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Traditional spatial covariance models vs RKHS inner products

» Gaussian random field: u(s), s € D (subset of R or a manifold such
as S?)

» Moment characterisation:
> Expectation p(s) = E[u(s)]

» Covariance R(s,s’) = Cov[u(s), u(s’)], symmetric positive definite
function.

» Precision operator; inverse covariance: Q = R~!
In practice, easier conditions for valid models

» Reproducing Kernel Hilbert Space (RKHS) Hg: Inner product
<f7g>HQ = <f7 Qg)D

and squared norm ||f||? = (f, f)ng

» E(u(:) — p(-)[{u(sk)}) € Ho but u(-) — u(-) & Ho; the process is less
smooth!



SPDEs and Gaussian random fields

» Spatial (and spatio-temporal) stochastic PDEs generate random field
models:

Lu(s)ds = dW(s)
Qu,=L"L
<f7g>HQ = <‘Cfa 'Cg>D

Can work directly with the precision or inner product; no need to know
the covariance.



Non-separable space-time: Matérn drijve
nI'he RerateJ darﬁpened eat equation g a s!mp € non-sep

SPDE (Lindgren et al, 2024, SORT)
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For constant parameters, u(s, t) has spatial Matérn covariance (for each t)
on RY and a generalised Matérn-Whittle covariance on S?.

Smoothness properties (can be derived from the spectra):
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where 3, (vs,d) = ysfr’jj/z, and fs € [0, 1] is a non-separability parameter.



Smoothness properties
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Bayesian latent Gaussian process models
General latent Gaussian hierarchical model structure

6 ~ p(0)
X|0 ~ N(’J“X(O)’ Qx(a)_l)
ylx,0 ~ p(y | x,0)

Generalised additive models (GAMs) with Gaussian random fields (GRFs):

x=(B,u,...,uK)
g(Elyilx, 0]) =n = XB+ D _ fi(zix: ux)
P

and e.g. yilx, 8 ~ N(1,02) or yi|x, 8 ~ Po(exp(n))

We want to estimate the parameters of the GRFs, 6, the GRF processes
values fi(-) at observed and unobserved locations, and quantify the
uncertainty in these estimates.



The Matérn-Whittle-Markov GRF/SPDE/GMRF connection

Each fi(-) is a function of space, time, or a covariate, and is approximated
by

fi(zik; u) = Z Vi (Zi) kg,
J

where 1,j(zjc) are basis functions, e.g. finite element basis functions.
Matérn fields are solutions to the spatial SPDE

(k2 =V - V)*2(ru(s)) = KdW(s)
u(s) ~ Z¢j(s)uj, u ~ N(O, Q;l)

where @ is the precision matrix of the GRF/SPDE/GRMF representation.

When « is an integer, FEM vyields a sparse matrix Q,, and u(s) is a Markov
random field (Lindgren et al, 2011).

For non-integers, u(s) can be closely approximated by a sum of a few
Markov processes (Bolin and Kirchner, 2020).



Parameter estimation and spatial prediction

p(0)p(x|0)p(y[6, x)

p(6ly) o< p(0)p(y|0) ~ pc(x]6,y) e

where pg(x|6,y) is the Gaussian approximation to the conditional posterior
density.

The INLA software uses numerical integration over 8 together with
variational Bayes corrections pgg() of the Gaussian approximations to
obtain the posterior marginal densities of x:

p(xly) = [ p(x10.y)p(6ly) d6

~ > pec(x0Y,y)p(8Y)|y)w;
j



The inner core of the Integrated Nested Laplace method

» Latent Gaussian model structure (Bayesian GAMs with Gaussian
process components)

0 ~ p(@) (precision parameters) 1n(s,t) = Z Yi(s, t)ux (predictor)

ul@ ~ N[pu, Q1] (latent field) y|0,u ~ p(y|0,n) (observations)

» Conditional log-posterior mode (p,,) and Hessian (@Q,,), for each 6,
by iteration:

*

d
g = — 4, 'ogr(y16,n)

u=u*

d2
Hy = — 7 log p(y|6.1)

u=u*

@, - @+ H;
Qu\y(l”'u|y - /fl’u) = QZ(U* - H’U) - g;K



General observation models

» Point-referenced data; additive noise, counts, presence-absence, etc.

> Aggregated data; spatial averages/totals, counts, presence-absence,
etc.

» Point process data. Poisson process log-likelihood function:
//\ derzlog[A yi)] = ijexp[n 5j ]+Zn yi)

where {(sj, w;)} is a numerical integration scheme over the sampled
region of space. The likelihood approximation works together the
SPDE/GMREF representations and the INLA method; "Going off grid"
(Simpson et al, 2016, Biometrika)



Non-linear predictors

The original motivation for the inlabru package was ecological transect
distance sampling, requiring a model for imperfect detections:

)\apparent(s; u, V) = )\(5; U)h(S; V),

where h(s; v) is the detection probability for a point located at s, and v is a
vector of parameters for the detection function.

The inlabru package solves this by iterating the INLA method on a
linearisation of the non-linear predictor

n(s; u, v) = log[A(s; u)] + log[h(s; v)].



Dolphin group detection; estimated density field
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Dolphin group detection; estimated detection probabilities
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Dolphin group detection; estimated total count
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Numerical challenges

> Q9. is a large, (usually) sparse matrix

> Need to solve linear systems of the form Q9 ,x = b

» Need to evaluate marginal variances [Q)j'; y} _ (Cholesky plus
’ n

Takahashi recursions, but what about large problems where Cholesky is
unavailable?)

> Need to evaluate log-determinants log |Q,¢| and log |Q,g,, |

» Gradient descent methods can make use of the log-determinant
derivative tr (Q‘l%)



Modelling and computational challenges

>

| 2

How to parameterise non-stationarity and anisotropy in an
interpretable way

How to construct sensible/interpretable prior distributions for the
parameters (current work: Penalised complexity priors for anisotropy
and non-stationarity)

Scaling things up to large space-time problems with complex
observation models; observations involve sums of several processes on
different time-scales, systematic biases, and irregular observation
patterns



Partial inversion beyond Takahashi recursions

| 4

>

Monte Carlo estimation; expensive, as may need to use iterative
methods to construct each sample

Iterative combinations of MC and local exact partial inversion; not as
nice as we would like.

Idea: Need to jointly solve for the marginal variances and the local
shape of the correlation function. There appears to be a way to
formulate this problem as a multidimensional (possibly non-linear)
PDE, which might be solvable using a single run of an iterative PDE
solver.



Gorilla nest example mesh; we can use irregular meshes
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That we can doesn’'t mean we should! Better, regular alternative
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Variances
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Nearly regular mesh on the unit sphere




Whittle-Matérn field on the unit sphere




Oscillatory field on the unit sphere (modified Whittle SPDE)
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Potato field (has been applied to atrial manifolds)
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