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Intro

“Big” data
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lllustration: Synthetic data mimicking satellite based CO, measurements.
Iregular data locations, uneven coverage, features on different scales.
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Sparse spatial coverage of temperature measurements
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Regional observations: ~ 20,000,000 from daily timeseries over 160 years
Note: This is a small subset of the full data! (More about this tomorrow!
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Spatio-temporal modelling framework

Spatial statistics framework

» Spatial domain (2, or space-time domain 2 x T, T C R.

» Random field u(s), s € Q, or u(s,t), (s,t) € Q x T.

» Observations y;. In the simplest setting, v; = u(s;) + ¢;, but more
generally y; ~ GLMM, with «(-) as a structured random effect.

» Needed: models capturing stochastic dependence on multiple scales

» Partial solution: Basis function expansions, with large scale functions
and covariates to capture static and slow structures, and small scale
functions for more local variability

Two basic model and method components

» Stochastic models for u(-).

» Computationally efficient (i.e. avoid MCMC whenever possible)
inference methods for the posterior distribution of «(-) given data y.

4
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Spatial models Spatial Matérn/SPDE Basis connections Markov Laplace

Covariance functions and stochastic PDEs

The Matérn covariance family on R¢

21—1/
Cov(u(0), u(s)) = o* s (sl Ko s
Scale k > 0, smoothness v > 0, variance o2 > 0

Whittle (1954, 1963): Matérn as SPDE solution
Matérn fields are the stationary solutions to the SPDE

(52 =V -V)?u(s) =W(s), a=v+d/2
W(-) white noise, V - V = Z?zl g—;, o? = ﬁl&rw
(Continuous domain white noise, E(W(A)) = 0, and
Cov(W(A), W(B)) =
confused with pointwise independent noise.)

. Not to be
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Spatial models Spatial Matérn/SPDE Basis connections Markov Laplace

Basis function representations for Gaussian Matérn fields

Basis definitions

Finite basis set (k = 1,...,n)
Karhunen-Logve (k% — V- V) %e, 1(8) = A keni(8)
Fourier —V - Ver(s) = Aper(s)
Convolution (k2 =V -V)*2g,(s) = 8(s)
General/GMRF ()

4

Field representations

Field u(s) Weights
Karhunen-Logve o< Y, e, 1 (8)z 2 ~ N (0, A )
Fourier o Y en(8)z 2z ~ N (0, (m + Ap)79)
Convolution X Yy k(s —sk)z 2k ~ N(O,|celly|)
General/GMRF ¢ 3, i (8)uy U~ N(o, Q.Y

Note: Harmonic basis functions (as in the Fourier approach) give a diagonal
Q,., but lead to dense posterior precision matrices.
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Spatial models Spatial Matérn/SPDE Basis connections Markov Laplace

Continuous and discrete Markov properties

Markov properties
S'is a separating set for A and B: u(A4) L u(B) | u(S)

Solutions to
2 0/,/2
(k2 =V -V)" " u(s) = W(s)
are Markov when « is an integer.
(Generally, when the reciprocal of the
spectral density is a polynomial, Rozanov, 1977)

Discrete representations (Q = =)
Qup=0

Qus,8=Qan

Hais,B = Ha — Qi1 Qas(us — pg)

Fractional SPDEs can often be closely approximated by sums of a small
number of Markov SPDEs, or even by a single (non-Matérn) Markov SPDE.
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Spatial models Spatial Matérn/SPDE Basis connections Markov Laplace

Beyond Matérn: Non-stationary field

. L .
v : &
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Spatial models Spatial Matérn/SPDE Basis connections Markov Laplace

Beyond Matérn: Markov does not mean local dependence

Finn Lindgren - f.lindgren@bath.ac.uk Stochastic PDEs and numerical methods for large scale spatial statistics



Intro  Spatial models Multiscale Boundaries References Spatial Matérn/SPDE Basis connections Markov Laplace

Covariances for four reference points
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Spatial models Spatial Matérn/SPDE Basis connections Markov Laplace

Continuous domain Markov approximations

Continuous Markovian spatial models (Lindgren et al, 2011)

Local basis: u(s) = >, ¥r(s)u;, (compact, piecewise linear)
Basis weights: u ~ A/ (0, Q '), sparse Q based on an SPDE
Special case: (k> — V- V)u(s) = W(s), s
Precision: Q = x*C +2k>G + Gy (8* + 2k%|w|? + |w|*)

’

Conditional distribution in a jointly Gaussian model

we~ Np, QyY), ylu~N(Auw, Q) (Ay = ¢(s:)
uly ~ Nty Q)
Qu,=Q.,+ ATQy‘uA (~"Sparse iff 1/, have compact support”)
By = o + Qi AT Qy (y — Ap)

We've translated the spatial inference problem into sparse numerical linear
algebra similar to finite element PDE solvers

Finn Lindgren - f.lindgren@bath.ac.uk Stochastic PDEs and numerical methods for large scale spatial statistics



Spatial models Spatial Matérn/SPDE Basis connections Markov Laplace

The computational GMRF work-horse

Cholesky decomposition (Cholesky, 1924)

Q= LL", Llowertriangular (~ (’)(n(d+1)/2) ford =1,2,3)
Q lz= L‘TL_lw, via forward/backward substitution

logdet Q@ = 2logdet L = 2ZIOg Ly

André-Louis Cholesky (1875-1918)

"He invented, for the solution of the condition equations in the B
method of least squares, a very ingenious computational proce-
dure which immediately proved extremely useful, and which most
assuredly would have great benefits for all geodesists, if it were
published some day." (Euology by Commandant Benoit, 1922)
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Spatial models Spatial Matérn/SPDE Basis connections Markov Laplace

Laplace approximations for non-Gaussian observations

Quadratic posterior log-likelihood approximation

p(u|6) ~N(p,, Q,Y), y|u,6~ply|u)
pe(uly,0) ~N(@E Q)
0= Vy{lnp(u|8)+np(y|u)},_z

Q=Q,— Vilp(y|u)l,_; )

Direct Bayesian inference with INLA (r-inla.org)

p(@)p(u | O)p(y | u,0)
pa(uly,6) u=fi

p(0 | y) x

pui | v) o< [ pec(u: | v.0)p(0 | y) do ,

The main limiting factors for the INLA method are the number of latent
variables and the number model parameters (and to a much lesser degree
the number of observations). Here we’ll concentrate on the latent variables.

Stochastic PDEs and numerical methods for large scale spatial statistics
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SPDE based inference for point process data

N
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Multiscale Prior Posterior Preconditioning

A multiscale model example

» A temporally slow, simplified stochastic heat equation (non-separable)

8tz(s, t) —7.V-Vz(s, t) =E(s, 1)
(1 -7V - V)E(S, t) = WS(S7 t)

> A temporally quick, spatially non-stationary SPDE/GMRF (separable)
(5 +7) (5(s)> = V- V) (7(s)a(s, 1)) = Wa(s, 1)

» Measurements
v, = a(sq, t;) + z(si, t;) + €;, discretised into
y=Ala+(BoI)z)+ee~N0 Q)
where B maps from long-term basis functions to short-term, and A
maps from short-term basis functions to the observations.

The posterior precision can be formulated for (a + z, )| y:

Q _[@®Q,+A4'QA -QB®Q,
(a+2,2)ly -B'Q,%Q, Q.+B'Q,B®Q,
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Locally isotropic non-stationary precision construction

Finite element construction of basis weight precision

Non-stationary SPDE:
(k(5)* = V- V) (1(s)u(s)) = W(s)

The SPDE parameters are constructed via spatial covariates:
log 7(s) = bj(s) + Z b7 (s)8;, logk(s)=b5(s)+ Z b7 (8)0;
Finite element calculations give
T = diag(7(s;)), K = diag(k(s;))
Cii Z/% )ds, G = /Vwi(s) -Vii(s)ds
Q=T (K’°CK’+K°G+GK*+GC'G) T

Combining this with an AR(1) discretisation of the temporal operator, we get
Q,® Q,. More on @, tomorrow.
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Posterior calculations

Write z = (a + z, z) for the full latent field.

Q,2Q,+A7Q.A -Q,B®Q, }
-B'Q,©Q, Q.+B'QB®Q,

can be pseudo-Cholesky-factorised:

Qz|y =

L,®L, 0 ATLe]

- T ~
Qm\y = LzlyLI\w L”"ly - —BTLt ® Lq zz 0

Posterior expectation, samples, and marginal variances (with A= [A 0]):

~T ~
QJ‘ ( I’LJ,\y) I\yw7 'LUNN(O,I), or
By) =
) =

~T ~ ~
Qz\y( Ky A Q (yfAHr)‘FLL\y ’lUNN(O,I),
Var(z;|y) = diag(inla.qinv(Q,,)) (requires Cholesky)
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Preconditioning for e.g. conjugate gradient solutions

Solving Qx = b is equivalent to solving M ~' Qa = M ~'b. Choosing
M~ ' asan approximate inverse to @ gives a less ill-conditioned system.
Only the action of M~ is needed, e.g. one or more fixed point iterations:

Block Jacobi and Gauss-Seidel preconditioning

Matrix split: Q. = L+ D + L'

z|y

Jacobi: zFt1) = p~! (—(L+ LHz® 4 b)

Gauss-Seidel: z**1) = (L + D)~} (—LT;B(’“) + b)

4

Remark: Block Gibbs sampling for a GMRF posterior

With @ = Q,),. b=ATQ (y — Ap,)and Z =z — p,,

g+ — ([ 4 D)1 (—LTi(k) +b+ ipw) , w~N(0,I)

Gauss-Seidel and Gibbs are both inefficient on their own, but G-S leads to useful
preconditioners. Convergence testing is much easier for linear solvers than for MCMC.
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Multiscale Prior Posterior Preconditioning

Multiscale Schur complement approximation

Solving Q. |, = b can be formulated using two solves with the upper block
Q,®Q,+ A" Q_A, and one solve with the Schur complement

Q.+B'QBQ,-B'Q,2Q,(2,©0,+47Q4) @BoaQ,

By mapping the fine scale model onto the coarse basis used for the coarse
model, we get an approximate (and sparse) Schur solve via

-l

where B= B ® I, @B = BTQtB ® @ ,, and the block matrix can be
interpreted as the precision of a bivariate field on a common, coarse
spatio-temporal scale.

Qs +B ATQAB  -Q,
_QB Qz + QB

Each block may be very large even on the coarse scale, and we still need a
way to solve with the fine scale upper block!
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Multiscale Prior Posterior Preconditioning

Multigrid
Construct a sequence of increasingly detailed models,

(Q<0>7 QW, ... Q(L))_

Basic idea:

» On each level, a simple local fixed point iteration can eliminate small
scale residual errors efficiently, but not large scale errors.

» Project the residual onto the next coarse level, where the large scale is
now small, and then interpolate the result back onto the finer level.

» On the coarsest level, solve the exact problem.

Simple multigrid model traversal: L = 4,3,2,1,0,1,2,3,4 =L
Full multigrid: L =4,3,2,1,0,1,0,1,2,1,0,1,2,3,2,1,0,1,2,3,4 =L

In theory, full multigrid can be O(n), but the constant may be very large, and
toy model testing indicates that the high operator order is a problem.

Can be used as complete solver with small tolerance, or as preconditioner
with large tolerance.
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Multiscale Prior Posterior Preconditioning

Finite element mesh

Triangulation mesh
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Multiscale

Prior Posterior Preconditioning
Finite element mesh (spot the R ma

lotting surprise!)
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Multiscale Prior Posterior Preconditioning

Domain decomposition
» Divide the domain into a collection of overlapping subdomain blocks

» Solve a local problem, e.g. the conditional solution, maintaining
coherence by enforcing constraints on overlapping nodes.

4

Monte Carlo variance reduction for posterior variances

E(z: | y) = E(E(z: | ¥, Tgsubblock))
Var(z; | y) = Var (z; | ¥, Zgsubbiock) + Var (E(x; | ¥, T ¢sublock))
Also works for linear combinations, with some complications

y

Subdomain boundary adjustment (new idea)

» Apply stochastic boundary correction for each subdomain

» Solve the full local problem, reusing the appropriate randomness for
overlapping subdomains

» Blend the results for overlapping domains.
> Apply this as a preconditioner in an iterative solver
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Boundaries Theory 1D 2D

All deterministic boundary conditions are ‘inappropriate’

o _|
-

Normal derivatives at boundary

Process at boundary
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Stationary stochastic boundary adjustment

Recall the Matérn generating SPDE
(K2 =V -V)¥2u(s) = W(s)

RKHS inner product for Matérn precisions on R%:

83

<f, g>H(Q) = Z (Z) I<;2(x—2k <ka’ ng>Q

k=0

Boundary adjusted precision operator on a compact subdomain, where P
projects onto the operator null-space:

QQ(f»g) = <f7g>H(Q) - <'Pf7'Pg>H(Q) + QP;@Q(Pf77)g)
= <f —Pf,9— Pg>H(Q) + QP;E)Q(,Pf»Pg)

Note that Qp.90(Pf, Pg) may involve normal derivatives at the boundary.
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Covariances (D&N, Robin, Stoch) for k = 5 and 1
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Boundaries Theory 1D 2D

Derivative covariances (D&N, Robin, Stoch) for k = 5 and 1
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Process-derivative cross-covariances (D&N,

Cross-covariance

Cross-covariance.

Boundaries

Theory 1D 2D

Cross-covariance

Cross-covariance

Cross-covariance.
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Square domain, basis triangulation
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Square domain, stochastic boundary (variances)

Finn Lindgren - f.lindgren@bath.ac.uk Stochastic PDEs and numerical methods for large scale spatial statistics



Boundaries Theory 1D 2D

Square domain, mixed boundary (variances)
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Elliptical domain, basis triangulation
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Elliptical domain, stochastic boundary (variances)

T
-1.0 -05 0.0 0.5 1.0
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Elliptical domain, mixed boundary (variances)
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