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EUSTACE

EU Surface Temperatures for All Corners of Earth

EUSTACE goal:

Daily estimates of surface air temperature since 1850 across the globe by
combining surface and satellite data using novel statistical techniques.
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Statistical model and method building blocks

Basic system components

P Multiple observation sources, with complex error uncertainty structure

» Temperature processes on different spatial and temporal scales
> Seasonal
> Slow climate processes
> Medium-scale variability
> Daily
> Vast model size (~ 10" unknowns); need computationally efficient tools
> Hierarchical statistical model structure based on Gaussian processes
> Stochastic PDEs translates to sparse precisions in Gaussian Markov random fields
»  Propagated uncertainty via a Bayesian approach

> Dependence structure parameters
> Spatio-temporal process priors
> Observation models

» Goals:

> a best estimate,
> a collection of samples, and
> more precise (and accurate) uncertainty estimates. f—
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Matérn driven heat equation on the sphere

The iterated heat equation is a simple non-separable space-time SPDE family:

B
(k2 — A)/2 (1)% + (K2 = A2 a(s,t) = W(s,t)/T

For constant parameters, I(s, t) has spatial Matérn covariance (for each ?).

Discrete domain Gaussian Markov random fields (GMRFs)

x=(21,...,2,) ~ N(u, Qfl) is Markov with respect to a neighbourhood
structure {\;,i =1,...,n}ifQ;; = 0 whenever j # N; U1.
» Project the SPDE solution space onto local basis functions:
random Markov dependent basis weights (Lindgren et al, 2011).

A finite element approximation has structure
a+B+y

-1 t
ZW Wiy, 2~N0,Q7Y), Q=Y MIeom
k=0
L, €ven, eg., if the spatial scale parameter ~ is spatially varying.
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Partial hierarchical representation

Observations of mean, max, min. Model mean and range.

o

Data sources

Conditional specifications, e.g.
(T, Q) ~ N (Th, @5 )
19 = exp(L}) G0 1] VP~ N (0.Q77")
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Standardised observation uncertainty models

» Each data source may have complicated dependence structure

» To facilitate information blending, use a common error term structure

Common satellite derived data error model framework

The observational&calibration errors are modelled as three error components:

> independent (o),
> spatially and/or temporally correlated (€1), and
> systematic (€2),

with distributions determined by the uncertainty information from satellite calibration
models.
E.g. ¥i = Tin(si, i) + €o(ss, i) + €1(sq, i) + €2(si, ti)

In practice, each data source might have several different components of each type;
independent components can be merged, but not necessarily correlated or systematic
components.
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Station observation&homogenisation model

Daily means

For station k at day %;,
yf,f =Tom(sk, t;) + Z Hf(ti)ef;;j + ef,f,

where Hf (t) are temporal step functions, ef,f are latent bias variables, and 6 ! are

independent measurement and discretisation errors.

Daily mean/max/min

| A\

For station k at day %,

yfnl = Tm(skati) + ﬁrlfz(tl) + Ef}lia

exp[HE (t;)]

y};}i = Tm(skati) + TT(Skati) + 5§vi’

2
Tk
exp[H, (t:)] i
_T (Slm ) - %TT(Sk7ti)+6fLﬂ7
“where ];T  are the total bias correction variables for each observation. 7'_
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Observed data

Observed daily 7 mean and Tiange for station FRW00034051
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Multiscale model component samples

Time
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Combined model samples for 7}, and 7.

(Proof of concept; no actual data was involved in this figure)

o _|
N
c |
o
o
o
Q
! T T T T T
0 5 10 15 20
Time
wn _]
-
o |
': -
o
° T T T T
0 5 10 15 20

Time 7‘_

EUSTACE




Modelling non-Gaussian quantities

Power tail quantile (POQ) model

The quantile function Fgl (p) pE [O, 1], is defined through a quantile blend of left-
and right-tailed generalised Pareto distributions:

L6/ B A
f9<p>={1 2w 070,
5 log(2p), 6 =0,

@@-p)=?-1 6+£0
F) — (1 — ) — 20 2 '
fi ) =—=f7(1-p) {;bg(z(lp)), 6=0.

Fg'(p) =60+ = [(1 =) f5 () + 1+ fi (0)] -

[V

The parameters @ = (0y, 01 = log 7, 05 = logit[(vy + 1) /2], 03, 64) control the
median, spread/scale, skewness, and the left and right tail shape.
This model is also known as the five parameter lambda model (Gilchrist, 2000).

Copula transformation: G~ [u(s, )] = Fe_(;t){q)[u(s, t)]}
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Diurnal range distributions
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For these stations, POQ does a slightly better job than a Gamma distribution.
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Diurnal range distributions
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For these stations only POQ comes close to representing the distributions.
Note: Some of the mixture-like distribution shapes may be an effect of unmodeled

station inhomogeneities.
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Estimates of median & scale for [}, and 7',

Feb

February climatology

(Preliminary estimates, using only in-situ land station data)



Linearised inference

All Spatio-temporal latent random processes combined into * = (u7 3, b), with joint
expectation ft, and precision Q_:

(x| 0) ~N(u,,Q,")  (Prior)
(y|z,0) ~N h( )
p(x|y,0) xplx|0)p(y|x,0) (Conditional posterior)

Non-linear and/or non-Gaussian observations

For a non-linear h( Ax) with Jacobian J at = p, iterate:

u\x) (Observations)

(x| y,0) " N, Qil) (Approximate conditional posterior)
~1 ~ = =il ~ ~
B =i+aQ {I7Q,.ly—hAR)] - Q.- p,)}

for some a > 0 chosen by line-search.
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lterative solutions for ~ 10! latent variables

P Nonlinear Newton iteration with robust line-search

Basic Newton, eta Robust Newton, eta Partially Robust Newton, eti

eta2

n o

8 8

..N"\‘\

eta2

n ©

T <
eta2

8 8

etal etal etal

type ~o- Linear —- Quadratic - True

» Preconditioned conjugate gradient (PCG) iteration for
Qu—p)=r=>b-Qu

» Local and multiscale approximations for preconditioning: MﬁlQ ~1T

» Sampling with PCG: Q(x — 1) = Lw
Requires only a rectangular pseudo-Cholesky factorisation LLT = Q.
Possible due to the kronecker product sum precision structure. f_
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Summary

Not covered in this talk:

» Pure conditional block updates risk getting stuck;
need for convergence acceleration

P Overlapping space-time blocks for preconditioning

v

Non-stationary random field parameter estimation

> Direct&iterative variance calculations to eliminate or reduce
Monte Carlo error in the reconstruction uncertainties

> Fast approximate handling of correlated error components
Summary:
P Challenging statistical problem, in both size and complexity

P Approximate calculation techniques allows some of the complexity
to be handled with reasonable computational resources

» Close collaboration between climate scientistis, statisticians,
and software engineers is essential

o~
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Overlapping blocks and multigrid

Overlapping block preconditioning

Let DZ be a restriction matrix to subdomain €2, and let W, be a diagonal weight
matrix. Then an additive Schwartz preconditioner is

K
M~z =3 W.Dy(D[QD;) ' D[ W
k=1

Multigrid and/or approximate multiscale Schur complements
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- Complications: Schur complements vs conditional block updating ¥

EUSTACE



Variance calculations

Sparse partial inverse: Takahashi recursions postprocesses Cholesky

Takahashi recursions compute S such that S;; = (Qfl)ij forall Q;; # 0.
Postprocessing of the (sparse) Cholesky factor.

Basic Rao-Blackwellisation of sample estimators

Let ) be samples from a Gaussian posterior and let a ' x be a linear combination
of interest. Then, for any subdomain {2, C 2,

J
1 .
E(a"z) =E[E(a’z | ro: )| ~ = E E(a'x | a:gz))
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Converting Gaussian to POQ

A POQ copula model

A spatio-temporally dependent Gaussian field u(s, t) with expectation 0 and variance
1 can be transformed into a POQ field by

u(s,t) = G tu(s, t)] = F97(i,t) [@(u(s, )],

where the parameters can vary with space and time.

Due to the large size of the problem, we estimate parameters in a two-step procedure:

1. Estimate seasonal POQ and temporal covariance parameters for separate time
series

2. With a basic spatial-seasonal random field prior, find the posterior mean
parameter field
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