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Contour map for US summer mean temperature
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• Can we trust the apparent details af the level crossings?
• How many levels should we sensibly use?
• Can we put a number on the statistical quality of the contour map?
• Fundamental question:

What is the statistical interpretation of a contour map?
• To answer these questions we need methods for efficient calculations

for random fields.
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GMRFs: Gaussian Markov random fields
Continuous domain GMRFs ((Rozanov, 1977)

If x(s) is a (stationary) Gaussian random field on Ω with covariance
function Rx(s, s′), it fulfills the global Markov property

{x(A) ⊥ x(B)|x(S), for all AB-separating sets S ⊂ Ω}

if the power spectrum can be written as 1/Sx(ω) =
polynomial in ω, for some polynomial order p.
Generally: Markov if the precision operator is local.

A

S

B

Discrete domain GMRFs

x = (x1, . . . , xn) ∼ N(µ,Q−1) is Markov with respect to a
neighbourhood structure {Ni, i = 1, . . . , n} if Qij = 0 whenever
j 6= Ni ∪ i.

• Continuous domain basis representation with Markov weights:
x(s) =

∑n
k=1 Ψk(s)xk

• Many stochastic PDE solutions are Markov in continuous space, and
can be approximated by Markov weights on local basis functions.
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GMRFs based on SPDEs (Lindgren et al., 2011)

GMRF representations of SPDEs can be constructed for oscillating,
anisotropic, non-stationary, non-separable spatio-temporal, and multivari-
ate fields on manifolds.

(κ2 −∆)(τ x(s)) =W(s), s ∈ Rd
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GMRFs based on SPDEs (Lindgren et al., 2011)

GMRF representations of SPDEs can be constructed for oscillating,
anisotropic, non-stationary, non-separable spatio-temporal, and multivari-
ate fields on manifolds.

(κ2 eiπθ −∆)(τ x(s)) =W(s), s ∈ Ω
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GMRFs based on SPDEs (Lindgren et al., 2011)

GMRF representations of SPDEs can be constructed for oscillating,
anisotropic, non-stationary, non-separable spatio-temporal, and multivari-
ate fields on manifolds.

(κ2
s +∇ ·ms −∇ ·Ms∇)(τsx(s)) =W(s), s ∈ Ω
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GMRFs based on SPDEs (Lindgren et al., 2011)

GMRF representations of SPDEs can be constructed for oscillating,
anisotropic, non-stationary, non-separable spatio-temporal, and multivari-
ate fields on manifolds.(
∂
∂t + κ2

s,t +∇ ·ms,t −∇ ·Ms,t∇
)

(τs,tx(s, t)) = E(s, t), (s, t) ∈ Ω× R
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Spatial latent Gaussian models

Consider a simple hierarchical spatial generalised linear model

β ∼ N(0, Iσ2
β),

ξ(s) ∼ Gaussian (Markov) random field,
x(s) = z(s)β + ξ(s),

(yi|x) ∼ π(yi|x(·),θ), e.g. N(x(si), σ
2
e),

where z(·) are spatially indexed explanatory variables, and yi are
conditionally independent observations.
• A contour curve for a level u crossing is typically calculated as the

level u crossing of x̂ = E[x(s)|y].
• In practice, we want to interpret it as being informative about the

potential level crossings of the random field x(s) itself.
• We need access to high dimensional joint probabilities in the

posterior density π(x|y).
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Posterior probabilities

• Assuming that π(x|y,θ) is, or can be approximated as, Gaussian,
there are several ways to calculate probabilities, one of which is

Numerical integration

Numerically approximate the excursion probability by approximating the
posterior integral as

P(a < x < b|y) = E[P(a < x < b|y,θ)] ≈
∑
k

wkP(a < x < b|y,θk),

where each parameter configuration θk is provided by R-INLA and the
weights wk are chosen proportional to π(θk|y).

• Often only a few configurations θk are needed.
• Quantile corrections and other techniques from INLA can be added
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A sequential Monte-Carlo algorithm
• A GMRF can be viewed as a non-homogeneous AR-process defined

backwards in the indices of x ∼ N(µ,Q−1).
• Let L be the Cholesky factor in Q = LL>. Then

xi|xi+1, . . . , xn ∼ N

µi − 1

Lii

n∑
j=i+1

Lji(xj − µj), L−2
ii


• Denote the integral of the last n− i components as Ii,

Ii =

∫ bi

ai

π(xi|xi+1:n) · · ·
∫ bn−1

an−1

π(xn−1|xn)

∫ bn

an

π(xn) dx,

• xi|xi+1:n only depends on the elements in xNi∩{i+1:n}.
• Estimate the integrals using sequential importance sampling.
• In each step xj is sampled from the truncated Gaussian density
∝ I{aj<xj<bj}π(xj |xj+1:n).

• The importance weights can be updated recursively.
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Contours and excursions

• Lindgren, Rychlik (1995): How reliable are contour curves?
Confidence sets for level contours, Bernoulli
Regions with a single expected crossing

• Polfeldt (1999) On the quality of contour maps, Environmetrics
How many contour curves should one use?

• Neither paper considered joint probabilities
• A credible contour region is a region where the field transitions from

being clearly below, to being clearly above.
• Solving the problem for excursions solves it for contours.
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Level sets

Level sets
Given a function f(s), s ∈ Ω and levels

−∞ = u0 < u1 < u2 < · · · < uK < uK+1 = +∞,

the level sets are Gk(f) = {s; uk < f(s) < uk+1}, k = 0, . . . ,K.

uk

uk−1

uk+1

uk+2
Gk

Gk−1

Gk+1

0.8

1.0

1.2

1.4

1.6

1.8

2.0
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Joint and marginal probabilities

Now, consider a contour map based on a point estimate x̂(·).

Intuitively, we might consider the joint probability

P(uk < x(s) < uk+1, for all s ∈ Gk(x̂) and all k)

Unfortunately, this will nearly always be close to or equal to zero!

Polfeldt (1999) instead considered the marginal probability field

p(s) = P(uk < x(s) < uk+1 for k such that s ∈ Gk(x̂))

The argument is then that if p(s) is close to 1 in a large proportion of
space, the contour map is not overconfident.

We extend this notion to alternative joint probability statements.
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Contour avoiding sets and the contour map
function

Contour avoiding sets

The contour avoiding sets Mu,α = (M0
u,α, . . . ,M

K
u,α) are given by

Mu,α = argmax
(D0,...,DK)

{
K∑
k=0

|Dk| : P

(
K⋂
k=0

{Dk ⊆ Gk(x)}

)
≥ 1− α

}

where Dk are disjoint and open sets. The joint contour avoiding set is
then Cu,α(x) =

⋃K
k=0M

k
u,α.

Note: Cu,α(x) is the largest set so that with probability at least 1− α,
the intuitive contour map interpretation is fulfilled for s ∈ Cu,α(x).

The contour map function Fu(s) = sup{1− α; s ∈ Cu,α} is a joint
probability extension of the Polfeldt idea.
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Quality measures

Let Cu(x̂) denote a contour map based on a point estimate of x.

Three quality measures
P0: The proportion of space where the intuitive contour map

interpretation holds jointly: P0(x,Cu(x̂)) = 1
|Ω|
∫

Ω
Fu(s) ds

P1: Joint credible regions for uk crossings:

P1(x,Cu(x̂)) = P (∩k{x(s) < uk where x̂(s) < uk−1}∩
{x(s) > uk where x̂(s) > uk+1})

P2: Joint credible regions for uek = uk+uk+1

2 crossings:

P2(x,Cu(x̂)) = P (∩k{x(s) < uek where x̂(s) < uk}∩
{x(s) > uek where x̂(s) > uk+1})
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Interpretation of P1 and P2

Gk

Gk−1

Gk+1

Gk

Gk−1

Gk+1

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Five realisations of contour curves from the posterior distribution for x
are shown.

Note the fundamental difference in smoothness between the contours of
x̂ and x!

Additional note for theorists:
The process x is not a member of its own RKHS, but x̂ usually is.
This is a feature, not a bug.
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Mean summer temperature measurements for
1997
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Contour map quality for different K and different
models
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The spatial predictions are more uncertain in a model without spatial
explanatory variables (left) than in a model using elevation (right).

P1 consistently admits about double the number of contour levels in
comparison with P2, as expected from the probabilistic interpretations.
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Posterior mean, s.d., contour map, and Fu, for
K = 8
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Contour map quality measure: P2 = 0.958



Random fields Computing probabilities Contour maps Example End

Summary

• Drawn contours are usually non-linear functions of point estimates
• Point estimate contour shapes do not match actual structure
• Recast the uncertainty problem as probabilistic excursion sets
• Excursion formulation allows discontinuities, avoiding the hypothesis

testing equal to the level trap
• Recursive Monte Carlo integration for high dimensional probabilities
• General concept not tied to a specific computational method
• Instead of drawing too many contours, should often consider either

• using a continuous colour scale, showing the entire point estimate, or
• using only a specific contour of interest,

e.g. “regulation air quality limit”
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