatology



Linear inference

All Spatio-temporal latent random processes combined into * = (u7 3, b), with joint
expectation ft, and precision Q_:
(x| 0) ~N(p,,Q,")  (Prior)
-1 .
(y|z,0) ~N(h(z),Q,,) (Observations)

p(x|y,0) xplx|8)ply|x,0) (Posterior)

Linear Gaussian observations

For a linear h(x) = Awx,

(x| y,0) ~N(n,Q )  (Posterior)
Q=Q,+A7Q,,A
fi=p,+Q ATQ,(y— Ap,)

>
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Linearised inference

All Spatio-temporal latent random processes combined into * = (u7 3, b), with joint
expectation ft, and precision Q_:

(x]0) ~N(u,,Q,")  (Prior)
p(x|y,0) < p(z | ) p(y | x,0)  (Posterior)

Non-linear and/or non-Gaussian observations

For a non-linear /() with Jacobian J at 1, iterate:

v\w) (Observations)

(x| y,0) "X N(, @71) (Approximate posterior)
Q=Q,+J'Q,.J
B =hi+aQ {I7Q,ly—h(@) - Q.- m)}

for some a > 0 chosen by line-search.

A~
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Triangulations for all corners of Earth
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Triangulations for all corners of Earth




Iterative solver components

Space and time nodes: 360 - 180 - 42 - 365 - 165 - 2 = 124, 882, 560, 000,
or ~ 1TB! Full precision matrix storage and direct factorisation not realistic.
» Overlapping domain decomposition (DD)
Macro-triangles linked to coarse nodes, small enough for (nearly) exact
computations
> Multigrid (MG)
A sequence of fine to coarse models; DD applied at each level
> Approximate Schur complents (Schur)
Solve the fast timescale block with MG, then project the model to the next
timescale
Recurse through the timescales, with increasingly multivariate blocks
> Preconditioned conjugate gradients (PCG)
Use the above methods as preconditioner, find approximate solution
> Non-linear least squares Newton optimisation
Linearise the model, find search direction with PCG, perform simple line search,
and iterate

o~
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Full multigrid

Full multigrid sequence

Approximation level

Step
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Variance calculations

Sparse partial inverse

Takahashi recursions compute S such that S;; = (Qfl)ij forall Q;; # 0.
Postprocessing of the (sparse) Cholesky factor.

Basic Rao-Blackwellisation of sample estimators

Let ) be samples from a Gaussian posterior and let a ' x be a linear combination
of interest. Then, for any subdomain {2, C 2,

J
1 .
E(a"z) =E[E(a’z | ro: )| ~ = E E(a'x | a:gz))
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EUSTACE

> 3 Met-offices, 5 universities, 1 data storage facility, 2 spatio-temporal infilling
methods
> 165 years of daily temperature observations from stations, ships, and satellites
> Multiscale stochastic weather and climate model based on SPDEs and finite
element GMRFs
> Multiple iterative matrix solver techniques, exploiting the model structure
> Output:
> Point estimates of daily mean, minimum, and maximum temperatures on a high
resolution grid

» Associated uncertainty estimates
» Sample from the posterior distributions of the temperature fields

» Project stage: method software implementation in progress, results to be
validated and released in 2018.

o~
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Gratuitous commercial

inlabru, the friendlier INLA interface. More from Fabian Bachl, COMP2, Wednesday
R-INLA, http://r-inla.org/

A.data <- inla.spde.make.A(...)

A.pred <- inla.spde.make.A(...)

stack.data <- inla.stack(data=..., A=list(A.data, ...), effects=...)

stack.pred <- inla.stack(data=..., A=list(A.pred, ...), effects=...)

stack <- inla.stack(stack.data, stack.pred)

formula <- y ~ ... + f(field, model=spde)

result <- inla(...)

## Linear and non-linear prediction:

prediction <- result$summary.fitted.values[some.indices, "mean"]

prediction <- lapply(inla.posterior.sample(n=..., result),
function(x) cos(x$latent$field))

inlabru, http://inlabru.org

components <- . + field(map=coordinates, model=spde)

formula <- y 7 ... + field

result <- bru(...)

## Non-linear prediction (via direct posterior sampling)

prediction <- predict(..., cos(field))

## Extra: non-linear formulas and marked LGCP capabilities

formula <- y ~ fieldl * exp(field2)

formula <- coordinates + size ~ fieldl + dnorm(size, field2, sd=exp(theta),
log=TRUE)



Power tail quantile (POQ) model

The quantile function (inverse cumulative distribution function) F, ' (p), p € [0, 1], is
defined as a quantile blend of left and right tailed generalized Pareto distributions,

1—(2p)~° 00
frm=4{, 2 970
51og(2p), 0 =0,

@@-p)~?-1 6+0
FON o E— (1 ) — 20 2 ’
ff ) =~fy 1-p) {;log(Q(lp))v 6= 0.

_ T _
Fy'(p) =00+ 5 [(1 =M fo, () + 1+ 1), 0],
The parameters 0 = (6, 01 = log 7, 05 = logit[(vy + 1)/2], 03, 64) control the
median, spread/scale, skewness, and the left and right tail shape.

This model is also known as the five parameter lambda model.

A spatio-temporally dependent Gaussian field (s, t) with expectation 0 and variance
1 can be transformed into a POQ field by

a(s) t) - F&i,t)(¢(u(sv t))a

o~
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Density

DTR values (deg C)
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Diurnal range distributions

After seasonal compensation:
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For these stations, POQ does a slightly better job than a Gamma distribution.
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Diurnal range distributions; quantile model

After seasonal compensation:
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For these stations only POQ comes close to representing the distributions.
o, Note: Some of the mixture-like distribution shapes may be an effect of unmodeled
/';station inhomogeneities as well as temporal shift effects. f—
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