

Royal Netherlands Meteorological Institute Ministry of Infrastructure and the

Building blocks for a statistically advanced daily temperature reconstruction system

Finn Lindgren (finn.lindgren@ed.ac.uk)

with Colin Morice, John Kennedy, Christopher Merchant, and the EUSTACE team

THE UNIVERSITY of EDINBURGH

IMSC2019, Toulouse, 2019-06-25

EUSTACE

EU Surface Temperatures for All Corners of Earth

EUSTACE goal:

Daily estimates of surface air temperature since 1850 across the globe by combining surface and satellite data using novel statistical techniques.

Statistical model and method building blocks

Basic system components

- ► Multiple *observation sources*, with complex error *uncertainty structure*
- ► Temperature processes on different spatial and temporal scales
 - Seasonal
 - Slow climate processes
 - Medium-scale variability
 - Daily
- Vast model size ($\sim 10^{11}$ unknowns); need computationally efficient tools
- Hierarchical statistical model structure based on Gaussian processes
 - Stochastic PDEs translates to sparse precisions in Gaussian Markov random fields
- Propagated uncertainty via a Bayesian approach
 - Dependence structure parameters
 - Spatio-temporal process priors
 - Observation models
- Goals:
 - a best estimate.
 - a collection of samples, and
 - more precise (and accurate) uncertainty estimates.

Matérn driven heat equation on the sphere

The iterated heat equation is a simple non-separable space-time SPDE family:

$$(\kappa^2 - \Delta)^{\gamma/2} \left[\phi \frac{\partial}{\partial t} + (\kappa^2 - \Delta)^{\alpha/2} \right]^{\beta} x(\mathbf{s}, t) = \mathcal{W}(\mathbf{s}, t) / \tau$$

For constant parameters, x(s, t) has spatial Matérn covariance (for each t).

Discrete domain Gaussian Markov random fields (GMRFs)

 $x = (x_1, \dots, x_n) \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{Q}^{-1})$ is Markov with respect to a neighbourhood structure $\{\mathcal{N}_i, i = 1, \dots, n\}$ if $Q_{ij} = 0$ whenever $j \neq \mathcal{N}_i \cup i$.

► Project the SPDE solution space onto local basis functions: random Markov dependent basis weights (Lindgren et al, 2011).

A finite element approximation has structure

$$x(\boldsymbol{s},t) = \sum_{i,j} \psi_i^{[s]}(\boldsymbol{s}) \psi_j^{[t]}(t) x_{ij}, \quad \boldsymbol{x} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{Q}^{-1}), \quad \boldsymbol{Q} = \sum_{k=0}^{\alpha + \beta + \gamma} \boldsymbol{M}_k^{[t]} \otimes \boldsymbol{M}_k^{[\mathbf{s}]}$$

even, e.g., if the spatial scale parameter κ is spatially varying.

Partial hierarchical representation

Observations of mean, max, min. Model mean and range.

Conditional specifications, e.g.

$$(T_m^0 | T_m^1, \boldsymbol{Q}_m^0) \sim \mathcal{N} \left(T_m^1, \boldsymbol{Q}_m^{0^{-1}} \right)$$

$$T_r^0 = \exp(T_r^1) \ G^{-1} \big[U_r^0(\mathbf{s}, t) \big] , \quad U_r^0 \sim \mathcal{N} \left(\mathbf{0}, \boldsymbol{Q}_r^{0^{-1}} \right)$$

Standardised observation uncertainty models

- Each data source may have complicated dependence structure
- To facilitate information blending, use a common error term structure

Common satellite derived data error model framework

The observational&calibration errors are modelled as three error components:

- ightharpoonup independent (ϵ_0),
- **>** spatially and/or temporally correlated (ϵ_1) , and
- systematic (ϵ_2) ,

with distributions determined by the uncertainty information from satellite calibration models.

E.g.,
$$y_i = T_m(\mathbf{s}_i, t_i) + \epsilon_0(\mathbf{s}_i, t_i) + \epsilon_1(\mathbf{s}_i, t_i) + \epsilon_2(\mathbf{s}_i, t_i)$$

In practice, each data source might have several different components of each type; independent components can be merged, but not necessarily correlated or systematic components.

Station observation&homogenisation model

Daily means

For station k at day t_i ,

$$y_m^{k,i} = T_m(\mathbf{s}_k, t_i) + \sum_{i=1}^{J_k} H_j^k(t_i) e_m^{k,j} + \epsilon_m^{k,i},$$

where $H^k_j(t)$ are temporal step functions, $e^{k,j}_m$ are latent bias variables, and $\epsilon^{k,i}_m$ are independent measurement and discretisation errors.

Daily mean/max/min

For station k at day t_i ,

$$\begin{aligned} y_m^{k,i} &= T_m(\mathbf{s}_k, t_i) + \widetilde{H}_m^k(t_i) + \epsilon_m^{k,i}, \\ y_x^{k,i} &= T_m(\mathbf{s}_k, t_i) + \frac{\exp[\widetilde{H}_r^k(t_i)]}{2} T_r(\mathbf{s}_k, t_i) + \epsilon_x^{k,i}, \\ y_n^{k,i} &= T_m(\mathbf{s}_k, t_i) - \frac{\exp[\widetilde{H}_r^k(t_i)]}{2} T_r(\mathbf{s}_k, t_i) + \epsilon_n^{k,i}, \end{aligned}$$

Observed data

Observed daily $T_{
m mean}$ and $T_{
m range}$ for station FRW00034051

Multiscale model component samples

Combined model samples for T_m and T_r

(Proof of concept; no actual data was involved in this figure)

Modelling non-Gaussian quantities

Power tail quantile (POQ) model

The quantile function $F_{\theta}^{-1}(p)$, $p \in [0,1]$, is defined through a quantile blend of left-and right-tailed generalised Pareto distributions:

$$f_{\theta}^{-}(p) = \begin{cases} \frac{1 - (2p)^{-\theta}}{2\theta}, & \theta \neq 0, \\ \frac{1}{2}\log(2p), & \theta = 0, \end{cases}$$

$$f_{\theta}^{+}(p) = -f_{\theta}^{-}(1-p) = \begin{cases} \frac{(2(1-p))^{-\theta} - 1}{2\theta}, & \theta \neq 0, \\ -\frac{1}{2}\log(2(1-p)), & \theta = 0. \end{cases}$$

$$F_{\theta}^{-1}(p) = \theta_{0} + \frac{\tau}{2} \left[(1-\gamma)f_{\theta_{3}}^{-}(p) + (1+\gamma)f_{\theta_{4}}^{+}(p) \right].$$

The parameters $\theta=(\theta_0,\theta_1=\log \tau,\theta_2=\mathrm{logit}[(\gamma+1)/2],\theta_3,\theta_4)$ control the median, spread/scale, skewness, and the left and right tail shape.

This model is also known as the five parameter lambda model (Gilchrist, 2000).

Copula transformation: $G^{-1}[u(\mathbf{s},t)] = F_{\theta(\mathbf{s},t)}^{-1} \{\Phi[u(\mathbf{s},t)]\}$

Diurnal range distributions

For these stations, POQ does a slightly better job than a Gamma distribution.

Diurnal range distributions

For these stations only POQ comes close to representing the distributions. Note: Some of the mixture-like distribution shapes may be an effect of unmodeled station inhomogeneities.

Estimates of median & scale for T_m and T_r

February climatology

(Preliminary estimates, using only in-situ land station data)

Linearised inference

All Spatio-temporal latent random processes combined into $x=(u,\beta,b)$, with joint expectation μ_x and precision Q_x :

$$egin{aligned} (m{x} \mid m{ heta}) &\sim \mathcal{N}(m{\mu}_x, m{Q}_x^{-1}) & ext{(Prior)} \ (m{y} \mid m{x}, m{ heta}) &\sim \mathcal{N}(h(m{A}m{x}), m{Q}_{y \mid x}^{-1}) & ext{(Observations)} \ p(m{x} \mid m{y}, m{ heta}) &\propto p(m{x} \mid m{ heta}) p(m{y} \mid m{x}, m{ heta}) & ext{(Conditional posterior)} \end{aligned}$$

Non-linear and/or non-Gaussian observations

For a non-linear $h(\boldsymbol{A}\boldsymbol{x})$ with Jacobian \boldsymbol{J} at $\boldsymbol{x}=\widetilde{\boldsymbol{\mu}}$, iterate:

$$egin{aligned} (m{x} \mid m{y}, m{ heta}) & ext{approx} & \mathcal{N}(\widetilde{m{\mu}}, \widetilde{m{Q}}^{-1}) \end{aligned} \qquad ext{(Approximate conditional posterior)} \ \widetilde{m{Q}} &= m{Q}_x + m{J}^{ op} m{Q}_{y \mid x} m{J} \ \widetilde{m{\mu}}' &= \widetilde{m{\mu}} + a \widetilde{m{Q}}^{-1} \left\{ m{J}^{ op} m{Q}_{y \mid x} \left[m{y} - h(m{A}\widetilde{m{\mu}})
ight] - m{Q}_x (\widetilde{m{\mu}} - m{\mu}_x)
ight\} \end{aligned}$$

for some a > 0 chosen by line-search.

Iterative solutions for $\sim 10^{11}$ latent variables

Nonlinear Newton iteration with robust line-search

- Preconditioned conjugate gradient (PCG) iteration for $Q(\mu \widehat{\mu}) = r = b Q\widehat{\mu}$
- lacktriangle Local and multiscale approximations for preconditioning: $oldsymbol{M}^{-1}oldsymbol{Q}pproxoldsymbol{I}$
- Sampling with PCG: $Q(x-\widehat{\mu})=Lw$ Requires only a rectangular pseudo-Cholesky factorisation $LL^{\top}=Q$. Possible due to the kronecker product sum precision structure.

Summary

Not covered in this talk:

- Pure conditional block updates risk getting stuck;
 need for convergence acceleration
- Overlapping space-time blocks for preconditioning
- Non-stationary random field parameter estimation
- Direct&iterative variance calculations to eliminate or reduce
 Monte Carlo error in the reconstruction uncertainties
- Fast approximate handling of correlated error components

Summary:

- Challenging statistical problem, in both size and complexity
- Approximate calculation techniques allows some of the complexity to be handled with reasonable computational resources
- Close collaboration between climate scientistis, statisticians, and software engineers is essential

Overlapping blocks and multigrid

Overlapping block preconditioning

Let D_k^{\top} be a restriction matrix to subdomain Ω_k , and let W_k be a diagonal weight matrix. Then an additive Schwartz preconditioner is

$$oldsymbol{M}^{-1}oldsymbol{x} = \sum_{k=1}^K oldsymbol{W}_k oldsymbol{D}_k (oldsymbol{D}_k^ op oldsymbol{Q} oldsymbol{D}_k)^{-1} oldsymbol{D}_k^ op oldsymbol{W}_k oldsymbol{x}$$

Multigrid and/or approximate multiscale Schur complements

Complications: Schur complements vs conditional block updating

Variance calculations

Sparse partial inverse: Takahashi recursions postprocesses Cholesky

Takahashi recursions compute S such that $S_{ij} = (Q^{-1})_{ij}$ for all $Q_{ij} \neq 0$. Postprocessing of the (sparse) Cholesky factor.

Basic Rao-Blackwellisation of sample estimators

Let $x^{(j)}$ be samples from a Gaussian posterior and let $a^{\top}x$ be a linear combination of interest. Then, for any subdomain $\Omega_k \subset \Omega$,

$$\begin{split} \mathsf{E}(\boldsymbol{a}^{\top}\boldsymbol{x}) &= \mathsf{E}\left[\mathsf{E}(\boldsymbol{a}^{\top}\boldsymbol{x}\mid\boldsymbol{x}_{\Omega_{k}^{*}})\right] \approx \frac{1}{J}\sum_{j=1}^{J}\mathsf{E}(\boldsymbol{a}^{\top}\boldsymbol{x}\mid\boldsymbol{x}_{\Omega_{k}^{*}}^{(j)}) \\ \mathsf{Var}(\boldsymbol{a}^{\top}\boldsymbol{x}) &= \mathsf{E}\left[\mathsf{Var}(\boldsymbol{a}^{\top}\boldsymbol{x}\mid\boldsymbol{x}_{\Omega_{k}^{*}})\right] + \mathsf{Var}\left[\mathsf{E}(\boldsymbol{a}^{\top}\boldsymbol{x}\mid\boldsymbol{x}_{\Omega_{k}^{*}}^{*})\right] \\ &\approx \mathsf{Var}(\boldsymbol{a}^{\top}\boldsymbol{x}\mid\boldsymbol{x}_{\Omega_{k}^{*}}^{j}) + \frac{1}{J}\sum_{j=1}^{J}\left[\mathsf{E}(\boldsymbol{a}^{\top}\boldsymbol{x}\mid\boldsymbol{x}_{\Omega_{k}^{*}}^{(j)}) - \mathsf{E}(\boldsymbol{a}^{\top}\boldsymbol{x})\right]^{2} \end{split}$$

Efficient if aa^{\top} sparsity matches S for each subdomain.

Converting Gaussian to POQ

A POQ copula model

A spatio-temporally dependent Gaussian field $u(\mathbf{s},t)$ with expectation 0 and variance 1 can be transformed into a POQ field by

$$\widetilde{u}(\mathbf{s},t) = G^{-1}[u(\mathbf{s},t)] = F_{\boldsymbol{\theta}(\mathbf{s},t)}^{-1}[\Phi(u(\mathbf{s},t)],$$

where the parameters can vary with space and time.

Due to the large size of the problem, we estimate parameters in a two-step procedure:

- Estimate seasonal POQ and temporal covariance parameters for separate time series
- With a basic spatial-seasonal random field prior, find the posterior mean parameter field

