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“Big” data
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Synthetic data mimicking satellite based CO, measurements.
Iregular data locations, uneven coverage, and all scales need to be handled.
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Sparse spatial coverage of temperature measurements
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Regional observations: ~ 20,000,000 from daily timeseries over 160 years
Note: This is a small subset of the full data!
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Spatio-temporal modelling framework

Spatial statistics framework

» Spatial domain (2, or space-time domain 2 x T, T C R.
» Random field u(s), s € Q, or u(s,t), (s,t) € Q x T.

» Observations y;. In the simplest setting, v; = u(s;) + ¢;, but more
generally y; ~ GLMM, with «(-) as a structured random effect.

» Il restrict this talk to Gaussian latent models.

» To simplify the presentation, most of the measurement models are
simplified to simply iid measurement errors, but keep in mind that we
may eventually need methods that can handle individual long-term
random effects for each weather station/buoy/ship/satellite.
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Spatial models Spatial Matérn/SPDE Markov Non-stationarity

Covariance functions and stochastic PDEs

The Matérn covariance family on R¢

Cov(u(0), u(s)) = o il(y;

Scale > 0, smoothness v > 0, variance o2 >

(kllsl)” Ky (| s])

Whittle (1954, 1963): Matérn as SPDE solution
Matérn fields are the stationary solutions to the SPDE

(k2= V-V)"? u(s) =W(s), a=v+d/2

W(-) white noise, V-V = 3¢, 832, o2 = W
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Spatial models Spatial Matérn/SPDE Markov Non-stationarity

Continuous and discrete Markov properties

Markov properties

S'is a separating set for A and B: u(A4) L u(B) | u(S)

Solutions to

(52 = V- V)™ u(s) = W(s)
are Markov when « is an integer.
(Rozanov, 1977)

Discrete representations (Q = X~ 1):
Qip=0

Qus,8=Qan

Hals,B = Ha — QE}L\QAS('”'S — kg)
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Continuous domain Markov approximations

Continuous Markovian spatial models (Lindgren et al, 2011)

Local basis: u(s) = >, Vi (s)u;, (compact, piecewise linear)
Basis weights: u ~ A/ (0, Q'), sparse Q based on an SPDE
Special case: (k> — V- V)u(s) = W(s), sc€Q
Precision: @ = x*C +2k°G + Gy (k" + 2k%|w|? + |w|?)

v

Conditional distribution in a Gaussian model
u~Np, QrY), ylu~N(Au, Q;ﬁl) (Ayj = ;(s3))
Quy,=Q,+ ATQWA (~"Sparse iff 1, have compact support”)

We've translated the spatial inference problem into sparse numerical linear
algebra similar to finite element PDE solvers
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Spatial models Spatial Matérn/SPDE Markov Non-stationarity

The computational GMRF work-horse

Cholesky decomposition (Cholesky, 1924)

Q= LL", Llowertriangular (~ (’)(n(d+1)/2) ford =1,2,3)
Q lz= L‘TL_lw, via forward/backward substitution

logdet Q@ = 2logdet L = 2ZIOg Ly

André-Louis Cholesky (1875-1918)

"He invented, for the solution of the condition equations in the B
method of least squares, a very ingenious computational proce-
dure which immediately proved extremely useful, and which most
assuredly would have great benefits for all geodesists, if it were
published some day." (Euology by Commandant Benoit, 1922)
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Spatial models Spatial Matérn/SPDE  Markov Non-stationarity

Non-stationary field

’ L - :
'. 4 _ »2“‘ "x.

Finn Lindgren - f.lindgren@bath.ac.uk Large scale spatial statistics with stochastic PDEs



Anisotropic field on a globe via vector parameter field
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Data Spatial models Climate model Extra End Spatial Matérn/SPDE  Markov Non-stationarity

Covariances for four reference points
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Climate and weather model (simplified)

» Climate process, simplified stochastic heat equation

0
572(8:8) = V- Va(s, 1) = £(s, 1)

(1 =7V -V)E(s,t) =We(s,t)

» Weather anomaly, non-stationary spatial SPDE/GMRF
(k(8)2 =V - V) (7(8)a(s,t)) = Wa(s,t)

» Temperature measurements from one or several sources
y=A(a+(BoI)z)+¢e~N(0,Q ")

The posterior precision can be formulated for (a + z, z)|y:

Q _ I®Q,+A"Q.A -B®Q,
etz 2y -B'®Q, Q.+B'BwQ,
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Locally isotropic non-stationary precision construction

Finite element construction of basis weight precision

Non-stationary SPDE:
(k(5)* = V- V) (1(s)u(s)) = W(s)

The SPDE parameters are constructed via spatial covariates:
log 7(s) = bj(s) + Z b7 (s)8;, logk(s)=b5(s)+ Z b7 (8)0;
Finite element calculations give
T = diag(7(s;)), K = diag(k(s;))
Cii —/% )ds, G = /Vwi(s) -Vii(s)ds
Q=T (K’CK’+K’G+GK’+GC™'G) T

For the temporally independent anomalies, we get I ® @,
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Climate model Prior model Posterior Preconditioning Boundary

GMREF precision for simplified stochastic heat equation

Q. =MP oM+ MP oM + M o MY
M(()S) =C+7%G
M =G+yGC'G
M =GCc'G+yGCIGC'@G

Ignoring the degenerate aspect of the model, the precision structure can be
used to formulate sampling as (remember the first talk of the workshop!)

Q.z=L,w, w~N(0,1I)
where iz is a pseudo Cholesky factor,
i - HLg“ ®Le, L ®Le, Lo GL;;T] :

e [Lg> ®Le, L"e@GLy, LPe GC’lLGH
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Posterior calculations

Write z = (a + z, z) for the full latent field.

[I®Q,+A7Q.A -B®Q, }
Qz\y*

-B'wQ, Q.+B"B®Q,

can be pseudo-Cholesky-factorised:

Qupy = Lr\yLzm Ly, = =

~ I®L, 0 A'L
~B®L, L, 0

Posterior expectation, samples, and marginal variances:

Qz\y( u’z\y) L, lyWw, w NN(O I) or
Quy(z —p,) = (y ty) + Lyjyw, w~N(0,I),
Var(z;|y) = dlag(lnla qinv(@Q,,)) (requires Cholesky)
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Preconditioning for e.g. conjugate gradient solutions
Solving Qz = b is equivalent to solving M ~' Qz = M ~'b. Choosing

M~ " asan approximate inverse to @ gives a less ill-conditioned system.
Only the action of M ! is needed, e.g. one or more fixed point iterations:

Block Jacobi and Gauss-Seidel preconditioning

Matrix split: @, = L+ D + L'

z|y

Jacobi: 2" = D! <_(L + LT)z® + b)

Gauss-Seidel: z*+t1) = (L + D)™! (—LTm(’“) + b)

4

Remark: Block Gibbs sampling for a GMRF posterior

With Q = Qz|y7 b= AT Qe(y - /J’m) andz = x — Hy»

) — ([ 4 D)1 (—LT%(’“) +b+ Euw) , w~N(0,I)
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Climate model Prior model Posterior Preconditioning Boundary

Multiscale Schur complement approximation

Solving Q. |, = b can be formulated using two solves with the upper block
I®Q,+ AT Q. A, and one solve with the Schur complement

Qz+BTB®Qa_BT®Qa (I®Qa+ATQ6A)71B®Qa

By mapping the fine scale anomaly model onto the coarse basis used for the
climate model, we get an approximate (and sparse) Schur solve via

] = 3

where B= B ® T, Z)B =B'B® Q ., and the block matrix can be
interpreted as the precision of a bivariate field on a common, coarse
spatio-temporal scale.

Qs +B ATQAB  -Q,
_QB Qz + QB
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Climate model Prior model Posterior Preconditioning Boundary

Multigrid
Construct a sequence of increasingly detailed models,

(Qm)’ QW, ... Q(L))_

Basic idea:

» On each level, a simple local fixed point iteration can eliminate small
scale residual errors efficiently, but not large scale errors.

» Project the residual onto the next coarse level, where the large scale is
now small, and then interpolate the result back onto the finer level.

» On the coarsest level, solve the exact problem.
Simple multigrid model traversal: L = 4,3,2,1,0,1,2,3,4 =L
Full multigrid: L =4,3,2,1,0,1,0,1,2,1,0,1,2,3,2,1,0,1,2,3,4 =L

In theory, full multigrid can be O(n)!

Can be used as complete solver with small tolerance, or as preconditioner
with large tolerance.
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Finite element mesh

Triangulation mesh
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Climate model Prior model Posterior Preconditioning Boundary

Domain decomposition
» Divide the domain into a collection of overlapping subdomain blocks

» Solve a local problem, e.g. the conditional solution, maintaining
coherence by enforcing constraints on overlapping nodes.

y

Monte Carlo variance reduction for posterior variances

Var(z; | y) = Var (z; | y, gsubbiock) + Var (E(x; | ¥, T suvblock))
Also works for linear combinations, with some complications

4

Subdomain boundary adjustment (new idea)

» Apply stochastic boundary correction for each subdomain

» Solve the full local problem, reusing the appropriate randomness for
overlapping subdomains

» Blend the results for overlapping domains.
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Climate model Prior model Posterior Preconditioning Boundary

Covariances (D&N, Robin, Stoch) for k = 5 and 1
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Elliptical domain, basis triangulation
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Elliptical domain, stochastic boundary (variances)

T
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Elliptical domain, mixed boundary (variances)
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Stationary stochastic boundary adjustment

Recall the Matérn generating SPDE
(K2 =V -V)¥2u(s) = W(s)

RKHS inner product for Matérn precisions on R%:

«

(f,g>H(Q) = Z (2) (2a—2k <ka’vkg>ﬂ
k=0

Boundary adjusted precision operator on a compact subdomain, where P
projects onto the operator null-space:

Qalf,9) = Duw) = Py P9I uy + Lrioa(Pf, Pg)
= =Pf.9 = P9 uw) + Lrioa(Pf. Pyg)
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Laplace approximations for non-Gaussian observations

Quaderatic posterior log-likelihood approximation

~ 1

po(u|y,0) ~N(p, Q )
0=V, {lnp(u| @) +np(y|u)},

Q=Q,— Vihp(y|u)|,_.

(£ y

=i

Direct Bayesian inference with INLA (r-inla.org)

p(@)p(u | 0)p(y | u,0)

(0 x
p@y) (@] 9,0 |ucn

Bui | v) o [ pec(u: | v.0)p(0] y) o

The latent Gaussian parts to some degree do scale to large non direct
methods, but evaluating likelihoods becomes a very challenging problem.
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Data Spatial models Climate model Extra End Laplace LGCP Excursion sets

SPDE based inference for point process data

N
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Extra Laplace LGCP Excursion sets

Excursion sets for random fields

Excursion sets

Let z(s), s € € be a random process. The positive and negative level u
excursion sets with probability 1 — « are

E/ ,(z) = argmax{|D| : Pr(D C Af(z)) >1—a}.
D

u, 0

E;  (z)= arglrjnax{|D| :Pr(D C A, (z)) >1—a}.

| A\

Excursion functions

The positive and negative v excursion functions are given by
Ff(s)=sup{l — ;s € Ef .},

F, (s)=sup{l —o;s € E, .}
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Extra Laplace LGCP Excursion sets

PM;, exceedances in Piemonte, January 30, 2006

Marginal probabilities F2i(s)
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Model estimated with INLA, result passed onward to excursions (),
evaluating high dimensional GMRF probabilities and finding credible regions.
Development version has more user friendly options for continuous domain
interpretations.
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