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Describing spatial dependence

The Matérn covariance family on Rd

Cov(u(0), u(s)) = σ2 21−ν

Γ(ν)
(κ‖s‖)νKν(κ‖s‖)

Scale κ > 0, smoothness ν > 0, variance σ2 > 0

Whittle (1954, 1963): Matérn as SPDE solution
Matérn fields are stationary solutions to the SPDE(

κ2 −∇ · ∇
)α/2

u(s) =W(s), α = ν + d/2

W(·) white noise, ∇ · ∇ =
∑d

i=1
∂2

∂u2
i

, σ2 = Γ(ν)

Γ(α)κ2ν(4π)d/2
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Computations via piecewise linear Markov models

Continuous Markovian spatial models (Lindgren et al, 2011)

Local basis: u(s) =
∑

kψk (s)uk

Basis weights: u ∼ N (0,Q−1), sparse Q

Measurements: y = Bβ + Au + ε, ε|u ∼ N (0,Q−1
y|u)

Posterior: Local observations =⇒ Markovian posterior for u

Q chosen to give best approximation to an SPDE
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Non-stationary models via deformations

Deformations (Sampson & Guttorp, 1992)
I Random field {u(s); s ∈ Rn}
I Deformation function s̃ = f (s) : Rn 7→ Rm ,m ≥ n

I Stationary covariance {r̃(s̃, t̃); s̃, t̃ ∈ Rm}
I Resulting covariance Cov(u(s), u(t)) = r̃(f (s), f (t))

I Allows separation between modelling variances and correlations:
v(s) := σ(s)u(s)

I Euclidean distances in the deformation space, which may be of
higher dimension than the model domain.

I Inference: Find a suitable deformation f and correlation r̃ .
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Non-stationary SPDE models via deformations

Deformation of manifolds
I Let Ω ⊆ Rn and Ω ⊆ Rm be d -manifolds, d ≤ n,m , with

metrics induced by the embedding Euclidean spaces.

I Deformation function s̃ = f (s) : Ω 7→ Ω̃

I “Stationary” SPDE on Ω̃: (1− ∇̃ · ∇̃)α/2ũ(s̃) = W̃(s̃)

I Define random field by mapping back to Ω: u(s) := ũ(f (s))

I Distances are measured within the deformed manifold.

I When Ω̃ = Rd or Sd , ũ(s̃) is a stationary (Matérn) field, and we
have a special case of the classical deformation method.

I What happens when Ω̃ has non-constant curvature?

I Can we rewrite the model using a non-stationary SPDE operator
on Ω itself?
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Manifold example: Radially deformed sphere

Deformation generated by an oscillating SPDE model

(25002 mesh nodes, sample generated in 1.75 seconds)
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Manifold example: Radially deformed sphere

Deformation generated by an oscillating SPDE model

(25002 mesh nodes, sample generated in 1.75 seconds)
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Deformation

For simplicity, only consider α = 2 and notation for Ω = Rd .

Manifold deformation

Deformation function (f : Ω 7→ Ω̃ ⊆ Rm ), Jacobian, metric tensor:

f (s) =
[
f (s)i

]
, Df (s) =

[
∂f (s)i
∂sj

]
, g(s) = Df (s)> ·Df (s)

Change of variables in an SPDE

(1− ∇̃ · ∇̃)ũ(s̃) = W̃(s̃), s̃ ∈ Ω̃

u(s) = ũ(f (s)), s ∈ Ω
is equivalent to

H (s) = g−1(s) det(g)1/2

(det(g)1/2 −∇ ·H∇)u(s) = det(g)1/4W(s)
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Stationary deformation

Simple scaling
Deformation, Jacobian, metric tensor, assume detA = 1:

f (s) = κAs, Df (s) = κA, g(s) = κ2A>A,

Resulting SPDE:
det(g)1/2 = κd

H (s) = κd−2(A>A)−1

(κd −∇ · κd−2(A>A)−1∇)u(s) = κd/2W(s)
or

(κ2 −∇ · (A>A)−1∇)u(s) = κ2−d/2W(s)

Note: Because det(H ) = det(g)d/2/ det(g) = det(g)d/2−1, the
determinant of H is 1 when d = 2, for all g !
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Deformation from non-stationary SPDE

Given a non-stationary SPDE

(κ(s)2 −∇ · ∇)u(s) = κ(s)W(s),

can we find a corresponding deformation representation?
Domain Ω = [0, 4]× [−1, 1], κ varying between 2

√
8 and 4

√
8:
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Deformation from non-stationary SPDE

Deformation structure

f (s) =

 h(x )
κ(x ) sin(y)
κ(x ) cos(y)

 , Df (s) =

 h ′(x ) 0
κ′(x ) sin(y) κ(x ) cos(y)
κ′(x ) cos(y) −κ(x ) sin(y)


g(s) = Df > ·Df =

[
h ′(x )2 + κ′(x )2 0

0 κ(x )2

]

We need det(g)1/2 = κ(x )2 and H = I 2. Solution:

h(x ) =

∫ x

0

√
κ(t)2 − κ′(t)2dt
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Deformed manifold
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“Stationary” field on deformed manifold

(1− ∇̃ · ∇̃)ũ(s̃) = W̃(s̃), s̃ ∈ Ω̃
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Non-stationary field on original manifold

(κ(s)2 −∇ · ∇)u(s) = κ(s)W(s), s ∈ Ω
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Standard deviations on deformed manifold

(1− ∇̃ · ∇̃)ũ(s̃) = W̃(s̃), s̃ ∈ Ω̃
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Standard deviations on original manifold

(κ(s)2 −∇ · ∇)u(s) = κ(s)W(s), s ∈ Ω
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Vertical displacement deformations

Deformation structure

f (s) = κ0

 x
y

h(x , y)

 , Df (s) = κ0

 1 0
0 1
vx vy

 , v = ∇h

g(s) = Df > ·Df = κ2
0

[
1 + v2

x vxvy
vxvy 1 + v2

y

]
= κ2

0(I + vv>)

With v⊥ · v = 0, ‖v⊥‖ = ‖v‖, we get

κ(s)2 = κ2
0

√
1 + ‖v⊥‖2,

H (s) = (I + v⊥v
>
⊥)/
√

1 + ‖v⊥‖2

(κ(s)2 −∇ ·H (s)∇)u(s) = κ(s)W(s)
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Displacement field
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Simulated non-stationary field
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Four covariance functions
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Standard deviations

The variance varies by almost a factor 4, so it is now clearly not
constant. We’ve partially lost the separation between correlation and
variance allowed by the classical deformation method.
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Interpretation and direct metric parameterisation

Subtractive parameterisation (like displacement model)

Baseline range
√

8/κ0, the model removes dependence orthogonal to
the vector field.

κ(s)2 = κ2
0

√
1 + ‖v‖2

Additive parameterisation

Baseline range
√

8/κ0, the model adds dependence along the vector
field.

κ(s)2 = κ2
0/
√

1 + ‖v‖2

H (s) = (I + vv>)/
√

1 + ‖v‖2

(κ(s)2 −∇ ·H (s)∇)u(s) = κ(s)W(s)
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Simulated non-stationary field (subtractive)
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Simulated non-stationary field (additive)
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Four covariance functions (subtractive)
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Four covariance functions (additive)
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Standard deviations (subtractive)
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Standard deviations (additive)
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Semiparametric inference

True model, with a single realisation of u(s):

(1−∇ ·H (s)∇)u(s) =W(s), H (s) = γI + v(s)v(s)>

Model for inference, with low order harmonic vector basis functions,

v(s) =
∑
ij

ψij (s)

with a vector-SPDE prior for regularisation.
Constant and non-constant true vector fields:
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Sample and estimates
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There are several local maxima, partly due to fundamental
non-identifiability issues.
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Sample and estimates
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The inference is more stable when there is more structure (that also
matches the vector field model). Covariate information would be
extremely valuable.
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Closing remarks

Remarks
I The connection between Matérn fields, stochastic PDEs, and

Markov random fields can be extended to the classical
deformation method for non-stationary models.

I Direct parameterization of the manifold metric appears more
practical than parameterizing a deformation, while still keeping
interpretability.

I The question should not be “Stationary or non-stationary?” but
rather what kind of non-stationarity.

I The latter also applies to separable vs. non-separable in
space-time models.
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