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Sparse spatial coverage of temperature measurements
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300 regional stations: ~ 20,000,000 from daily timeseries over 160 years

Full data: 70000 stations, several satellites, many ships, some lakes
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EUSTACE Data EUSTACE Model framework

EUSTACE (EU Surface Temperatures for All Corners of Earth)

EUSTACE has received funding from the European Union's Horizon 2020 ; v -
- Programme for Research and Innovation, under Grant Agreement no 640171 E U S TAC E&
EUSTACE will give publicly available daily estimates of surface air

temperature since 1850 across the globe for the first time by combining
surface and satellite data using novel statistical techniques.
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EUSTACE Computation Boundaries Data EUSTACE Model framework

EUSTACE data and modelling workflow

» WP1: Translate sensor data into local estimates of air temperatures
Relationships vary over land, ocean, ice, and lakes, and with season
The estimation errors are spatially correlated
Daily station data shows timeseries breaks in mean and distribution

» WP2: Spatio-temporal blending of all data sources
Two approaches: “Advanced traditional” and “Ambitious”

Point estimates of air temperature and uncertainty, and a random
sample/ensemble from the posterior distribution

» WP3: Validation of calibration models and data products

Modelling challenges:
» Each data sources generates daily values of one (or more) of Tinay,
Trin, Tavg, @and Trange at irregular locations
> Thax and Ty, are strongly non-Gaussian and dependent, but 7,4 and
Trange are less dependent.

> After compensating for the seasonal cycle, T, is close to Gaussian,
but Tiange is non-Gaussian.
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EUSTACE Data EUSTACE Model framework
Preliminary model framework
» Build a priori independent multi-component models for Ty,g and Trange,
in space (s) and time (year ¢ and time within year 7):
Tavg(s, t, 7) = seasonalayg(s, 7) + longterm,,, (s, t, 7) + shorttermayg(s, ¢, 7)
A transformation or copula model is needed for the range, non-linear A (-):

log (scaling g (s, £, 7)) = seasonalange(s, 7) + longterm .. (s, t, 7)
Trange (s, t, 7) = scalingange (s, t,7) - h (shorttermrange(s, t, 7))

Each component is a Gaussian process with different spatial and
temporal covariance properties.

» For observations of daily maxima and minima, define

Tmin = Tavg - Trange/2
Tmax - Tavg + Trange/2
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Multiple data sources, all with their own issues

» Ground station air temperatures, with temporally persistent systematic
deviations, e.g.
Y1) = Trnax(8i, 1) + Snty Hi(t)Bir + (1),
where Hy () typically are step functions around time series breakpoints.
» Ship measurements and buoys. Similar to ground stations, but moving
around in space! And they measure water temperature as well.
Sometimes with buckets.

» Geostationary and polar orbiting satellite measurements of land surface,
ocean surface, and ice sheet surface temperatures. Different
measurement footprints, spatially correlated errors, complicated links to
air temperatures.

> Lake temperatures. Water temperatures linked with spatio-temporal
averages of past air temperatures.

WP1 of EUSTACE will build calibration models for each data source, with
uncertainties tracked into pseudo-observation models for air temperature,
which is then fed into a unified Bayesian spatio-temporal estimate in WP2, via

N
p(Tanv Trangevﬁ | Yi,... YN) X p(Tanv Trangevﬁ) sz:l p(Yk | Tavga Trange:ﬁ)



Computation Laplace Non-Gaussian Multiscale prior Precisions Preconditioning

Laplace approximations for non-linear observations

By building the latent random field models as discretisations of stochastic
PDEs collecting all the basis coefficients into a single a priori Gaussian
vector, the spatio-temporal inference problem is turned into a sparse
numerical algebra problem.

The non-linear transformations lead to a non-linear problem that can be
approximated with a Gaussian posterior:

Quaderatic posterior log-likelihood approximation

p(ul0) ~N(p,, Q,), ylu,6~ply|u)
~—1

re(uly,0) ~N@,Q )
0= Vy{lnp(u|6)+Inp(y|u)},_z
Q=Q,- Volnp(y|u),_
The product structure for Ti,ge doesn’t necessarily generate positive definite

precisions away from the mode, but the optimisation can use Fisher scoring,
where E, |, (—V2Inp(y | u)) is positive definite.
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Computation Laplace Non-Gaussian Multiscale prior Precisions Preconditioning

Products of transformed processes

Assume that w is a large scale process and v is a small scale process, so
that they are statistically identifiable from observations of the form

Y = hy(u;) - hy(v;) +€;,  hy, and h, non-linear transformations.

Write h,,, h/,, h!/ for the vectors of transformed values and derivatives of h,,

at the u; values, and similarly for v. Then
1
C - logp(y | u, ’U) = §(y - hu O) hv)TQs(y - hu O} hu)

0 ,
“ou logp(y | u,v) = —diag(h, © hv)Qe(y —h, ©h,)
2

‘% log p(y | w, v) = diag(hy © ;) Q. diag(h. © h;)
— diag(diag(h, ® b)) Q. (y — hy ® hy))

and similarly for -, 02—; and ()a—; The problematic term in the Hessian
involving y disappears in Fisher scoring.
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EUSTACE Computation Boundaries Laplace Non-Gaussian Multiscale prior Precisions Preconditioning

Seasonal effects and shortterm distribution for 75,4

Raw data, estimated short term process, and Normal Q-Q plot for Ty
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qnorm(ppoints(sum(is.na(data$Tm.resid)))

The residual process is close to Normal, possibly with some seasonal
variations.
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Seasonal effects and shortterm distribution for 7\ange

Raw data, estimated short term process, and Rayleigh Q-Q plot for T\zge

datasTxn

dataSTxn.normalised

Sample Quaniles

Under some theory, the residual process should have Rayleigh marginal
distribution, but the true distribution has lighter tails, with a seasonal pattern.
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Computation Laplace Non-Gaussian Multiscale prior Precisions Preconditioning

Posterior density approximations with Laplace
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Finn Lindgren - f.lindgren@bath.ac.uk Towards realistic stochastic modelling of global temperatures



Computation Laplace Non-Gaussian Multiscale prior Precisions Preconditioning

Posterior density approximations with Laplace
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Computation Laplace Non-Gaussian Multiscale prior Precisions Preconditioning

Posterior density approximations with Laplace

£
H
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Computation Laplace Non-Gaussian Multiscale prior Precisions Preconditioning

lllustrative modelling and computation principle, revisited

Ignoring the non-linearities, and the seasonal effects:

» A temporally slow, simplified stochastic heat equation (non-separable)
for the longterm processes for Thean

8tz(s, t) —7.V-Vz(s, t) =E(s, 1)
(1 =7V -V)E(s,t) =We(s,t)

» A temporally quick, spatially non-stationary SPDE/GMRF (separable)
(2 4+ %) (5(s)> = V- V) (1(s)a(s, ) = Wa(s, 1)

» Direct and linear observations:
v = a(sq, t;) + z(si, ;) + €;, discretised into
y=A(a+(BoI)z)+ee~N(0,Q7)
where B maps from long-term basis functions to short-term, and A
maps from short-term basis functions to the observations.

The posterior precision can be formulated for (a + z, z)|y:

Q — Qt®Qa+ATQGA _QtB®Qa
(a+z2)ly -B'Q,®Q, Q.+B'Q,B®Q,

Finn Lindgren - f.lindgren@bath.ac.uk Towards realistic stochastic modelling of global temperatures



Computation Laplace Non-Gaussian Multiscale prior Precisions Preconditioning

Locally isotropic non-stationary precision construction

Finite element construction of basis weight precision

Non-stationary SPDE:
(k(5)* = V- V) (1(s)u(s)) = W(s)

The SPDE parameters are constructed via spatial covariates:
log 7(s) = bj(s) + Z b7 (s)8;, logk(s)=b5(s)+ Z b7 (8)0;
Finite element calculations give
T = diag(7(s:)), K = diag(r(s:))
Oy Z/% )ds, G = /Vwi(s) -Vii(s)ds
Q=T (K’°CK’+K°G+GK*+GC'G) T

Combining this with an AR(1) discretisation of the temporal operator, we get

Qt & Qa'
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Computation Laplace Non-Gaussian Multiscale prior Precisions Preconditioning

GMREF precision for the simplified stochastic heat equation
The precision is a quint-diagonal block matrix, with further structure

Q,=MP oM+ MP oM+ M o MY
M§) = C+7G
M =G+yGC'G
M =GC'G+vGCIGC'@

Ignoring the degenerate aspect of the model, the precision can be pseudo
~ ~T
Cholesky factorisedas @), = L, L, , where

i - HLS) ®Le, LV®Lg, LY ® GLET} :
e [L;” ®Le, I"earg, Le GC‘lLGH
Since the kronecker products do not need to be explicitly stored, the pseudo

Cholesky factors require very little time and memory, and can be computed
even for a very large number of spatial basis functions (up to a million).
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Computation Laplace Non-Gaussian Multiscale prior Precisions Preconditioning

Posterior calculations, recalled from yesterday

Write z = (a + z, z) for the full latent field.

0., —|®®2Q+47QA  -QB®Q, }
@ly -B'Q,®Q, Q,+B'Q,BoQ,

can be pseudo-Cholesky-factorised:

~ ~T ~ Lt ®La 0 ATLe
Quy = Ly Ly, Lajy = -B'L,®L, iz 0 ]

Posterior expectation, samples, and marginal variances (with A = (A 0]):

— 4" Q.(y - Ap,).
,‘y wNN(OI) or

Var(a:1|y) dlag(lnla q1nv(QL‘y)) (requires Cholesky)

The preconditioners for iterative solvers from yesterday are not fully satisfactory.
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Computation Laplace Non-Gaussian Multiscale prior Precisions Preconditioning

Finite element mesh

Triangulation mesh

Smaller subregions are partially self-contained sub-problems.
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Computation Laplace Non-Gaussian Multiscale prior Precisions Preconditioning

Domain decomposition

» Divide the domain into a collection of overlapping subdomain blocks

» Solve a local problem, e.g. the conditional solution, maintaining
coherence by enforcing constraints on overlapping nodes.

4

Monte Carlo variance reduction for posterior variances

E(z: | y) = E(E(z: | ¥, Tgsubblock))
Var(z; | y) = Var (z; | ¥, Zgsubbiock) + Var (E(x; | ¥, T ¢sublock))
Also works for linear combinations, with some complications

y

Subdomain boundary adjustment (new idea)

» Apply stochastic boundary correction for each subdomain

» Solve the full local problem, reusing the appropriate randomness for
overlapping subdomains

» Blend the results for overlapping domains.
> Apply this as a preconditioner in an iterative solver
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Boundaries Theory 1D 2D

All deterministic boundary conditions are ‘inappropriate’

o _|
-

Normal derivatives at boundary

Process at boundary
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Stationary stochastic boundary adjustment

Recall the Matérn generating SPDE
(K2 =V -V)¥2u(s) = W(s)

RKHS inner product on a domain €2 for integer o

83

(9 b = Z <Z> j20—2k <ka’ vkg>ﬂ

k=0

Boundary adjusted precision operator on a compact subdomain, where P
projects onto the operator null-space:

Qalf,9) = Duw) = (Pfr P9 n) + Lrioa(Pf, Pg)
={f =Pf.9 = P9 uw) + Lrioa(Pf, Pyg)

Note that Q.00 (Pf, Pg) may involve normal derivatives at the boundary.
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Covariances (D&N, Robin, Stoch) for k = 5 and 1
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Boundaries Theory 1D 2D

Derivative covariances (D&N, Robin, Stoch) for k = 5 and 1
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Boundaries Theory 1D 2D

Process-derivative cross-covariances (D&N, Robin, Stoch)

Cross-covariance
00
Cross-covariance

Cross-covariance.
o
Cross-covariance.
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Square domain, stochastic boundary (variances)
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Elliptical domain, stochastic boundary (variances)

T
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Elliptical domain, mixed boundary (variances)
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