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Combines in-situ and satellite data sources to derive daily air 
temperatures across the globe with quantified uncertainties.

• Daily mean air temperature (2 m) estimates from the mid-
late 19th century at ¼ degree resolution.

• Observational dataset for use in climate monitoring, services 
and research.

– Quantify bias and uncertainty arising from observational sampling 
(in space and time);

– Quantify uncertainty from instrumental effects/network changes.

• Higher resolution daily gridded analyses for regional climate:

– Combine in situ and remote sensing data to support high 
resolution analysis.

– Absolute temperature rather than anomaly product.

EUSTACE ANALYSIS



OBSERVATIONS

In situ air temperature:

• EUSTACE station dataset (UBERN) (GHCN-D, 
ECA&D, ISTI, DECADE, ERA-CLIM)

• HadNMAT-2 ship air temperatures (NOCS/Met 
Office)

Satellite skin temperature derived air temperature:

• Marine: ATSR (ESA CCI SST)

• Land: MODIS (USGS/NASA via ESA 
GlobTemperature)

• Ice:  AVHRR (NOAA/FP7 NACLIM)



Statistical model and method building blocks
Basic system components
▶ Temperature processes on different spatial and temporal scales

▶ Seasonal
▶ Slow climate processes
▶ Medium-scale variability
▶ Daily

▶ Vast model size (∼ 1011 unknowns); need computationally efficient tools

▶ Hierarchical statistical model structure based on Gaussian processes
▶ Stochastic PDEs translates to sparse precisions in Gaussian Markov random fields (GMRFs)

▶ Propagated uncertainty via a Bayesian approach
▶ Dependence structure parameters
▶ Spatio-temporal process priors
▶ Observation models; Multiple observation sources, with complex error uncertainty structure

▶ Goals:
▶ A best estimate, a collection of samples, and more precise (and accurate) uncertainty estimates.
▶ Practical, pragmatic imlementation, starting with the most essential components.
▶ Bayesian spatial analysis with GRMF of size 104 takes 90 sec. What scales to 1011?



Example model: Matérn driven heat equation on the sphere
The iterated heat equation is a simple non-separable space-time SPDE family:[

ϕ
∂

∂t
+ (κ2 −∆)αs/2

]αt

x(s, t) dt = dE(κ2−∆)αe (s, t)/τ

For constant parameters, x(s, t) has spatial Matérn covariance (for each t) in a Matérn-Whittle sense on S2.

Discrete domain Gaussian Markov random fields (GMRFs)

x = (x1, . . . , xn) ∼ N (µ,Q−1) is Markov with respect to a neighbourhood structure {Ni, i = 1, . . . , n}
if Qij = 0 whenever j ̸= Ni ∪ i.
▶ Project the SPDE solution space onto local basis functions:

random Markov dependent basis weights (Lindgren et al, 2011).

A finite element approximation has structure
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∑
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even, e.g., if the spatial scale parameter κ is spatially varying.



Partial hierarchical representation
Observations of mean, max, min. Model mean and range.
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Standardised observation uncertainty models
▶ Each data source may have complicated dependence structure

▶ To facilitate information blending, use a common error term structure

Common satellite derived data error model framework
The observational&calibration errors are modelled as three error components:

▶ independent (ϵ0),

▶ spatially and/or temporally correlated (ϵ1), and

▶ systematic (ϵ2),

with distributions determined by the uncertainty information from satellite calibration models.
E.g., yi = Tm(si, ti) + ϵ0(si, ti) + ϵ1(si, ti) + ϵ2(si, ti)

In practice, each data source might have several different components of each type; independent components
can be merged, but not necessarily correlated or systematic components.



Before satellites you had to go measure in person

"The Discovery", Dundee, Scotland (Photos: Finn Lindgren, August 2022)



Hydrology lab from the 1925-27 Antarctic ocean expedition

"The Discovery", Dundee, Scotland (Photos: Finn Lindgren, August 2022)



What’s that in the corner?

"The Discovery", Dundee, Scotland (Photos: Finn Lindgren, August 2022)



It’s a Nansen-Pettersson water sampling bottle!

"The Discovery", Dundee, Scotland (Photos: Finn Lindgren, August 2022)



Station observation & homogenisation model
Daily mean air temperature measurements

For station k at day ti,
yk,im = Tm(sk, ti) +

Jk∑
j=1

Hk
j (ti)e

k,j
m + ϵk,im ,

where Hk
j (t) are temporal step functions, ek,jm are latent bias variables, and ϵk,im are independent

measurement and discretisation errors.

Daily mean/max/min

For station k at day ti,yk,im = Tm(sk, ti) + H̃k
m(ti) + ϵk,im ,

yk,ix = Tm(sk, ti) + H̃k
r,m(ti) +

H̃k
r,r(ti)

2
Tr(sk, ti) + ϵk,ix ,

yk,in = Tm(sk, ti) + H̃k
r,m(ti)−

H̃k
r,r(ti)

2
Tr(sk, ti) + ϵk,in ,

where H̃ ·
· are the total bias correction variables for each observation.



Observed data
Observed daily Tmean and Trange for station FRW00034051
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Multiscale model component samples
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Combined model samples for Tm and Tr
(Proof of concept; no actual data was involved in this figure)
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Estimates of median & scale for Tm and Tr
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February climatology
(Preliminary estimates, using only in-situ land station data)



Linearised inference
All Spatio-temporal latent random processes combined into x = (u,β, b), with joint expectation µx and
precision Qx:

(x | θ) ∼ N (µx,Q
−1
x ) (Prior)

(y | x,θ) ∼ N (h(x),Q−1
y|x) (Observations)

p(x | y,θ) ∝ p(x | θ) p(y | x,θ) (Conditional posterior)

Non-linear and/or non-Gaussian observations

For a non-linear h(x) with Jacobian J at x = µ̃, iterate:

(x | y,θ) approx∼ N (µ̃, Q̃
−1

) (Approximate conditional posterior)

Q̃ = Qx + J⊤Qy|xJ (Generally: Qx −∇x∇⊤
x log p(y|x,θ))

µ̃′ = µ̃+ aQ̃
−1

{
J⊤Qy|x [y − h(µ̃)]−Qx(µ̃− µx)

}
for some a > 0 chosen by line-search.



Full non-linear solution for ∼ 1011 latent variables
▶ Nonlinear Newton iteration with robust line-search

▶ Preconditioned conjugate gradient (PCG) iteration for
Q(µ− µ̂) = r = b−Qµ̂

▶ Local and multiscale/grid approximations for preconditioning: M−1Q ≈ I

▶ Sampling with PCG: Q(x− µ̂) = Lw
Requires only a rectangular pseudo-Cholesky factorisation LL⊤ = Q = Qx + J⊤Qy|xJ .

Possible due to the kronecker product sum precision structure: L =
[
. . . ,L

[s]
k ⊗L

[t]
k , . . . ,J

⊤Lϵ

]
Overlapping block preconditioning

Let D⊤
k be a restriction matrix to subdomain Ωk , and let W k be a diagonal weight matrix. Then an additive

Schwartz preconditioner is
M−1x =

K∑
k=1

W kDk(D
⊤
k QDk)

−1D⊤
k W kx



EUSTACE pragmatic implementation
▶ Daily mean temperature only

▶ ∼ 60, 000 conditionally independent days (on the fine temporal scale):
embarrassingly parallel daily direct solves

▶ Multiscale component grouped into three superblocks

▶ Reduced spatial resolution



Statistical model for temperature variations and different 
scales (space and time):

• Climatological variation: local seasonal cycle with effects 
of latitude, altitude and coastal influence.

• Large-scale variation: Slowly varying climatological mean 
temperature field. Station homogenisation.

• Daily Local: daily variability associated with weather. 
Satellite retrieval biases.

Simultaneously estimates observational biases of known 
bias structures:

• e.g. satellite biases, station homogenisation.

Processed on STFC’s LOTUS cluster www.jasmin.ac.uk:

• Largest solves processed on 20 core/256GB RAM node.

• Highly parallel observation pre-processing.

MULTI-SCALE ANALYSIS 
MODEL

Element Resolution N Variables

Seasonal Bimonthly x  1° SPDE 245,772

Slow-scale* 5 year x 5° SPDE 107,604

Latitude 0.5° latitude SPDE 721

Altitude (0.25° grid) 1

Coastal (0.25° grid) 1

Grand mean Analysis mean 1

Element Resolution N Variables

Large-scale 3 monthly x 5° SPDE 1,752,408

Station bias NA 82,072

Element Resolution N Variables per 
day

Daily local ~0.5 degree SPDE 162,842

Satellite bias 
(marine)

Global 1

Satellite bias 
(land)

Global + 2.5 degree 
SPDE

1 + 40,962

Satellite bias 
(ice)

Hemispheric + 2.5 
degree SPDE*

2 + 40,962



Condition on expected 
value of other components

ITERATIVE SOLUTION

(1) Climatology:
Global mean T
Seasonal cycle
Latitude
Altitude
Water fraction

(2) Large-scale:
Multi-annual SPDE
Multi-month SPDE
Station biases (3) Daily local:

Daily fields
Satellite land bias
Satellite marine bias
Satellite ice bias

(3) Daily local:
Daily fields
Satellite land bias
Satellite marine bias
Satellite ice bias

(3) Daily local:
Daily fields
Satellite land bias
Satellite marine bias
Satellite ice bias

(3) Daily local:
Daily fields
Satellite land bias
Satellite marine bias
Satellite ice bias

𝑻 𝑙𝑎𝑟𝑔𝑒 (𝒔 , 𝑡 ) 

𝑻 𝑙𝑜𝑐𝑎𝑙(𝒔 ,𝑡 ) 

𝑻 𝑐𝑙𝑖𝑚 (𝒔 ,𝑡 ) 



Statistical model for temperature variations and 
different scales (space and time):

• Climatological variation: local seasonal cycle with 
effects of latitude, altitude and coastal influence.

• Large-scale variation: Slowly varying 
climatological mean temperature field.

• Daily Local: daily variability associated with 
weather.

Simultaneously estimates observational biases of 
known bias structures:

• e.g. satellite biases, station homogenisation.

MULTI-SCALE ANALYSIS 
MODEL

Central England Temperature Decomposition



SATELLITE BIAS MODELS
• Simplified model of known error structures 

in satellite air temperature retrievals:

– Global/hemispheric systematic bias covariates.

– Daily estimates of spatially varying bias as a 

spatial random field.

• Estimated jointly with daily temperature 

variability.

NH Ice

SH Ice

Land

Marine



ENSEMBLE ANALYSIS

• Samples drawn from joint posterior distribution of 

temperature and bias variables.

• Temperature model samples projected onto analysis 
grid.

• Spatial/temporal correlation in analysis errors is encoded 

into the ensemble.

• Summary statistics can be derived from the ensemble.  

Expected value, total uncertainty and observation 

constraint information also available.



ENSEMBLE ANALYSIS

• Samples drawn from joint posterior distribution of 
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Hierarchichal model challenges: Ideas to take home

▶ Real-life data behaviour introduces complex long-term dependence

▶ Methods for individual Gaussian fields are insufficient

▶ Efficient representations (Markov/SPDE/NNGP/Vecchia/Low rank/Blockwise/Incomplete Cholesky/etc)
need to be coupled with proper iterative solvers

▶ Preconditioning needs to handle highly heterogeneous data

▶ We can handle up to ≲ 106 latent variables exactly; use as preconditioner building blocks

▶ Multigrid/level methods appear highly promising for hierarchical space-time structures

▶ Need for flexible geography-induced non-stationarity modelling (not just estimation)

▶ Does increasing non-stationary reduce the need for global log-determinants?
Should exploit local and multi-level hierarchy structure.
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▶ Links to EUSTACE project reports and data:
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