## Embedding numerical stochastic PDE models in Bayesian inference for latent Gaussian models Institut Mittag-Leffler; 'Stochastic partial differential equations: Statistics meets numerics'

#### Finn Lindgren

School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh

2025-06-02

Traditional spatial covariance models vs RKHS inner products

- ► Gaussian random field: u(s), s ∈ D (subset of ℝ<sup>d</sup> or a manifold such as S<sup>2</sup>)
- Moment characterisation:
  - Expectation  $\mu(\mathbf{s}) = \mathsf{E}[u(\mathbf{s})]$
  - Covariance R(s, s') = Cov[u(s), u(s')], symmetric positive definite function.
- Precision operator; inverse covariance: Q = R<sup>-1</sup>
   In practice, easier conditions for valid models
- ▶ Reproducing Kernel Hilbert Space (RKHS)  $H_Q$ : Inner product

$$\langle f,g \rangle_{\mathcal{H}_{\mathcal{Q}}} = \langle f,\mathcal{Q}g \rangle_{\mathcal{D}}$$

and squared norm  $\|f\|^2 = \langle f, f \rangle_{H_Q}$ 

►  $\mathsf{E}(u(\cdot) - \mu(\cdot)|\{u(\mathbf{s}_k)\}) \in H_Q$  but  $u(\cdot) - \mu(\cdot) \notin H_Q$ ; the process is less smooth!

SPDEs and Gaussian random fields

Spatial (and spatio-temporal) stochastic PDEs generate random field models:

$$\mathcal{L}u(\mathbf{s}) \, \mathrm{d}\mathbf{s} = \mathrm{d}\mathcal{W}(\mathbf{s})$$
$$\mathcal{Q}_u = \mathcal{L}^* \mathcal{L}$$
$$\langle f, g \rangle_{H_{\mathcal{Q}}} = \langle \mathcal{L}f, \mathcal{L}g \rangle_{\mathcal{D}}$$

Can work directly with the precision or inner product; no need to know the covariance.

Non-separable space-time: Matérn driven heat equation The Iterated dampened heat equation is a simple non-separable space-time SPDE (Lindgren et al, 2024, SORT)

$$\left[\phi\frac{\partial}{\partial t}+(\kappa^2-\Delta)^{\alpha_s/2}\right]^{\alpha_t}u(\mathbf{s},t)\,\mathrm{d}t=\mathrm{d}\mathcal{E}_{(\kappa^2-\Delta)^{\alpha_e}}(\mathbf{s},t)/\tau$$

For constant parameters,  $u(\mathbf{s}, t)$  has spatial Matérn covariance (for each t) on  $\mathbb{R}^d$  and a generalised Matérn-Whittle covariance on  $\mathbb{S}^2$ .

Smoothness properties (can be derived from the spectra):

$$\begin{cases} \nu_t = \min\left[\alpha_t - \frac{1}{2}, \frac{\nu_s}{\alpha_s}\right], \\ \nu_s = \alpha_e + \alpha_s \left(\alpha_t - \frac{1}{2}\right) - \frac{d}{2}, \\ \beta_s = 1 - \frac{\alpha_e}{\nu_s + d/2}, \end{cases} \quad \begin{cases} \alpha_t = \nu_t \max\left(1, \frac{\beta_s}{\beta_*(\nu_s, d)}\right) + \frac{1}{2}, \\ \alpha_s = \frac{\nu_s}{\nu_t} \min\left(\frac{\beta_s}{\beta_*(\nu_s, d)}, 1\right), \\ \alpha_e = \frac{1 - \beta_s}{\beta_*(\nu_s, d)}\nu_s = (\nu_s + d/2)(1 - \beta_s), \end{cases}$$

where  $\beta_*(\nu_s, d) = \frac{\nu_s}{\nu_s + d/2}$ , and  $\beta_s \in [0, 1]$  is a non-separability parameter.

## Smoothness properties

| $\alpha_t$ | $\alpha_s$   | $\alpha_{e}$                               | Туре                     | $ u_t $                                                   | $\nu_s$                                                     |
|------------|--------------|--------------------------------------------|--------------------------|-----------------------------------------------------------|-------------------------------------------------------------|
| $\alpha_t$ | $\alpha_s$   | $\alpha_{e}$                               | General                  | $\min\left[lpha_t - rac{1}{2}, rac{ u_s}{lpha_s} ight]$ | $\alpha_e + \alpha_s(\alpha_t - \frac{1}{2}) - \frac{d}{2}$ |
| $\alpha_t$ | 0            | $\alpha_{e}$                               | Separable                | $\alpha_t - \frac{1}{2}$                                  | $\alpha_e - \frac{d}{2}$                                    |
| $\alpha_t$ | $\alpha_s$   | $\frac{d}{2}$                              | Critical                 | $\alpha_t - \frac{\overline{1}}{2}$                       | $\alpha_s(\alpha_t - \frac{1}{2})$                          |
| $\alpha_t$ | $\alpha_{s}$ | Ō                                          | Fully non-separable      | $\alpha_t - \frac{1}{2} - \frac{d}{2\alpha_s}$            | $\alpha_s(\alpha_t-\frac{1}{2})-\frac{d}{2}$                |
| 1          | 2            | $\alpha_e > \frac{d}{2}$                   | Sub-critical diffusion   | 1/2                                                       | $\alpha_e + 1 - \frac{d}{2}$                                |
| 1          | 2            | $\frac{d}{2}$                              | Critical diffusion       | 1/2                                                       | 1                                                           |
| 1          | 2            | $\frac{d}{2} - 1 < \alpha_e < \frac{d}{2}$ | Super-critical diffusion | $ u_s/2 $                                                 | $\alpha_e + 1 - \frac{d}{2}$                                |
| 1          | 0            | 2                                          | Separable                | 1/2                                                       | $2 - \frac{d}{2}$                                           |
| 3/2        | 2            | 0                                          | Fractional diffusion     | $1-rac{d}{4}$                                            | $2 - \frac{d}{2}$                                           |
| 2          | 2            | 0                                          | Iterated diffusion       | $\frac{3}{2} - \frac{\dot{d}}{4}$                         | $3 - \frac{d}{2}$                                           |

#### Bayesian latent Gaussian process models

General latent Gaussian hierarchical model structure

$$egin{aligned} oldsymbol{ heta} &\sim p(oldsymbol{ heta}) \ \mathbf{x} | oldsymbol{ heta} &\sim \mathsf{N}(oldsymbol{\mu}_{ imes}(oldsymbol{ heta}), oldsymbol{Q}_{ imes}(oldsymbol{ heta}), oldsymbol{Q}_{ imes}(oldsymbol{ heta})^{-1}) \ \mathbf{y} | oldsymbol{x}, oldsymbol{ heta} &\sim p(oldsymbol{y} \mid oldsymbol{x}, oldsymbol{ heta}) \end{aligned}$$

Generalised additive models (GAMs) with Gaussian random fields (GRFs):

$$oldsymbol{x} = (eta, oldsymbol{u}_1, \dots, oldsymbol{u}_K)$$
  
 $g(\mathsf{E}[y_i | oldsymbol{x}, oldsymbol{ heta}]) = oldsymbol{\eta} = oldsymbol{X}eta + \sum_k f_k(z_{ik}; oldsymbol{u}_k)$ 

and e.g.  $y_i | \boldsymbol{x}, \boldsymbol{\theta} \sim \mathsf{N}(\boldsymbol{\eta}, \sigma_y^2)$  or  $y_i | \boldsymbol{x}, \boldsymbol{\theta} \sim \mathsf{Po}(\exp(\eta_i))$ 

We want to estimate the parameters of the GRFs,  $\theta$ , the GRF processes values  $f_k(\cdot)$  at observed and unobserved locations, and quantify the uncertainty in these estimates.

# The Matérn-Whittle-Markov GRF/SPDE/GMRF connection

Each  $f_k(\cdot)$  is a function of space, time, or a covariate, and is approximated by

$$f_k(z_{ik}; \boldsymbol{u}_k) = \sum_j \psi_{kj}(z_{ik}) u_{kj},$$

where  $\psi_{kj}(z_{ik})$  are basis functions, e.g. finite element basis functions. Matérn fields are solutions to the spatial SPDE

$$egin{aligned} & (\kappa^2 - 
abla \cdot 
abla)^{lpha/2}( au oldsymbol{s})) = \kappa^\gamma \mathrm{d} \mathcal{W}(oldsymbol{s}) \ & u(oldsymbol{s}) pprox \sum_j \psi_j(oldsymbol{s}) u_j, oldsymbol{u} \sim \mathrm{N}(oldsymbol{0}, oldsymbol{Q}_u^{-1}) \end{aligned}$$

where Q is the precision matrix of the GRF/SPDE/GRMF representation.

When  $\alpha$  is an integer, FEM yields a sparse matrix  $Q_u$ , and u(s) is a Markov random field (Lindgren et al, 2011).

For non-integers, u(s) can be closely approximated by a sum of a few Markov processes (Bolin and Kirchner, 2020).

Parameter estimation and spatial prediction

$$p(m{ heta}|m{y}) \propto p(m{ heta}) 
ho(m{y}|m{ heta}) pprox rac{p(m{ heta}) p(m{x}|m{ heta}) p(m{y}|m{ heta},m{x})}{p_G(m{x}|m{ heta},m{y})} \Big|_{m{x}=m{x}^*}$$

where  $p_G(\mathbf{x}|\boldsymbol{\theta}, \mathbf{y})$  is the Gaussian approximation to the conditional posterior density.

The INLA software uses numerical integration over  $\theta$  together with variational Bayes corrections  $p_{GG}()$  of the Gaussian approximations to obtain the posterior marginal densities of x:

$$egin{aligned} p(m{x}|m{y}) &= \int p(m{x}|m{ heta},m{y}) p(m{ heta}|m{y}) \, \mathrm{d}m{ heta} \ &pprox \sum_j p_{GG}(m{x}|m{ heta}^{(j)},m{y}) p(m{ heta}^{(j)}|m{y}) w_j \end{aligned}$$

#### The inner core of the Integrated Nested Laplace method

 Latent Gaussian model structure (Bayesian GAMs with Gaussian process components)

$$\boldsymbol{\theta} \sim p(\boldsymbol{\theta})$$
 (precision parameters)  $\eta(\mathbf{s}, t) = \sum_{k=1}^{n} \psi_k(\mathbf{s}, t) u_k$  (predictor)  
 $\boldsymbol{u}|\boldsymbol{\theta} \sim \mathsf{N}[\boldsymbol{\mu}_u, \boldsymbol{Q}_u^{-1}]$  (latent field)  $\boldsymbol{y}|\boldsymbol{\theta}, \boldsymbol{u} \sim p(\boldsymbol{y}|\boldsymbol{\theta}, \eta)$  (observations)

n

• Conditional log-posterior mode  $(\mu_{u|y})$  and Hessian  $(Q_{u|y})$ , for each  $\theta$ , by iteration:

$$\begin{aligned} \boldsymbol{g}_{y}^{*} &= -\frac{\mathrm{d}}{\mathrm{d}\boldsymbol{u}}\log p(\boldsymbol{y}|\boldsymbol{\theta},\eta)\Big|_{\boldsymbol{u}=\boldsymbol{u}^{*}} \\ \boldsymbol{H}_{y}^{*} &= -\frac{\mathrm{d}^{2}}{\mathrm{d}\boldsymbol{u}\mathrm{d}\boldsymbol{u}^{\top}}\log p(\boldsymbol{y}|\boldsymbol{\theta},\eta)\Big|_{\boldsymbol{u}=\boldsymbol{u}^{*}} \\ \boldsymbol{Q}_{u|y} &= \boldsymbol{Q}_{u} + \boldsymbol{H}_{y}^{*} \\ \boldsymbol{Q}_{u|y}(\boldsymbol{\mu}_{u|y}-\boldsymbol{\mu}_{u}) &= \boldsymbol{Q}_{u}^{*}(\boldsymbol{u}^{*}-\boldsymbol{\mu}_{u}) - \boldsymbol{g}_{y}^{*} \end{aligned}$$

#### General observation models

- Point-referenced data; additive noise, counts, presence-absence, etc.
- Aggregated data; spatial averages/totals, counts, presence-absence, etc.
- Point process data. Poisson process log-likelihood function:

$$-\int \lambda(\boldsymbol{s}) \, \mathrm{d}\boldsymbol{s} + \sum_{i} \log[\lambda(\boldsymbol{y}_{i})] \approx -\sum_{j} w_{j} \exp[\eta(\boldsymbol{s}_{j})] + \sum_{i} \eta(\boldsymbol{y}_{i})$$

where  $\{(s_j, w_j)\}$  is a numerical integration scheme over the sampled region of space. The likelihood approximation works together the SPDE/GMRF representations and the INLA method; "Going off grid" (Simpson et al, 2016, Biometrika)

#### Non-linear predictors

The original motivation for the inlabru package was ecological transect distance sampling, requiring a model for imperfect detections:

$$\lambda_{apparent}(\boldsymbol{s}; \boldsymbol{u}, \boldsymbol{v}) = \lambda(\boldsymbol{s}; \boldsymbol{u})h(\boldsymbol{s}; \boldsymbol{v}),$$

where h(s; v) is the detection probability for a point located at s, and v is a vector of parameters for the detection function.

The inlabru package solves this by iterating the INLA method on a linearisation of the non-linear predictor

$$\eta(\mathbf{s}; \mathbf{u}, \mathbf{v}) = \log[\lambda(\mathbf{s}; \mathbf{u})] + \log[h(\mathbf{s}; \mathbf{v})].$$

### Dolphin group detection; estimated density field



Dolphin group detection; estimated detection probabilities



#### Dolphin group detection; estimated total count



## Numerical challenges

•  $Q_{x|\theta,y}$  is a large, (usually) sparse matrix

- ▶ Need to solve linear systems of the form  $Q_{x|\theta,y}x = b$
- Need to evaluate marginal variances [Q<sup>-1</sup><sub>x|θ,y</sub>]<sub>ii</sub> (Cholesky plus Takahashi recursions, but what about large problems where Cholesky is unavailable?)
- ▶ Need to evaluate log-determinants log  $|Q_{x|\theta}|$  and log  $|Q_{x|\theta,y}|$
- Gradient descent methods can make use of the log-determinant derivative tr  $\left( \boldsymbol{Q}^{-1} \frac{\partial \boldsymbol{Q}}{\partial \theta} \right)$

## Modelling and computational challenges

- How to parameterise non-stationarity and anisotropy in an interpretable way
- How to construct sensible/interpretable prior distributions for the parameters (current work: Penalised complexity priors for anisotropy and non-stationarity)
- Scaling things up to large space-time problems with complex observation models; observations involve sums of several processes on different time-scales, systematic biases, and irregular observation patterns

Partial inversion beyond Takahashi recursions

- Monte Carlo estimation; expensive, as may need to use iterative methods to construct each sample
- Iterative combinations of MC and local exact partial inversion; not as nice as we would like.
- Idea: Need to jointly solve for the marginal variances and the local shape of the correlation function. There appears to be a way to formulate this problem as a multidimensional (possibly non-linear) PDE, which might be solvable using a single run of an iterative PDE solver.

### Gorilla nest example mesh; we can use irregular meshes



## That we can doesn't mean we should! Better, regular alternative



#### Variances

Current mesh, dof = 1479 678 -678 -677 -677 -> > 676 -676 -675 -675 -674 -674 -581 582 583 584 581 582 583 585 586 585 586 584 х х

Alternative mesh, dof = 1514

Variance 0.50 0.75 1.00 1.25 1.50

## Nearly regular mesh on the unit sphere





## Whittle-Matérn field on the unit sphere



## Oscillatory field on the unit sphere (modified Whittle SPDE)







# Potato field (has been applied to atrial manifolds)



#### References

- The SPDE approach for Gaussian and non-Gaussian fields: 10 years and still running (Lindgren et al, 2022, Spatial Statistics) https://doi.org/10.1016/j.spasta.2022.100599
- Going off grid: computationally efficient inference for log-Gaussian Cox processes (Simpson et al, 2016, Biometrika) https://doi.org/10.1093/biomet/asv064
- A diffusion-based spatio-temporal extension of Gaussian Matérn fields (Lindgren et al, 2024, SORT) https://doi.org/10.57645/20.8080.02.13
- R-INLA documentation and examples: https://www.r-inla.org/
- fmesher / inlabru Mesh handling and model estimation: https://inlabru-org.github.io/fmesher/ and .../inlabru/
- INLAspacetime non-separable space-time: https://eliaskrainski.github.io/INLAspacetime/