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“Big” data
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Illustration: Synthetic data mimicking satellite based CO2 measurements.
Iregular data locations, uneven coverage, features on different scales.
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Sparse spatial coverage of temperature measurements
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Regional observations: ≈ 20,000,000 from daily timeseries over 160 years
Note: This is a small subset of the full data! (More about this tomorrow!)
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Spatio-temporal modelling framework

Spatial statistics framework
I Spatial domain Ω, or space-time domain Ω× T, T ⊂ R.
I Random field u(s), s ∈ Ω, or u(s, t), (s, t) ∈ Ω× T.
I Observations yi . In the simplest setting, yi = u(s i) + εi , but more

generally yi ∼ GLMM, with u(·) as a structured random effect.
I Needed: models capturing stochastic dependence on multiple scales
I Partial solution: Basis function expansions, with large scale functions

and covariates to capture static and slow structures, and small scale
functions for more local variability

Two basic model and method components
I Stochastic models for u(·).
I Computationally efficient (i.e. avoid MCMC whenever possible)

inference methods for the posterior distribution of u(·) given data y .
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Covariance functions and stochastic PDEs

The Matérn covariance family on Rd

Cov(u(0), u(s)) = σ2 21−ν

Γ(ν)
(κ‖s‖)νKν(κ‖s‖)

Scale κ > 0, smoothness ν > 0, variance σ2 > 0

Whittle (1954, 1963): Matérn as SPDE solution
Matérn fields are the stationary solutions to the SPDE(

κ2 −∇ · ∇
)α/2

u(s) =W(s), α = ν + d/2

W(·) white noise, ∇ · ∇ =
∑d

i=1
∂2

∂s2i
, σ2 = Γ(ν)

Γ(α)κ2ν(4π)d/2

(Continuous domain white noise, E(W(A)) = 0, and
Cov(W(A),W(B)) = |A ∩ B |, for all measurable A,B ⊆ Rd . Not to be
confused with pointwise independent noise.)
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Basis function representations for Gaussian Matérn fields

Basis definitions
Finite basis set (k = 1, . . . ,n)

Karhunen-Loève (κ2 −∇ · ∇)−αeκ,k (s) = λκ,keκ,k (s)
Fourier −∇ · ∇ek (s) = λkek (s)
Convolution (κ2 −∇ · ∇)α/2gκ(s) = δ(s)
General/GMRF ψk (s)

Field representations

Field u(s) Weights
Karhunen-Loève ∝

∑
k eκ,k (s)zk zk ∼ N (0, λκ,k )

Fourier ∝
∑

k ek (s)zk zk ∼ N (0, (κ2 + λk )−α)
Convolution ∝

∑
k gκ(s − sk )zk zk ∼ N (0, |cellk |)

General/GMRF ∝
∑

k ψk (s)uk u ∼ N (0,Q−1
κ )

Note: Harmonic basis functions (as in the Fourier approach) give a diagonal
Qκ, but lead to dense posterior precision matrices.
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Continuous and discrete Markov properties

Markov properties
S is a separating set for A and B : u(A) ⊥ u(B) | u(S )

A

S

B

Solutions to(
κ2 −∇ · ∇

)α/2
u(s) =W(s)

are Markov when α is an integer.
(Generally, when the reciprocal of the
spectral density is a polynomial, Rozanov, 1977)

Discrete representations (Q = Σ−1):
QAB = 0
QA|S ,B = QAA

µA|S ,B = µA −Q−1
AAQAS (uS − µS )

Fractional SPDEs can often be closely approximated by sums of a small
number of Markov SPDEs, or even by a single (non-Matérn) Markov SPDE.
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Beyond Matérn: Non-stationary field

(κ(s)2 −∇ · ∇)u(s) = κ(s)W(s), s ∈ Ω
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Beyond Matérn: Markov does not mean local dependence

(κ(s)2 −∇ ·H (s)∇)u(s) = κ(s)W(s), s ∈ Ω
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Covariances for four reference points
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Continuous domain Markov approximations

Continuous Markovian spatial models (Lindgren et al, 2011)

Local basis: u(s) =
∑

kψk (s)uk , (compact, piecewise linear)

Basis weights: u ∼ N (0,Q−1), sparse Q based on an SPDE

Special case: (κ2 −∇ · ∇)u(s) =W(s), s ∈ Ω

Precision: Q = κ4C + 2κ2G + G2 (κ4 + 2κ2|ω|2 + |ω|4)

Conditional distribution in a jointly Gaussian model

u ∼ N (µu ,Q
−1
u ), y |u ∼ N (Au ,Q−1

y|u) (Aij = ψj (s i))

u |y ∼ N (µu|y ,Q
−1
u|y)

Qu|y = Qu + ATQy|uA (∼”Sparse iff ψk have compact support”)

µu|y = µu + Q−1
u|yA

TQy|u(y −Aµu)

We’ve translated the spatial inference problem into sparse numerical linear
algebra similar to finite element PDE solvers
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The computational GMRF work-horse

Cholesky decomposition (Cholesky, 1924)

Q = LL>, L lower triangular (∼ O(n(d+1)/2) for d = 1, 2, 3)

Q−1x = L−>L−1x , via forward/backward substitution

log detQ = 2 log detL = 2
∑
i

logLii

André-Louis Cholesky (1875–1918)

"He invented, for the solution of the condition equations in the
method of least squares, a very ingenious computational proce-
dure which immediately proved extremely useful, and which most
assuredly would have great benefits for all geodesists, if it were
published some day." (Euology by Commandant Benoit, 1922)
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Laplace approximations for non-Gaussian observations

Quadratic posterior log-likelihood approximation

p(u | θ) ∼ N (µu ,Q
−1
u ), y | u ,θ ∼ p(y | u)

pG(u | y ,θ) ∼ N (µ̃, Q̃
−1

)

0 = ∇u {ln p(u | θ) + ln p(y | u)}|u=µ̃

Q̃ = Qu − ∇2
u ln p(y | u)

∣∣
u=µ̃

Direct Bayesian inference with INLA (r-inla.org)

p̃(θ | y) ∝ p(θ)p(u | θ)p(y | u ,θ)

pG(u | y ,θ)

∣∣∣∣
u=µ̃

p̃(u i | y) ∝
∫

pGG(u i | y ,θ)p̃(θ | y) dθ

The main limiting factors for the INLA method are the number of latent
variables and the number model parameters (and to a much lesser degree
the number of observations). Here we’ll concentrate on the latent variables.
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SPDE based inference for point process data
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A multiscale model example

I A temporally slow, simplified stochastic heat equation (non-separable)

∂

∂t
z (s, t)− γz∇ · ∇z (s, t) = E(s, t)

(1− γE∇ · ∇)E(s, t) =WE(s, t)
I A temporally quick, spatially non-stationary SPDE/GMRF (separable)(

∂
∂t + γt

)
(κ(s)2 −∇ · ∇) (τ(s)a(s, t)) =Wa(s, t)

I Measurements
yi = a(s i , ti) + z (s i , ti) + εi , discretised into
y = A(a + (B ⊗ I )z ) + ε, ε ∼ N (0,Q−1

ε )
where B maps from long-term basis functions to short-term, and A
maps from short-term basis functions to the observations.

The posterior precision can be formulated for (a + z , z )|y :

Q(a+z ,z)|y =

[
Q t ⊗Qa + A>QεA −Q tB ⊗Qa

−B>Q t ⊗Qa Qz + B>Q tB ⊗Qa

]
Finn Lindgren - f.lindgren@bath.ac.uk Stochastic PDEs and numerical methods for large scale spatial statistics
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Locally isotropic non-stationary precision construction

Finite element construction of basis weight precision
Non-stationary SPDE:

(κ(s)2 −∇ · ∇) (τ(s)u(s)) =W(s)

The SPDE parameters are constructed via spatial covariates:

log τ(s) = bτ0 (s) +

p∑
j=1

bτj (s)θj , log κ(s) = bκ0 (s) +

p∑
j=1

bκj (s)θj

Finite element calculations give
T = diag(τ(s i)), K = diag(κ(s i))

Cii =

∫
ψi(s) ds, Gij =

∫
∇ψi(s) · ∇ψj (s) ds

Q = T
(
K 2CK 2 + K 2G + GK 2 + GC−1G

)
T

Combining this with an AR(1) discretisation of the temporal operator, we get
Q t ⊗Qa . More on Qz tomorrow.
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Posterior calculations

Write x = (a + z , z ) for the full latent field.

Qx |y =

[
Q t ⊗Qa + A>QεA −Q tB ⊗Qa

−B>Q t ⊗Qa Qz + B>Q tB ⊗Qa

]
can be pseudo-Cholesky-factorised:

Qx |y = L̃x |y L̃
>
x |y , L̃x |y =

[
Lt ⊗ La 0 A>Lε

−B>Lt ⊗ La L̃z 0

]
Posterior expectation, samples, and marginal variances (with Ã =

[
A 0

]
):

Qx |y(µx |y − µx ) = Ã
>
Qε(y − Ãµx ),

Qx |y(x − µx |y) = L̃x |yw , w ∼ N (0, I ), or

Qx |y(x − µx ) = Ã
>
Qε(y − Ãµx ) + L̃x |yw , w ∼ N (0, I ),

Var(xi |y) = diag(inla.qinv(Qx |y)) (requires Cholesky)

Finn Lindgren - f.lindgren@bath.ac.uk Stochastic PDEs and numerical methods for large scale spatial statistics
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Preconditioning for e.g. conjugate gradient solutions

Solving Qx = b is equivalent to solving M−1Qx = M−1b . Choosing
M−1 as an approximate inverse to Q gives a less ill-conditioned system.
Only the action of M−1 is needed, e.g. one or more fixed point iterations:

Block Jacobi and Gauss-Seidel preconditioning

Matrix split: Qx |y = L + D + L>

Jacobi: x (k+1) = D−1
(
−(L + L>)x (k) + b

)
Gauss-Seidel: x (k+1) = (L + D)−1

(
−L>x (k) + b

)
Remark: Block Gibbs sampling for a GMRF posterior

With Q = Qx |y , b = A>Qε(y −Aµx ) and x̃ = x − µx ,

x̃ (k+1) = (L + D)−1
(
−L>x̃ (k) + b + L̃Dw

)
, w ∼ N (0, I )

Gauss-Seidel and Gibbs are both inefficient on their own, but G-S leads to useful
preconditioners. Convergence testing is much easier for linear solvers than for MCMC.

Finn Lindgren - f.lindgren@bath.ac.uk Stochastic PDEs and numerical methods for large scale spatial statistics
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Multiscale Schur complement approximation
Solving Qx |yx = b can be formulated using two solves with the upper block
Q t ⊗Qa + A>QεA, and one solve with the Schur complement

Qz +B>Q tB ⊗Qa −B>Q t ⊗Qa

(
Q t ⊗Qa +A>QεA

)−1

Q tB ⊗Qa

By mapping the fine scale model onto the coarse basis used for the coarse
model, we get an approximate (and sparse) Schur solve via[

Q̃B + B̃
>
A>QεAB̃ −Q̃B

−Q̃B Qz + Q̃B

] [
ignored

z

]
=

[
0

b̃

]

where B̃ = B ⊗ I , Q̃B = B>Q tB ⊗Qa , and the block matrix can be
interpreted as the precision of a bivariate field on a common, coarse
spatio-temporal scale.

Each block may be very large even on the coarse scale, and we still need a
way to solve with the fine scale upper block!

Finn Lindgren - f.lindgren@bath.ac.uk Stochastic PDEs and numerical methods for large scale spatial statistics
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Multigrid
Construct a sequence of increasingly detailed models,(
Q(0), Q(1), . . . , Q(L)

)
.

Basic idea:
I On each level, a simple local fixed point iteration can eliminate small

scale residual errors efficiently, but not large scale errors.
I Project the residual onto the next coarse level, where the large scale is

now small, and then interpolate the result back onto the finer level.
I On the coarsest level, solve the exact problem.

Simple multigrid model traversal: L = 4, 3, 2, 1, 0, 1, 2, 3, 4 = L
Full multigrid: L = 4, 3, 2, 1, 0, 1, 0, 1, 2, 1, 0, 1, 2, 3, 2, 1, 0, 1, 2, 3, 4 = L

In theory, full multigrid can be O(n), but the constant may be very large, and
toy model testing indicates that the high operator order is a problem.

Can be used as complete solver with small tolerance, or as preconditioner
with large tolerance.

Finn Lindgren - f.lindgren@bath.ac.uk Stochastic PDEs and numerical methods for large scale spatial statistics
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Finite element mesh

Triangulation mesh

Finn Lindgren - f.lindgren@bath.ac.uk Stochastic PDEs and numerical methods for large scale spatial statistics
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Finite element mesh (spot the R map plotting surprise!)

Triangulation mesh

Finn Lindgren - f.lindgren@bath.ac.uk Stochastic PDEs and numerical methods for large scale spatial statistics
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Domain decomposition
I Divide the domain into a collection of overlapping subdomain blocks
I Solve a local problem, e.g. the conditional solution, maintaining

coherence by enforcing constraints on overlapping nodes.

Monte Carlo variance reduction for posterior variances
E(x i | y) = E (E(x i | y ,x 6∈subblock))
Var(x i | y) = Var (x i | y ,x 6∈subblock) + Var (E(x i | y ,x 6∈subblock))
Also works for linear combinations, with some complications

Subdomain boundary adjustment (new idea)
I Apply stochastic boundary correction for each subdomain
I Solve the full local problem, reusing the appropriate randomness for

overlapping subdomains
I Blend the results for overlapping domains.
I Apply this as a preconditioner in an iterative solver

Finn Lindgren - f.lindgren@bath.ac.uk Stochastic PDEs and numerical methods for large scale spatial statistics
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All deterministic boundary conditions are ‘inappropriate’
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Stationary stochastic boundary adjustment

Recall the Matérn generating SPDE

(κ2 −∇ · ∇)α/2u(s) =W(s)

RKHS inner product for Matérn precisions on Rd :

〈f , g〉H (Ω) =

α∑
k=0

(
α

k

)
κ2α−2k

〈
∇k f ,∇kg

〉
Ω

Boundary adjusted precision operator on a compact subdomain, where P
projects onto the operator null-space:

QΩ(f , g) = 〈f , g〉H (Ω) − 〈Pf ,Pg〉H (Ω) +QP;∂Ω(Pf ,Pg)

= 〈f − Pf , g − Pg〉H (Ω) +QP;∂Ω(Pf ,Pg)

Note that QP;∂Ω(Pf ,Pg) may involve normal derivatives at the boundary.
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Covariances (D&N, Robin, Stoch) for κ = 5 and 1
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Derivative covariances (D&N, Robin, Stoch) for κ = 5 and 1
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Process-derivative cross-covariances (D&N, Robin, Stoch)
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Square domain, basis triangulation
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Square domain, stochastic boundary (variances)
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Square domain, mixed boundary (variances)
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Elliptical domain, basis triangulation
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Elliptical domain, stochastic boundary (variances)
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Elliptical domain, mixed boundary (variances)
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