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EUSTACE

EU Surface Temperatures for All Corners of Earth

EUSTACE will give publicly available daily estimates of surface air
temperature since 1850 across the globe for the first time by combining
surface and satellite data using novel statistical techniques.
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Spatial fields, observations, and
stochastic models

> Partially observed spatial functions (temperature) or objects related
to latent spatial functions

» Wanted: estimates of the true values at observed and unobserved
locations

» Wanted: quantified uncertainty about those values

» Complex measurement errors can be modeled using hierarchical
random effects

Spatial hierarchical model framework

» Observations y = {y;,i =1,...,n,}
> Latent random field z(s), s € Q
> Model parameters 6 = {6;,5 =1,...,ng}
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A Gaussian random field z : D — R is defined via
E(z(s)) = m(s),
Cov(z(s),z(s")) = K (s,s'),
[z(si),i=1,...,n] ~N(m = [m(s;),i =1,...

for all finite location sets {s1,...,s,}, and K(-,-) symmetric positive
definite.

A generalised Gaussian random field x : D — R is defined via a random
measure, (f,z), = z*(f) : Hr(D) — R,

E((f, ) p) = (f, m D—/f

Cov({f. 2 - (g2 ) = ngDf/L[) s,8")g(s') dsds,
(Fr2) p ~ N (o) p s U RE) )
forall f,g € Hr(D)={f: D — R; (f,Rf), < oo}.
Y o
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Covariance functions and SPDEs

The Matérn covariance family on

21711
2
Cov(z(0),z(s)) =0 o) (s[lsl)” K. (sl s])
Scale k > 0, smoothness v > 0, variance o2 > 0

Whittle (1954, 1963): Matérn as SPDE solution
Matérn fields are the stationary solutions to the SPDE

(k2= V-V)2(s) =W(s), a=v+d/2 ‘
o) ‘\1
2 v
W()Whlte nOISe V.-V = Zl 108 g —W

White noise has K (s,s’) = (s —¢).
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Markov in space

Markov properties
S is a separating set for A and B: z(A) L x(B) | z(S5)

Solutions to

2 a/2
(k2 =V -V)""z(s) = W(s)
are Markov when « is an integer.
(Generally, when the reciprocal of the
spectral density is a polynomial, Rozanov, 1977)

Discrete representations (Q = X '):
Qsp=0

Qs = Qan

Has,B=Ha — Qi4Qas(us — pg)

If we use local basis function expansions, we can exploit the continuous
. Markov property as sparse numerical matrix algebra. ”_
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GMRFs based on SPDEs (Lindgren et al., 2011)

GMRF representations of SPDEs can be constructed for oscillating,
anisotropic, non-stationary, non-separable spatio-temporal, and multivari-
ate fields on manifolds.

(k? — A)(t2(s)) = W(s), scR?
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GMRFS based on SPDES (Lindgren et al., 2011)

GMREF representations of SPDEs can be constructed for oscillating,
anisotropic, non-stationary, non-separable spatio-temporal, and multivari-
ate fields on manifolds.
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GMRFS based on SPDES (Lindgren et al., 2011)

GMREF representations of SPDEs can be constructed for oscillating,
anisotropic, non-stationary, non-separable spatio-temporal, and multivari-
ate fields on manifolds.

(k2 ™0 — A)(T2(s)) = W(s), s€Q
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GMRFS based on SPDES (Lindgren et al., 2011)

GMREF representations of SPDEs can be constructed for oscillating,
anisotropic, non-stationary, non-separable spatio-temporal, and multivari-
ate fields on manifolds.

(k24 V- -mg—V-MV)(1sz(s)) = W(s), s€Q
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GMRFS based on SPDES (Lindgren et al., 2011)

GMREF representations of SPDEs can be constructed for oscillating,
anisotropic, non-stationary, non-separable spatio-temporal, and multivari-
ate fields on manifolds.

(% +r2,+Vemg — V- Mg, V) (1s2(s, 1) = E(s, 1), (s,1) € QxR

)’ THE UNIVERSITY of EDINBURGH




Covariances for four reference points

(Z+ k2, 4V mgy — V- Mg,V) (1s,2(s, 1)) = E(s, t), (s,t) € QxR
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Basis function SPDE representations

Basis definitions

Finite basis set (k =1,...,n)
Karhunen-Logve (k? —V - V) %e, 1(8) = Ak ur(8)

Fourier —V - Vei(s) = Apex(s)
Convolution (k2 =V -V)/2g,(s) = d(s)
General P (8)

| \

Field representations

Field z(s) Weights
Karhunen-Logve o< >, e, 1(s)z 26 ~ N(0, M\ok)
Fourier x>k ern(8)zk 2 ~ N(0, (K% + A\p)™%)
Convolution X Y Oe(8 —sk)zk 2 ~ N(0,]|cellg|)
General x Y Yi(s) z ~N(0,Q.")

A

Note: Harmonic basis functions (as in the Fourier approach) give a
diagonal @,., but lead to dense posterior precision matrices.
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Stochastic Green's first identity

On any sufficiently smooth manifold domain D,

<fv_v'v9>D = <Vf7v9>D - <f’8ng>8D

holds, even if either Vf or —V - Vg are as generalised as white noise.

We impose deterministic Neumann boundary conditions, informally
Onx(s) =0 for all s € dD. For a = 2 and Galerkin,

(0, (52 = V- 9) S, w5y | = [0, {62 (i) + (Vo V) } 5]
= (k’C+ G)z
The covariance for the RHS of the SPDE is
[COV(<wi7W>D ) <¢J7 W>D} = |:<wia w]>D} =C

by the definition of W .
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Hierarchical models

Continuous Markovian spatial models (Lindgren et al, 2011)

Local basis: z(s) = >, ¢,(s)z;, (compact, piecewise linear)
Basis weights: « ~ A(0, Q '), sparse Q based on an SPDE
Special case: (k% —V - V)z(s) = W(s), s
Precision: Q = k*C + 2k*G + G5 (k* + 262 |w|? + |w|*)

v

Conditional distribution in a jointly Gaussian model

z~Np,, Q1) yle~N(Az, Q)  (Ay =;(s:)
2|y ~ N (1 Q1)
Q,,=Q,+ ATQWEA (~"Sparse iff 1}, have compact support”)
Haly = Ho + QAT Q1 (y — Aps,)
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The computational GMRF work-horse

Cholesky decomposition (Cholesky, 1924)

Q =LL", L lower triangular (~ O(n{?+1/2) for d =1,2,3)
Q lza=L "L7'z, via forward /backward substitution

logdet Q@ = 2logdet L =2 Zlog L

André-Louis Cholesky (1875-1918)

"He invented, for the solution of the condition equations in the
method of least squares, a very ingenious computational pro- |
cedure which immediately proved extremely useful, and which
most assuredly would have great benefits for all geodesists, if
it were published some day.” (Euology by Commandant Benoit,
1922)
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Partial hierarchical representation

Observations of mean, max, min. Model mean and range.

1 0
Q m Q m

2
Qn

Yo glele

@ Qs

OMNOING
Lol

Q’ Q! Q?

Data sources

Conditional specifications, e.g.
1 0 1 o1
(1975, @0) ~ N (T4, Q) 7)
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Basic latent multiscale structure

Let Uk (s, t), UF(s,t), k =0,1,2, S be random fields operating on
(multi)daily, multimonthly, multidecadal, and cyclic seasonal timescales,
respectively, represented by finite element approximations of stochastic
heat equations.

Daily mean temperatures

The daily means T, (s, t) are defined through

Tp(s,t) = US (s, t) + UL (s, t) + U (s, t) + US(s, t) +ZX s, t)8Y

T2

m

g

m

12

The 3,, coefficients are weights for covariates X, (s, t) (e.g. elevation,
topographical gradients, and land use indicator functions).

y
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Basic latent multiscale structure

Daily temperature range (diurnal range)

The diurnal ranges T.,.(s, t) are defined through

Nx
g ue(s, )] = UX(s, ) + U2(s, 1) + US(s, 1) + Y _ Xi(s, )BY,

3=l
T2
T
T, (s, t) = pr(s, t) G [UP(s,1)] = g(T}) G[U2(s, )],
he

&

where the slowly varying median process y,-(s, t) is a transformed
multiscale model, and G is a non-linear transformation function,
controlled by some fixed seasonal fields of distribution scale and shape
parameters. The (3, and (3, coefficients are weights for covariates

X (s, t) (e.g. elevation, topographical gradients, and land use indicator
functions).
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Observation models

Satellite data error model

The observational&calibration errors are modelled as three error
components:

independent (€), spatially correlated (e;), and systematic (e2), with
distributions determined by the uncertainty information from WP1
E.g., yi = Ti(si, ti) + €o(si, ti) + €1(s4, ti) + €2(s4, 1)

Station homogenisation

For station k at day t;
Yt = T (sp, ti +ZH’“ Yekid 4 ek

k.7 are latent bias variables,

where Hk(t) are temporal step functions, e,

and €¥:% are independent measurement and discretisation errors.
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Observed data

Observed daily Thean and Trange for station FRW00034051

FRWO00034051

Tmean

1060

time (vear)

FRWO00034051

Tange
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Power tail quantile (POQ) model

The quantile function (inverse cumulative distribution function) F,, ' (p),
p € [0,1], is defined through

1-(2p)~° 040
fe_ (p) = 1 20 ’ ;é i
2 10g(2p)7 0= 07

. @a-p)~*-1 640
+(p) = _ —p) = 0 7 7
5w =t (=) {_;1()2(2(1—13»., 0=0.

Fg'(p) = 80+ 2 [(1 = 1), () + A+ (9)]

The parameters 0 = (6y, 01 = log T, 05 = logit[(y + 1)/2], 05, 604) control
the median, spread/scale, skewness, and the left and right tail shape.
This model is also known as the five parameter lambda model.

A spatio-temporally dependent Gaussian field (s, t) with expectation 0
and variance 1 can be transformed into a POQ field by

u(s, t) = Fg(;t)(q)(u(s, t)),

s where the parameters can vary with space and time. ?’—
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Density

[y
g
k=4
4
I3
3
a

Diurnal range distributions
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For these stations, POQ does a slightly better job than a Gamma
distribution.
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Diurnal range distributions

ASN00005008 (MARDIE) ASN00023738 (MYPONGA)
o 8
S ) €
1 G g s | [
© g s g s
z S S 84 z \ z
2 g z g
5 g H g <
o < T R4 a g4 ’ =R
3 S
S E £ o
B a8 24 B “ I o =
s s
g o4 g 4 |
° T T T T T T ° T \ T T T T T T T
o 10 20 30 40 50 0 20 30 40 0 10 20 30 40
DTR (deg C) POQ predicted DTR (deg C) DTR (deg C) POQ predicted DTR (deg C)
8 8
o e
~ o o 9 ~ 7 ~ 5
G 24 [l G G
g g g g g 3
g g | g o | g £
e e ® Y v
g g g o g o
R 3 84 g 8 3 8
£ 3 £ 9 E o
5 24 5 24 5 S 5 S
o4 o4 o4 o4
—T—T——— — T T T T T T T T T T T
0 10 20 30 40 50 o 10 20 30 40 50 0 10 20 30 40 o 10 20 30 40
Log-Normal predicted DTR (deg C) Gamma predicted DTR (deg C) Log-Normal predicted DTR (deg C) Gamma predicted DTR (deg C)

For these stations only POQ comes close to representing the distributions.
Note: Some of the mixture-like distribution shapes may be an effect of
unmodeled station inhomogeneities.
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Median & scale for daily means and ranges

8 February climatology ’_
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Estimates of median & scale for 7,

Feb Feb

and

February climatology
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Std.dev. of median & scale for 7, and T

February climatology 4~
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Linearised inference
All Spatio-temporal latent random processes combined into
x = (u,3,b), with joint expectation p, and precision @ ,:
(| 6) ~N(p,, Q') (Prior)
(y|x,0) ~N(h(z), Q;li) (Observations)
p(@ | y.0) < p( | 0)p(y | .0)  (Posterior)

Linear Gaussian observations

In a linear model with h(xz) = Az,

(IE | yaa) ~ N(ﬁv Q ) (Posterior)
Q=Q,5+A7Q,,A
_ ~—1 ¢

4
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Linearised inference

All Spatio-temporal latent random processes combined into
x = (u,3,b), with joint expectation p, and precision @ ,:
(x| 6) ~ N(n,

(y | z,0) ~ N(h(z
plx|y,0)xplx|0)p(y|z0) (Posterior)

) (Prior)
) y|m) (Observations)

Non-linear and/or non-Gaussian observations

Linearise at 1 and iterate:
approx ~ 2=l . .
(z]y,0) "~ N Q ) (Approximate posterior)
0= Vp{lnp(z|0)+Inp(y|z,0)},_z

Q=0Q,-V;inp(y|z0)],_,

v
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Products of transformed processes

Assume that u is a large scale process and v is a small scale process, so
that they are statistically identifiable from observations of the form

Yi = hy(u;) - hy(v;) +€;,  hy, and h, non-linear transformations.

Write h,,, h!,, h! for the vectors of transformed values and derivatives of
h,, at the wu; values, and similarly for v. Then

1
C—logp(y | u,v) =S¥ = hu ©hy) " Q(y = hu © hy)

9

— 5o logp(y [ u,v) = —diag(h, © R)Q.(y — hy @ hy)
2

*% log p(y | uw,v) = diag(h,, © h’))Q diag(h, © k)
v

— diag(diag(h, © b)) Q. (y — hy © hy))

and similarly for % 6;211 nd d . The problematic term in the
Hessian involving y disappears i |n Flsher scoring:

.y Eyluv ( V(u ) lnp(y | w v)) is positive definite.
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Posterior calculations

Simpified 2-step multiscale precision matrix block structure:

Q.. = Q®Q,+A7QA -Q,B® Q, }
aly -B'Q,®Q, Q.+B'Q,B®Q,

can be pseudo-Cholesky-factorised:

~ ~T ~ Lt ® Ls 0 ATLE
Qm\y = Lz|yLz\y’ Lm\y = —BTLt ® L, Ez 0 :l

Posterior expectation, samples, and marginal variances:

A=[A 0],
Qupy(Hy)y — 1) = ZlTQE(y — Ap,), (nonlinear: repeated linearisation)
Qupy(@ — pypy) = Lyjyw,  w ~N(0.1), or
Quiy(@— 1) = A Quly — Ap,) + Lyyw, w ~N(0,1),
Var(z;|y) = diag(inla.qinv(Q,,)) (requires Cholesky)
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Quarter degree output grid
365 daily estimates each year
165 years
Two fields

360 - 180 - 42 - 365 - 165 - 2 = 124, 882, 560, 000

Storing ~ 10! latent variables as floats takes ~ 500 GB
(And that just covers the finest scale)

To store the data (> 10 TB), model information, and estimated
uncertainties we need a computing cluster with lots of RAM and fast
temporary parallell disk access.

Matrix-free iterative solvers will be our saviours!
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Residual error norm
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First order Markov model
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Residual norms and results after 1000 iterations for Block Jacobi (red),
block Gauss-Seidel (blue), and single site Gauss-Seidel (magenta).
Convergence is spectacularly slow for higher order operators!
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Triangulations for all corners of Earth

avavaTARS.

ATAYAVAVATAS
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Triangulations for all corners of Earth
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Domain decomposition

Use overlapping blocks distributed over many computing nodes, and add
an approximate global step:

Overlapping subdomains

Let B; be the restriction matrix to subdomain €2, and let BI be a
projection onto a coarse basis. Then an additive Schwartz preconditioner
with coarse correction is given by

K
M™'z=B.(B QB.) 'Blz+» Bi(B]QB:) 'Bz
(5=l
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The different timescales can be handled with repeated multiscale
preconditioning:

Multiscale Schur complement approximation

Solving Q.|,= = b can be formulated using two solves with the upper
block Q, ® Q, + AT Q_A, and one solve with the Schur complement

Q.+B'QBQ.-B'Q2q.(22Q.+479.4) @QBeQ,

By mapping the fine scale model onto the coarse basis used for the coarse
model, we get an approximate (and sparse) Schur solve via

ol

where B=B &I, Qs =B'Q,B® Q., and the block matrix can be
interpreted as the precision of a bivariate field on a common, coarse
spatio-temporal scale.
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Variance calculations
Basic Rao-Blackwellisation of sample estimators

Let (/) be samples from a Gaussian posterior and let a " = be a linear
combination of interest. Then, for any subdomain O, C Q,

E(a'z) = E[E(a—rw|w9* ~ ZEa w|w

Var(a'z) =E [Var(aTm | zor)] +Var [E(a x|z

Z{ a :c|:c )—E(a—r:z:)]2

~ Var(a'z | :BQ*

k\'—‘
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Method overview

Hierarchical timescale combination of space-time random fields
Preprocessing to estimate model parameters and non-Gaussianity
Iterated linearisation

Distributed Preconditioned Conjugate Gradient solves

vV v.v. v Yy

Information is passed between the scales via approximate Schur
complements

» Overlapping space-time domain decomposition within each scale
» Rao-Blackwellised variance estimation
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