| Royal Netherlands
Meteorological Institute
Ministry of Infrastructure and the
Environment

i’

L ) Science & Technology
— Facilities Council

UNIVERSITY OF
LEICESTER

Met Office

Large Spatio-temporal Modelling and Computing

for Past Weather and Climate

Finn Lindgren (finn.lindgren@ed.ac.uk)

THE UNIVERSITY of EDINBURGH

ISBA 2018, 2018-06-27

EUSTACE has received funding from the European Union's Horizon 2020 Programme for

’_

Research and Innovation, under Grant Agreement no 640171 EUSTACE



EUSTACE

EU Surface Temperatures for All Corners of Earth

EUSTACE will give publicly available daily estimates of surface air temperature since
1850 across the globe for the first time by combining surface and satellite data using
novel statistical techniques.
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Quarter degree output grid
365 daily estimates each year
165 years
Two fields: daily mean and range

360 - 180 - 42 - 365 - 165 - 2 = 124, 882, 560, 000
Storing ~ 101! latent variables as double takes ~ 1 TB

We want a joint estimate of the entire space-time process
at several time scales (daily, climatological, seasonal)
Methods based on direct covariance calculations are infeasible.

An additive hierarchical stochastic PDE model
and matrix-free iterative solvers
will (hopefully) save us!
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GMRFs based on SPDEs (Lindgren et al., 2011)

GMRF representations of SPDEs can be constructed for oscillating, anisotropic,
non-stationary, non-separable spatio-temporal, and multivariate fields on manifolds.

(& + K2, +V -mg; — V- Mg,V) (1,2(s,t) = E(s,t), (s,1) € QxR
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Matérn driven heat equation on the sphere

The iterated heat equation is a simple non-separable space-time SPDE family:

B
(k2 — A)/2 ¢>% + (K2 = A2 a(s,t) = W(s, t)/T

Fourier spectra are based on eigenfunctions e, (s) of —A.

onR?, —Ae,(s) = ||w||*ew(s), and e, are harmonic functions.

onS?, —Aey(s) = M\per(s) = k(k + 1)ex(s), and ey, are spherical harmonics.
The isotropic spectrum on S? x Ris

2k +1

T2(K2 4 M) [92w? + (K2 + Ap)2)”

R(k,w) x

A finite element approximation has structure

n a+B+y
2(8) =Y vp()zx, ®~N(0,Q7"), Q= ) Mo MP
v k=1 i=0
ijeven, e.g., if K is spatially varying. f—
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Partial hierarchical representation

Observations of mean, max, min. Model mean and range.

Data sources

Conditional specifications, e.g.

(TITL, Q) ~ N (Th, @0 )

Qs,
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Basic latent multiscale structure
Let UF (s,t), UF(s,t), k = 0,1,2, S be random fields operating on (multi)daily,

m
multimonthly, multidecadal, and cyclic seasonal timescales, respectively, represented

by finite element approximations of stochastic heat equations.

Daily mean temperatures
The daily means 7, (s, t) are defined through

Ton(s,t) = Up,(s,1) + Up, (5, ) + Up(s,1) + Up (s,) + ZX 5,1)B8%

2

0
TTH.

The [3,, coefficients are weights for covariates Xi(s, t) (e.g. elevation, topographical
gradients, and land use indicator functions).
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Basic latent multiscale structure
Daily temperature range (diurnal range)
The diurnal ranges 7' (s, t) are defined through

Nx
glur(s, )] = Ul(s,t) + U (s,t) + US (s,1) + > Xi(s, 1) 8L,
=1
72
7
T,(s,t) = pr(s, ) G [U2(s,8)] = g7 H(T}) G7F [UP(s, 1)),
70

@

where the slowly varying median process ., (s, t) is a transformed multiscale model,
and G lisa spatially and seasonally varying transformation model. The (3,
coefficients are weights for covariates X; (s, t) (e.g. elevation, topographical
gradients, and land use indicator functions).
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Observation models

Common satellite derived data error model framework

The observational&calibration errors are modelled as three error components:
independent (¢€(), spatially correlated (¢1), and systematic (¢2), with distributions
determined by the uncertainty information from WP1

Eg. Yi = Tim(si,ti) + €o(si, i) + e1(si, i) + ea(si, t:)

| A

Station homogenisation

For station k at day t;

ki __ § k k.,j ki
Yn = m Ska + H ]+€ma

where HJ’?3 (t) are temporal step functions, e,’ﬁl’j are latent bias variables, and ef;f are

independent measurement and discretisation errors.

\
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Observed data

Observed daily 7 mean and Tiange for station FRW00034051

FRWO00034051
g
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Power tail quantile (POQ) model

The quantile function Fgl(p), pE [O, 1], is defined through a quantile blend of left-
and right-tailed generalised Pareto distributions.

The parameters 0 = (0, 01 = log 7, 05 = logit[(y + 1)/2], 03, 04) control the
median, spread/scale, skewness, and the left and right tail shape.

This model is also known as the five parameter lambda model (Gilchrist, 2000).

| N

A POQ copula model

A spatio-temporally dependent Gaussian field (s, t) with expectation 0 and variance
1 can be transformed into a POQ field by

(s, t) = G u(s, 1)) = Fyb ) (B(u(s, 1)),

where the parameters can vary with space and time.

Due to the large size of the problem, we estimate parameters in a two-step procedure:
1. Estimate seasonal POQ and temporal covariance parameters for separate time
series

2. With a basic spatial-seasonal random field prior, find the posterior mean
parameter field
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Diurnal range distributions

After seasonal compensation:
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For these stations, POQ does a slightly better job than a Gamma distribution.
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Diurnal range distributions; quantile model

After seasonal compensation:
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For these stations only POQ comes close to representing the distributions.
o, Note: Some of the mixture-like distribution shapes may be an effect of unmodeled
* /:station inhomogeneities as well as temporal shift effects. ﬂ—
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Multiscale model component samples
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Combined model samples for 7}, and 7.

20

-20

15

10

10

Time

15

20

10

Time

o~

EUSTACE



Estimates of median & scale for [}, and 7',

Feb

February climatology

(Preliminary estimates, using only in-situ land station data)



Linearised inference

All Spatio-temporal latent random processes combined into * = (u7 3, b), with joint
expectation ft, and precision Q_:
(x| 0) ~N(u,,Q,")  (Prior; Parameters pre-estimated in EUSTACE)
—1 )
(y | x,0) ~N(Ax, Qy‘w) (Observations)
p(x|y,0) xp(x|0)p(y|x,0) (Conditional posterior)

Linear Gaussian observations

The conditional posterior distribution is

(|y,0) ~N(,Q ) (Posterior)
Q=Q,+A7Q,,A
. ~—1
p=p,+Q A'Q,.,(y—Ap,)
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Linearised inference

All Spatio-temporal latent random processes combined into * = (u7 3, b), with joint
expectation ft, and precision Q_:

(x| 6) ~N(w,,Q,")  (Prior; Parameters pre-estimated in EUSTACE)
(y|z,0)~N h( ) v\w) (Observations)
p(x|y,0) xplx|0)p(y|x,0) (Conditional posterior)

Non-linear and/or non-Gaussian observations

For a non-linear h( Ax) with Jacobian J at = p, iterate:

(x| y,0) " N, Qil) (Approximate conditional posterior)
~1 ~ = =il ~ ~
B =i+aQ {I7Q,.ly—hAR)] - Q.- p,)}

for some a > 0 chosen by line-search.
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lterative solutions

» Nonlinear Newton iteration with robust line-search

Basic Newton, eta Robust Newton, eta Partially Robust Newton, eti

50- 50- 50-

etal etal etal

type - Linear ~s- Quadratic ~- True

> Preconditioned conjugate gradient (PCG) iteration for
Qu-p)=r=b-Qf
> Local and multiscale approximations for preconditioning: M ~'Q ~ I
> Sampling with PCG: Q(x — 1) = Lw
Requires only a rectangular pseudo-Cholesky factorisation LL" = Q.
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Triangulations for all corners of Earth
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Overlapping blocks and multigrid

Overlapping block preconditioning

Let DZ be a restriction matrix to subdomain €2}, and let W, be a diagonal weight
matrix. Then an additive Schwartz preconditioner is

K
Mz = Z W.D.(D. QD) 'D] W«
k=1

Approximation level

Step
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Variance calculations

Sparse partial inverse: Takahashi recursions postprocesses Cholesky

Takahashi recursions compute S such that S;; = (Qfl)ij forall Q;; # 0.
Postprocessing of the (sparse) Cholesky factor.

Basic Rao-Blackwellisation of sample estimators

Let ) be samples from a Gaussian posterior and let a ' x be a linear combination
of interest. Then, for any subdomain {2, C 2,

J
1 .
E(a"z) =E[E(a’z | ro: )| ~ = E E(a'x | a:gz))
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Summary and further developments

>
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"Big" data =~ abundant information; imbalanced sparse data collection
Real temperatures are the primary interest, not the model parameters

Hierarchical timescale combination of transformed space-time random fields
Translation between GRF/SPDE/GMRF; they are all Gaussian processes

Know how to solve smaller problems; overlapping domains for preconditioning
Small problems solvable; Use multiscale structure for global solution

Direct Monte Carlo sampling: add suitable randomness to the RHS of the system

Improve posterior variance estimates with Rao-Blackwellisation

Current status and future developments:

>
>
>
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Implementation for smaller region than global is in progress

Full global solve would likely require multigrid

Spatial covariance parameter estimation should take advantage of the
non-stationarity; don’t need a global, joint Bayesian parameter estimate;
estimate locally, and blend to a coherent global model.

Iterative global-Cholesky-free Rao-Blackwellisation:

Efficient Covariance Approximations for Large Sparse Precision Matrices
Sidén et al, arXiv:1705.08656, to appear in JCGS f—
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