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EUSTACE ANALYSIS

Combines in-situ and satellite data sources to derive daily air

temperatures across the globe with quantified uncertainties. Analysis Best Estimate 01/01/1990

« Daily mean air temperature (2 m) estimates from the mid-
late 19th century at % degree resolution.

« Observational dataset for use in climate monitoring, services
and research.

— Quantify bias and uncertainty arising from observational sampling
(in space and time);

— Quantify uncertainty from instrumental effects/network changes.

« Higher resolution daily gridded analyses for regional climate

— Combine in situ and remote sensing data to support high
resolution analysis.
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— Absolute temperature rather than anomaly product. Temperature {K)
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Assimilated Observations 01/01/1880 Assimilated Observations 01/01/1955

OBSERVATIONS

In situ air temperature:

« EUSTACE station dataset (UBERN) (GHCN-D,
ECA&D, ISTI, DECADE, ERA-CLIM)

« HadNMAT-2 ship air temperatures (NOCS/Met
Office)

Satellite skin temperature derived air temperature:

« Marine: ATSR (ESA CCI SST)

« Land: MODIS (USGS/NASA via ESA
GlobTemperature)

o Ice: AVHRR (NOAA/FP7 NACLIM)

Assimilated Observations 01/01/1855
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Statistical model and method building blocks

Basic system components

» Temperature processes on different spatial and temporal scales
> Seasonal
P Slow climate processes
> Medium-scale variability
> Daily
> Vast model size (~ 10! unknowns); need computationally efficient tools
P Hierarchical statistical model structure based on Gaussian processes
> Stochastic PDEs translates to sparse precisions in Gaussian Markov random fields (GMRFs)

»  Propagated uncertainty via a Bayesian approach

> Dependence structure parameters
> Spatio-temporal process priors
> Observation models; Multiple observation sources, with complex error uncertainty structure

> Goals:

> A best estimate, a collection of samples, and more precise (and accurate) uncertainty estimates.
> Practical, pragmatic imlementation, starting with the most essential components. *
> Bayesian spatial analysis with GRMF of size 10* takes 90 sec. What scales to 10**?

EUSTACE




Example model: Matérn driven heat equation on the sphere

The iterated heat equation is a simple non-separable space-time SPDE family:

(627

¢% + (2= A)*/2| x(s,t)dt = d&(2_pyee (s,t)/T

For constant parameters, I(s, t) has spatial Matérn covariance (for each t) in a Matérn-Whittle sense on S2.

Discrete domain Gaussian Markov random fields (GMRFs)

x = (21,...,2,) ~N(p, Q") is Markov with respect to a neighbourhood structure {N;,i = 1,...,n}
if Qi; = 0 whenever j # N; U1i.
» Project the SPDE solution space onto local basis functions:
random Markov dependent basis weights (Lindgren et al, 2011).

A finite element approximation has structure
artastae

Zl/) ;L”, $NN(O,Q71), Q: Z ME‘]@MES]

k=0 *
_even, e. g., if the spatlal scale parameter k is spatially varying.
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Partial hierarchical representation

Observations of mean, max, min. Model mean and range.

2 1 0
Q m Q m Q m

Data sources )

Conditional specifications, e.g.
-1
(T84, Q5) ~ N (T4, @5 )

TP = exp(T}) G7YU (s, b)], U2~ N (0, fol) EUSTACE




Standardised observation uncertainty models

» Each data source may have complicated dependence structure

» To facilitate information blending, use a common error term structure

Common satellite derived data error model framework

The observational&calibration errors are modelled as three error components:
» independent (¢(),
> gpatially and/or temporally correlated (¢1), and
> systematic (€o),

with distributions determined by the uncertainty information from satellite calibration models.
Eg. Yi = Tin(si, ti) + eo(si, i) + e1(si, ti) + ea(si, ti)

In practice, each data source might have several different components of each type; independent components
can be merged, but not necessarily correlated or systematic components.

*
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Before satellites you had to go measure in person

"The Discovery", Dundee, Scotland (Photos: Finn Lindgren, August 2022)

-
EUSTAC E&



Hydrology lab from the 1925-27 Antarctic ocean expedition

"The Discovery", Dundee, Scotland (Photos: Finn Lindgren, August 2022) *
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What’s that in the corner?

"The Discovery", Dundee, Scotland (Photos: Finn Lindgren, August 2022) *
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It's a Nansen-Pettersson water sampling bottle!

The Nansen-Pettersson
sampling bottle

Temperature and water samples
down to 100m were taken with the
Nansen-Pettersson water sampling
bottle. The bottle is sent down on a
wire to the desired depth. Then the
‘Messenger’ weight is sent down to
close the bottle to collect the
sample. The insulation helps to
keep the temperature constant to
allow the scientists to gather the
data about the temperature using
the thermometer. Water is released
from the tap at the bottom for
testing.

"The Discovery", Dundee, Scotland (Photos: Finn Lindgren, August 2022) *
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Station observation & homogenisation model

Daily mean air temperature measurements

For station k at day t;, 4 Tk . .
uh' = T(sk,ti) + Y HY (t)ery? + ey

where H jk (t) are temporal step functions, efﬁj are latent bias variables, and efn‘ are independent
measurement and discretisation errors.

Daily mean/max/min

For station k atday ti,y%" — T, (s, t;) + H* (t;) + €,

. . HE (1)
y.];’l = Tm(skv ti) + Hfl?,m(ti) + SR

yn" = TSk, 1) + HY o (85) = =5

Tr(sk> tz) + 6ﬁ7i7
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Observed data

Observed daily 7 ean and 71ange for station FRW00034051

FRWOoOO34051
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Multiscale model component samples

Time
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Combined model samples for 7}, and 7.

(Proof of concept; no actual data was involved in this figure)
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Estimates of median & scale for 1}, and 7',

Feb Feb

February climatology 7.

(Preliminary estimates, using only in-situ land station data) EUSTACEM




Linearised inference

All Spatio-temporal latent random processes combined into * = (u7 3, b), with joint expectation /¢, and
precision Q) :
(] 0) ~N(p,,Q,")  (Prior)
(y | z,0) ~N(h(x),Q,')  (Observations)

ylx

p(x|y,0) xplx|0)p(y|x,0) (Conditional posterior)

Non-linear and/or non-Gaussian observations

For a non-linear /() with Jacobian J at x = p, iterate:

(x| y,0) " N, @71) (Approximate conditional posterior)
é =Q,+ JTQme (Generally: Q,, — va;r log p(y|x, 0))
~/ ~ = =il ~ ~
no=p G‘Q {JTQy\J: [y - h(nu’)] - Q:x:("" - nu’a")}

w\w =

.. for some a > 0 chosen by line-search. ’ﬁ
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Full non-linear solution for ~ 10!! latent variables

> Nonlinear Newton iteration with robust line-search
> Preconditioned conjugate gradient (PCG) iteration for
Qu—p)=r=>b—-Qu
> Local and multiscale/grid approximations for preconditioning: M ~'Q ~ I
> Sampling with PCG: Q(x — 1) = Lw
Requires only a rectangular pseudo-Cholesky factorisation LL ' = Q = Q.+ JTQWJJ.

Possible due to the kronecker product sum precision structure: L = |, .| LE;} ® Lg], R JTLE

Overlapping block preconditioning

Let D; be a restriction matrix to subdomain 1., and let W, be a diagonal weight matrix. Then an additive
Schwartz preconditioner is K
M~ 'z = WDy(D;QDy) 'D{Wx
k=1

*
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EUSTACE pragmatic implementation

» Daily mean temperature only

» ~ 60, 000 conditionally independent days (on the fine temporal scale):
embarrassingly parallel daily direct solves

> Multiscale component grouped into three superblocks

» Reduced spatial resolution




MULTI-SCALE ANALYSIS

Seasonal Bimonthly x 1° SPDE 245,772
M O D E L Slow-scale™ 5 year x 5° SPDE 107,604
Latitude 0.5° latitude SPDE 721
Statistical model foir temperature variations and different Altitude (0.25° grid) 1
scales (space and time): Constal e .

: local seasonal cycle with effects _
of latitude, altitude and coastal influence. Grand mean Analysis mean 1
: Slowly varying climatological mean
temperature field. Station homogenisation.
+ Daily Local: daily variability associated with weather. el 3 monthly x 5° SPDE 1,752,408
Satellite retrieval biases.

Station bias NA 82,072
Simultaneously estimates observational biases of known Resolution N Variables
bias structures: day
« e.g. satellite biases, station homogenisation. Daily local ~0.5 degree SPDE 162,842

Satellite bias Global 1

(marine)

Processed on STFC’s LOTUS cluster www.jasmin.ac.uk:
« Largest solves processed on 20 core/256GB RAM node. patellitelbiasil §Globall2 lerlee 1irdmoe

A X A (land) SPDE
« Highly parallel observation pre-processing.
Satellite bias Hemispheric + 2.5 2+ 40,962
(ice) degree SPDE*

Met Office EUSTACE



ITERATIVE SOLUTION

(1) Climatology:

Global mean T /
Seasonal cycle
Latitude

Altitude

Water fraction <

(2) Large-scale:
Multi-annual SPDE
Multi-month SPDE
Station biases

Tidi’@@ Ks, ,tD)

T@limts’ ,tlj )

Model Factorisation

The model is factorised into . = 1, ..., 3 components that are estimated interatively,

substituting ¥,,, for y:

:’)m =Y—- Z Jn)u'wn\f/n

n#Em
Met Office

Condition on expected
value of other components

[«

[«

: (3) Daily local:

Daily fields

1 Satellite land bias
1 Satellite marine bias
1 Satellite ice bias

TIOC@JI(@ , ,tD)

A
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Central England Temperature Decomposition

Surface Air Temperature - 52.125N, 1.375W

MULTI-SCALE ANALYSIS e
MODEL .
Statistical model for temperature variations and 20 ~ ~ T crmnton
different scales (space and time): - /N /0 /
: local seasonal cycle with e \ /
effects of latitude, altitude and coastal influence. =/ \/ N/
: Slowly varying § .
climatological mean temperature field. .
* Daily Local: daily variability associated with * o
weather.
Simultaneously estimates observational biases of E e
known bias structures: .o
* e.g. satellite biases, station homogenisation. N

2003 2004 l:
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SATELLITE BIAS MODELS

* Simplified model of known error structures
in satellite air temperature retrievals:
— Global/hemispheric systematic bias covariates.

— Daily estimates of spatially varying bias as a
spatial random field.

Estimated jointly with daily temperature
variability.

Met Office
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ENSEMBLE ANALYSIS

* Samples drawn from joint posterior distribution of
temperature and bias variables.

* Temperature model samples projected onto analysis
grid.

* Spatial/temporal correlation in analysis errors is encoded
into the ensemble.

* Summary statistics can be derived from the ensemble.
Expected value, total uncertainty and observation
constraint information also available.

Met Office

EUSTACE Ensemble 04/08/2003-13/08/2003
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ENSEMBLE ANALYSIS

* Samples drawn from joint posterior distribution of
temperature and bias variables.

* Temperature model samples projected onto analysis
grid.

* Spatial/temporal correlation in analysis errors is encoded
into the ensemble.

* Summary statistics can be derived from the ensemble.
Expected value, total uncertainty and observation
constraint information also available.

Met Office

EUSTACE Ensemble 01/01/2006-14/01/2006
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Hierarchichal model challenges: Ideas to take home

» Real-life data behaviour introduces complex long-term dependence

v

Methods for individual Gaussian fields are insufficient

v

Efficient representations (Markov/SPDE/NNGP/Vecchia/Low rank/Blockwise/Incomplete Cholesky/etc)
need to be coupled with proper iterative solvers

Preconditioning needs to handle highly heterogeneous data
We can handle up to <5 109 latent variables exactly; use as preconditioner building blocks
Multigrid/level methods appear highly promising for hierarchical space-time structures

Need for flexible geography-induced non-stationarity modelling (not just estimation)

vvyYyyvyy

Does increasing non-stationary reduce the need for global log-determinants?
Should exploit local and multi-level hierarchy structure.

7‘.
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> Links to EUSTACE project reports and data:
https://www.eustaceproject.org/

> Video illustrating the results, produced by Philip Brohan:

https://twitter.com/philipbrohan/status/1253411283598073867

https://player.vimeo.com/video/403663259
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