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EUSTACE

EU Surface Temperatures for All Corners of Earth

EUSTACE will give publicly available daily estimates of surface air
temperature since 1850 across the globe for the first time by combining
surface and satellite data using novel statistical techniques.
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Partial hierarchical representation

Observations of mean, max, min. Model mean and range.
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Data sources

Conditional specifications, e.g.

(TSIT4, Q%) ~ N (Th, @5, )
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Basic latent multiscale structure
Let Uk (s, t), UF(s,t), k =0,1,2, S be random fields operating on

m
(multi)daily, multimonthly, multidecadal, and cyclic seasonal timescales,
respectively, represented by finite element approximations of stochastic
heat equations. The daily means T, (s, t) and diurnal ranges 7(s, ¢) are

defined through

Nx
Ton (s, 1) = Up,(s, 1) + Up (s, 1) + Up (s, 1) + Us (s, ) + > Xi(s, 1)L,

=1
To(s,t) = G (UP(s, 1); pe(s, 1))
Nx
pr(s,t) = Uk(s, £) + UZ(s, t) + U (s, t) + > Xi(s, 1)1,
i=1

where G is a copula or non-linear transformation function, controlled by
the slowly varying median process 1,-(s, t) as well as some fixed seasonal
fields of distribution scale and shape parameters. The 3, and 3,
coefficients are weights for covariates X;(s, t) (e.g. elevation,
topographical gradients, and land use indicator functions).
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Observed data

Observed daily Thean and Trange for station FRW00034051
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Linearised inference

Spatio-temporal latent random processes (u), geographical effects (3),
station and other persistent effects (b).

(u, 8.0 0) ~ Ny, Qusy)  (Prior)
(y|u,B8,b) ~N(Au+ XB+ Zb, Q;l) (Observations)
(u,8,b|y,0) ~N(p, Q_l) (Posterior)
_ ~ -1 T
B=p,p+Q [A X Z] Q,(y—[A4A X Z]p,s)

Gaussian posterior approximation for non-linear observations

(w|6) ~N(pm,, Q,Y), (y|u,8)~ply|u)

(u]y.0) 27N Q )
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Products of transformed processes

Assume that u is a large scale process and v is a small scale process, so
that they are statistically identifiable from observations of the form

Yi = hy(u;) - hy(v;) +€;, hy, and h, non-linear transformations.

Write h,,, h;, hZ for the vectors of transformed values and derivatives of
h,, at the wu; values, and similarly for v. Then

1
C—logp(y | u,v) =S¥ = hu ©hy) ' Q(y — hu © hy)

9
—5g 08 p(y [ u,v) = —diag(h, © h)Q.(y—hy®h,)

2

— 5oz 08 p(y [ v, v) = diag(h, © h,) Q. diag(h, ® k)

— diag(diag(h, © b)) Q. (y — hy © hy))

and similarly for % Bugv nd d . The problematic term in the

Hessian involving y disappears i |n Flsher scoring:
Eyjuov <7V(2u o inp(y | u, v)) is positive definite. ~
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Power tail quantile (POQ) model

The quantile function (inverse cumulative distribution function) F,, ' (p),
p € [0,1], is defined through

1-(2p)~° 040
fe_ (p) = 1 20 ’ ;é i
2 10g(2p)7 0= 07

. @a-p)~*-1 640
+(p) = _ —p) = 0 7 7
5w =t (1-») {_;1()2(2(1—13»., 0=0.

Fg'(p) =60 + 7(1L = 7)fy, (p) + TS5 (p),
The parameters 6 = (6,0, = log T, 02 = logit(7), 03, 604) control the

median, spread/scale, skewness, and the left and right tail shape.
This model is also known as the five parameter lambda model.

A spatio-temporally dependent Gaussian field (s, ¢) with expectation 0
and variance 1 can be transformed into a POQ field by

U(s, 1) = Fyig ) (P(uls, 1)),

where the parameters can vary with space and time.
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Diurnal range distributions
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For these stations, POQ does a slightly better job than a Gamma
distribution.
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Diurnal range distributions
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For these stations only POQ comes close to representing the distributions.
Note: Some of the mixture-like distribution shapes may be an effect of
unmodeled station inhomogeneities.
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Median & scale for daily means and ranges

June climatology ’-
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Posterior calculations

Example multiscale precision matrix block structure:

0., —|®®2Q+4"QA4  -QB®Q, }
o -B'Q,®Q, Q.+B'QB2Q,

can be pseudo-Cholesky-factorised:

5T - L, ®L, 0 A'L
— L L., = : ~ ;
Qoty = Loty Ly v -B'L,@L, L. 0 ]
Posterior expectation, samples, and marginal variances (with
A= [A 0]):

Qle( Ky A Q (y AHT)"'LI\U wNN(Oa I)7
Var(z;|y) = diag(inla. qan(QI‘y)) (requires Cholesky)

A UNIVERSITY OF f
ﬂ EUSTACE?\E&

By) =

QI\U( p’x\y) z|y w NN(O I) or
By) =
) =




Preconditioning for iterative solvers

Solving Qx = b is equivalent to solving M ' Qx = M 'b. Choosing
M~ as an approximate inverse to @ gives a less ill-conditioned system.
Only the action of M~ is needed, e.g. one or more fixed point iterations:

Block Jacobi and Gauss-Seidel preconditioning
Matrix split: @, = L+ D + LT
Jacobi: "D = D! (*(LJr LMz® + b)

Gauss-Seidel: «**1) = (L + D)™! <_LTm(k) + b)

Remark: Block Gibbs sampling for a GMRF posterior

With Q =Q,,. b=A"Q.(y— Ap,) and Z =z — p,,

34 = (L+ D) (-L78Y + b+ Lpw), w~N(0,1)

Gauss-Seidel and Gibbs are both inefficient on their own, but G-S leads to
useful preconditioners. Convergence testing is much easier for linear solvers

\ wthan, for MCMC. ﬂ—
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Residual error norm
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Second order Markov model
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Residual norms and results after 1000 iterations for Block Jacobi (red),
block Gauss-Seidel (blue), and single site Gauss-Seidel (magenta).
Convergence is spectacularly slow for higher order operators!

UNIVERSITY OF
)

g
EUSTACE e



Use overlapping blocks distributed over many computing nodes, and
apply approximate multiscale preconditioning.

Multiscale Schur complement approximation

Solving Q.|,= = b can be formulated using two solves with the upper
block @, ® Q, + AT Q_A, and one solve with the Schur complement

Q.+B'QB®Q,-B"2,9Q,(22Q,+47Q4) @BsQ,

By mapping the fine scale model onto the coarse basis used for the coarse
model, we get an approximate (and sparse) Schur solve via

ol

where B=B &I, Qs =B'Q,B® Q,, and the block matrix can be
interpreted as the precision of a bivariate field on a common, coarse
spatio-temporal scale.
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Triangulations for all corners of Earth
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Triangulations for all corners of Earth
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Observation models

Satellite data error model

The observational&calibration errors are modelled as three error
components:

independent (€), spatially correlated (e;), and systematic (e2), with
distributions determined by the uncertainty information from WP1
E.g., yi = Ti(si, ti) + €o(si, ti) + €1(s4, ti) + €2(s4, 1)

Station homogenisation

For station k at day t;
Yt = T (sp, ti +ZH’“ Yekid 4 ek

%J are latent bias variables,

and €¥:% are independent measurement and discretisation errors.

where Hk(t) are temporal step functions, ¢
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