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Traditional spatial covariance models vs RKHS inner products
▶ Gaussian random field: u(s), s ∈ D (subset of Rd or a manifold such

as S2)
▶ Moment characterisation:

▶ Expectation µ(s) = E[u(s)]
▶ Covariance R(s, s′) = Cov[u(s), u(s′)], symmetric positive definite

function.

▶ Precision operator; inverse covariance: Q = R−1

In practice, easier conditions for valid models

▶ Reproducing Kernel Hilbert Space (RKHS) HQ: Inner product

⟨f , g⟩HQ = ⟨f ,Qg⟩D

and squared norm ∥f ∥2 = ⟨f , f ⟩HQ

▶ E(u(·) − µ(·)|{u(sk)}) ∈ HQ but u(·) − µ(·) ̸∈ HQ; the process is less
smooth!



SPDEs and Gaussian random fields

▶ Spatial (and spatio-temporal) stochastic PDEs generate random field
models:

Lu(s) ds = dW(s)
Qu = L∗L

⟨f , g⟩HQ = ⟨Lf ,Lg⟩D

Can work directly with the precision or inner product; no need to know
the covariance.



Non-separable space-time: Matérn driven heat equationThe iterated dampened heat equation is a simple non-separable space-time
SPDE (Lindgren et al, 2024, SORT)[

ϕ
∂

∂t + (κ2 − ∆)αs/2
]αt

u(s, t) dt = dE(κ2−∆)αe (s, t)/τ

For constant parameters, u(s, t) has spatial Matérn covariance (for each t)
on Rd and a generalised Matérn-Whittle covariance on S2.

Smoothness properties (can be derived from the spectra):
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where β∗(νs , d) = νs
νs+d/2 , and βs ∈ [0, 1] is a non-separability parameter.



Smoothness properties
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Bayesian latent Gaussian process models
General latent Gaussian hierarchical model structure

θ ∼ p(θ)
x|θ ∼ N(µx (θ),Qx (θ)−1)

y |x,θ ∼ p(y | x,θ)

Generalised additive models (GAMs) with Gaussian random fields (GRFs):

x = (β,u1, . . . ,uK )
g(E[yi |x,θ]) = η = Xβ +

∑
k

fk(zik ; uk)

and e.g. yi |x,θ ∼ N(η, σ2
y ) or yi |x,θ ∼ Po(exp(ηi))

We want to estimate the parameters of the GRFs, θ, the GRF processes
values fk(·) at observed and unobserved locations, and quantify the
uncertainty in these estimates.



The Matérn-Whittle-Markov GRF/SPDE/GMRF connection
Each fk(·) is a function of space, time, or a covariate, and is approximated
by

fk(zik ; uk) =
∑

j
ψkj(zik)ukj ,

where ψkj(zik) are basis functions, e.g. finite element basis functions.
Matérn fields are solutions to the spatial SPDE

(κ2 − ∇ · ∇)α/2(τu(s)) = κγdW (s)
u(s) ≈

∑
j
ψj(s)uj ,u ∼ N(0,Q−1

u )

where Q is the precision matrix of the GRF/SPDE/GRMF representation.

When α is an integer, FEM yields a sparse matrix Qu, and u(s) is a Markov
random field (Lindgren et al, 2011).

For non-integers, u(s) can be closely approximated by a sum of a few
Markov processes (Bolin and Kirchner, 2020).



Parameter estimation and spatial prediction

p(θ|y) ∝ p(θ)p(y |θ) ≈ p(θ)p(x|θ)p(y |θ, x)
pG(x|θ, y)

∣∣∣∣
x=x∗

where pG(x|θ, y) is the Gaussian approximation to the conditional posterior
density.

The INLA software uses numerical integration over θ together with
variational Bayes corrections pGG() of the Gaussian approximations to
obtain the posterior marginal densities of x:

p(x|y) =
∫

p(x|θ, y)p(θ|y) dθ

≈
∑

j
pGG(x|θ(j), y)p(θ(j)|y)wj



The inner core of the Integrated Nested Laplace method
▶ Latent Gaussian model structure (Bayesian GAMs with Gaussian

process components)

θ ∼ p(θ) (precision parameters) η(s, t) =
n∑

k=1
ψk(s, t)uk (predictor)

u|θ ∼ N[µu,Q−1
u ] (latent field) y |θ,u ∼ p(y |θ, η) (observations)

▶ Conditional log-posterior mode (µu|y ) and Hessian (Qu|y ), for each θ,
by iteration:

g∗
y = − d

du log p(y |θ, η)
∣∣∣∣
u=u∗

H∗
y = − d2

dudu⊤ log p(y |θ, η)
∣∣∣∣∣
u=u∗

Qu|y = Qu + H∗
y

Qu|y (µu|y − µu) = Q∗
u(u∗ − µu) − g∗

y



General observation models

▶ Point-referenced data; additive noise, counts, presence-absence, etc.

▶ Aggregated data; spatial averages/totals, counts, presence-absence,
etc.

▶ Point process data. Poisson process log-likelihood function:

−
∫
λ(s) ds +

∑
i

log[λ(yi)] ≈ −
∑

j
wj exp[η(sj)] +

∑
i
η(yi)

where {(sj ,wj)} is a numerical integration scheme over the sampled
region of space. The likelihood approximation works together the
SPDE/GMRF representations and the INLA method; "Going off grid"
(Simpson et al, 2016, Biometrika)



Non-linear predictors

The original motivation for the inlabru package was ecological transect
distance sampling, requiring a model for imperfect detections:

λapparent(s; u, v) = λ(s; u)h(s; v),

where h(s; v) is the detection probability for a point located at s, and v is a
vector of parameters for the detection function.

The inlabru package solves this by iterating the INLA method on a
linearisation of the non-linear predictor

η(s; u, v) = log[λ(s; u)] + log[h(s; v)].



Dolphin group detection; estimated density field



Dolphin group detection; estimated detection probabilities



Dolphin group detection; estimated total count



Numerical challenges

▶ Qx |θ,y is a large, (usually) sparse matrix

▶ Need to solve linear systems of the form Qx |θ,y x = b

▶ Need to evaluate marginal variances
[
Q−1

x |θ,y

]
ii

(Cholesky plus
Takahashi recursions, but what about large problems where Cholesky is
unavailable?)

▶ Need to evaluate log-determinants log |Qx |θ| and log |Qx |θ,y |

▶ Gradient descent methods can make use of the log-determinant
derivative tr

(
Q−1 ∂Q

∂θ

)



Modelling and computational challenges

▶ How to parameterise non-stationarity and anisotropy in an
interpretable way

▶ How to construct sensible/interpretable prior distributions for the
parameters (current work: Penalised complexity priors for anisotropy
and non-stationarity)

▶ Scaling things up to large space-time problems with complex
observation models; observations involve sums of several processes on
different time-scales, systematic biases, and irregular observation
patterns



Partial inversion beyond Takahashi recursions

▶ Monte Carlo estimation; expensive, as may need to use iterative
methods to construct each sample

▶ Iterative combinations of MC and local exact partial inversion; not as
nice as we would like.

▶ Idea: Need to jointly solve for the marginal variances and the local
shape of the correlation function. There appears to be a way to
formulate this problem as a multidimensional (possibly non-linear)
PDE, which might be solvable using a single run of an iterative PDE
solver.



Gorilla nest example mesh; we can use irregular meshes
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That we can doesn’t mean we should! Better, regular alternative
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Variances
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Nearly regular mesh on the unit sphere



Whittle-Matérn field on the unit sphere



Oscillatory field on the unit sphere (modified Whittle SPDE)



‘Potato’



Potato field (has been applied to atrial manifolds)
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