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The strict GLM/GAM/GLMM /etc subset of Latent Gaussian Models is
limited in comparison with hierarchical models with non-linear links
between nodes of latent Gaussian random processes and fields.

Prior and conditional posterior approximation at the core of INLA:

logp(al0) = O, — 32" Qe
log p(x(6,y) = log p(x|0) + log p(y|6, x)
~ Cyly — %(w —tgpy) ! Qupy (@ — py)y)
Qutiyyy = [Valogp(ylo, z)l,_,
Q.1y = Q. — [VaV, logp(yl0,z)]

T=Hy)y

How far can one extend this Gaussian approximation technique?
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Some small steps in this direction: of

e Products of spectrally separated processes;
climate and weather

e Partially observed LGCPs;
imperfect point detection

o Mark-dependent detection probabilities;
500 dolphins in a group are more visible than 5



Observed data 2
Observed daily Timean and Tiange for station FRW00034051 T:;E&TJ&S&ZIEY
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Reasonable models:
Tm( ) = T’r(n( )+ TI(:L( ) and T..(t )_ € '(f>h [TU( )}
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For these stations, POQ does a slightly better job than a Gamma
distribution.
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For these stations only POQ comes close to representing the distributions.
Note: Some of the mixture-like distribution shapes may be an effect of
unmodeled station inhomogeneities.



Products of transformed processes
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Assume that u is a large scale process and v is a small scale process, so

that they are statistically identifiable from observations of the form
Y = hy(u;) - hy(v;) +€;,  hy and h, non-linear transformations.

Write h,, h!,, h! for the vectors of transformed values and derivatives of

h,, at the wu; values, and similarly for v. Then

1
i(y - h’u @ hv)TQe(y - hu @ hv)

9
~5g 108 p(y | u,v) = — diag(h, © h)Q.(y—hy®hy)

)2

v

C—logp(y | u,v) =

log p(y | u,v) = diag(h, ® h)) Q. diag(h, ® h’)
- diawﬁ-);(diag(hu ®h)Q.(y — hy ® hy))

. : 52
and §|m|!arly f<.>r 8%, ?3%, and () . The problematic term in the
Hessian involving y disappears in Fisher scoring:

Eyluv (—V(Qu’v) Inp(y | u, v)) is positive definite.



LGCPs in INLA
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An inhomogeneous point process ¥V = {yy,...,yx(2)} on a space Q
with intensity A(s), s € Q is defined so that for each region A C (2, the
number of points is Ny (A) ~ Po( [, A(s) ds).

A Log-Gaussian Cox Process has a log-linear latent Gaussian (spatial)
model for A(s) = exp(n(s)).
The conditional likelihood is

Ny ()

log p(¥[5(),8) = / AS)ds+ S logA(y,)

i=1

J Ny (Q)
~— Z wjA(s;) + Z log A(y
=1
where s1,...,s; are numerical integration points with corresponding

integration weights w;.
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In line transect surveys, the probability ¢(z(s)) of detecting a poinfffglNBURGH
group of animals) at location s depends on the distance to the observer
line, z(s).
The region with non-zero detection probability, Q, may be much smaller
than .
This results in a thinned point process with intensity A(s)g(z(s)) on €
If g(-) is a half-normal detection function,

log g(z; 8) = —B2%/2,

the thinned intensity is log-linear in both 7(-) and /3, so the combined
model can use a variant of the numerical implementation used for the
completely observed model.

What about the hazard rate model,

g(z;7,0) =1 —exp { ((j)_q -,



Linearisation
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For some current MAP estimates ﬁ and log o, a first order Taylor series
expansion gives

log g(z; 8,0) ~ log g(z; B,5)

+(8-5) [ log g(z; B, )]
op 7 (8,0)=(B,5)
0
+ (log o — log ) [ log g(z; B,U)]
Ologa (8.0)=(3.5)
~G5.5(2) + (8= D)5 (=) + (log o — log7)75%7 ()

This linearisation allows us to treat 5 and log o as fixed effects.
Generalising to spatially varying parameter fields is also permitted, e.g.
with a Gaussian process prior on log o (s)

Estimation is carried out by iterated calls to inla () with the LGCP
log-linear intensity model A(s)g; 5(2(s); 3, 0)



Mark dependent detection probability 3
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The probability of detecting a group of animals at a large distance fgINBURGH
larger for large groups than for small groups. Failure to model that leads
to bias.

We can design a group size dependent detection function, e.g.

-8
g(z,m)=1—exp [ (ﬁ) ] with logo(m) = a+ fm,

but the log-groupsize m is only available where we have detected a group
of animals. We need to model what the group size could potentially be
at all locations in the studied domain.

A simple model is the continuous log-groupsize model

(mlp(-),8) ~ N(u(s), 1/7)

The joint point process for detected points and log-groupsizes on
(s, m) € Q x R has intensity A(s)p(m|u(-),s)g(z(s), m)



Linearised likelihood
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The conditional likelihood is oS

log (¥ Mln().p().0.7) = = | / p(mlu(s), 7)g(2(s); 6) dm ds

Ny () Ny () Ny(Q)

+ Y logA(y, Z log p(milu(y Z log 9(2(y,); 0)
=1

—Zw] (8;)P(mylu(s;), 7)g(2(s;); )

Ny (Q) Ny () Ny (Q)
+ > logAy,) + Y logB(milu(y,), Z log §(2(y,): 0)
i=1 i=1
where (s1,my),...,(sy, my) are numerical integration points with

corresponding integration weights w;, and log p(m|u(-),7) and
log g(z(s); @) are 1st order Tayor approximations at some fi(-), 7, and 6.



General principle ¢3
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We can gain some intuition why the linearisation works by relnterpr@%DINBURGH
an ordinary likelihood []!"_, p(y;|z) as a point process intensity. Define

Yz (y) = {ilogp(yw)}

=T

and take a 1st order Taylor approximation of log p(y|z):

log p(y|z) = n — n/p(y\w)dy +) log p(yilz)
=1

Q

n— n/my@)e(w*@w(y) dy
+Zlogp %:|7) + (z — 7) Z% Yi)

=1

Trivia: The integral term is the mgf for vz (y) evaluated at = — Z.



General principle
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The derivatives can be evaluated at z = Z: oS

a n R n
9 N _ S\ o(z=F)72 () (o
B2 log p(ylz) = n/%(y)p(yll)c Taty dy+;%(yz)

= —nE[ya(y) |y ~ p(l)] + Y va(w) = D v (w)
i=1 i=1
which is the same derivative as for log p(y|z) at Z.
0’ N\a(2—T)yz (Y
sz logp(yla) = —n [ 12 p(yl@)el= 0 dy
= —nE [v2(y)* |y ~ p(y[3)] = ~Z(3ly)

where Z(Z) is the Fisher information for = evaluated at Z.

The computational loss in using this approximation is the numerical
integration over .



Bonus preview: Interactive mesh builder o
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shiny app for experimenting with and assessing meshes for spde mcdere
SD on the mesh, continuous domain SD, and their ratio:
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