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Spatial mapping

Daily PM-10 concentration in the Piemonte region, 10/05–03/06.
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Large-scale rainfall mapping
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There’s power in a union
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Crime and Koalas

 

(Left: Antisocial behaviour in Wales. Right: Koalas in Australia)
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Modelling rainfall in Norway (Rikke
Ingebrigtsen, Finn Lindgren, Ingelin
Steinsland)

If the rain in Spain falls mainly on the plain, where does it fall in
Norway?
— Accurate prediction of rainfall is important for reservoir

management and electricity generation.
— Norway is not flat.
— The variation in topography is believed to be important for the

large variation in precipitation.
— There is no way that this field is stationary!
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Covariates in the covariance
(Ingebrigtsen et al)

The usual model

(κ(s)−∆)(τ(s)x(s)) = W (s)

where

log τ(s) =

p∑
i=1

Bτ
i (s)θi , logκ(s) =

p∑
i=1

Bκ
i (s)θi+p.

They take

Bτ,κ
1 (s) = 1, Bτ,κ

1 (s) = gradient, Bτ,κ
1 (s) = elevation.

www.ntnu.no D. Simpson, Markovian spatial statistics



10

What does the covariance look like?

(c) Covariance to the west (d) Covariance to the east
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“Unstructured” non-stationarity

Generally speaking, we’re not going to have some sort of covariate
that can explain the non-stationarity.
— Lots of methods for doing this.
— Most common is the deformation method of Samson and

Guttorp: Define x(s) = x̃(ψ(s)) where x̃ is a stationary field on
the deformed surface ψ(Rd ).

— Excellent idea! But there are “barriers” to real-world
application.

Idea: Rather than modelling the mapping ψ(·) directly, just “model”
the concept of intrinsic distance.

www.ntnu.no D. Simpson, Markovian spatial statistics
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A little bit fancy

Q: So how do you model distance?
— Go all maths-y and start talking about Riemannian metrics.

(blegh)
— Be a bit physics-y and talk about diffusion.

If we define the local diffusion tensor (matrix) by H(s), then we can
build a model where the important directions and their relative
distances are modelled by the eigenvectors and eigenvalues of H.

κ2(s)x(s)−∇ · (H(s)∇x(s)) = τ(s)W (s).

www.ntnu.no D. Simpson, Markovian spatial statistics
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Inconstant H(s)
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So how do we model H(s)?

We need to model a 2× 2 symmetric positive definite matrix.

H(s) = γ(s)I + v(s)v(s)T .

— γ(s) is the amount "baseline" diffusion,
— v(s) is the principle eigenvector of H.
— The amount of excess diffusion in the v direction (compared to

the the orthogonal direction) is 1 + γ−1 ‖v‖2.
— We model γ(s), v1(s) and v2(s) as (stationary) Gaussian

random fields. We may include covariates etc.
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November rain
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Purple rain
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Blame it on the rain
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Moving on up

— Sometimes, quantities of interest come in correlated blocks.
(Temperature and Pressure)

— Sometimes, quantities of interest don’t come on R2. (Surprise!)
— The first problem can be attacked with “Linear models of

co-regionalisation” or novel covariance function methods.
— The second problem involves fun with spherical harmonics...
— These “problems” is essentially trivial with SPDE approaches
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Systems of Stochastic Partial
Differential Equations


L11 L12 . . . L1k
L21 L22 . . . L2k

...
...

. . .
...

Lk1 Lk2 . . . Lkk




x1(s)
x2(s)

...
xk (s)

 =


W1(s)
W2(s)

...
Wk (s)


Lij are differential operators and Wi are (possibly not identical)
noises.
— Just apply FE method to each element of the LHS matrix
— Normal problem with multivariate GRFs -

overparameterisation! Take LHS to be triangular.
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Manifolds/curved-spaces
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Manifolds/curved-spaces

Define Matérn fields using

(κ2 −∆)α/2x(s) = W (s)

on the manifold S, driven by
Gaussian “white noise” on S

Cov(W (Ai),W (Aj)) =

∫
Ai∩Aj

dS(s)

www.ntnu.no D. Simpson, Markovian spatial statistics
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The advantage of SPDE approaches

Everything stays the same

(just change ds to the surface measure)

www.ntnu.no D. Simpson, Markovian spatial statistics



23

Joint modelling of temperature and
pressure

— There is small scale data on the US. Our methods had better
predictive performance than covariance function based
methods of Gneiting et al.

— There is global re-analysis data available to play with.
— The challenge here is that pressure typically oscillating over a

large spatial scale

www.ntnu.no D. Simpson, Markovian spatial statistics



23

Joint modelling of temperature and
pressure

— There is small scale data on the US. Our methods had better
predictive performance than covariance function based
methods of Gneiting et al.

— There is global re-analysis data available to play with.
— The challenge here is that pressure typically oscillating over a

large spatial scale

www.ntnu.no D. Simpson, Markovian spatial statistics



23

Joint modelling of temperature and
pressure

— There is small scale data on the US. Our methods had better
predictive performance than covariance function based
methods of Gneiting et al.

— There is global re-analysis data available to play with.
— The challenge here is that pressure typically oscillating over a

large spatial scale

www.ntnu.no D. Simpson, Markovian spatial statistics



24

One oscillating component
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Estimated fields

(e) (f)

Estimated bivariate random fields for ERA 40 database with
temperature (a) and pressure (b)
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How well did we do?

Prediction for the bivariate random fields at another 5000 data
points for temperature (left) and pressure (right)
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The challenge of inference

Even after all of our approximations, we have some problems:
— The posterior random field is very high dimensional with a

complicated correlation structure
• This means single-site Gibbs samplers won’t work
• Markov Chain Monte Carlo (MCMC) is delicate (ask Óli Páll!)
• Numerical optimisers will also require some care!

— The hyperparameters (such as the variance and range of the
GRF prior) are highly correlated with the latent field
• The simple Gibbs sampler (splitting parameters and field) will

not work!
• Reparameterisations are possible
• The “best” choice is to try to update them jointly

www.ntnu.no D. Simpson, Markovian spatial statistics
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Making MCMC work
Off-the-shelf MCMC schemes will not solve spatial problems
efficiently.
— “Concentration of Measure” effects mean that we are trying to

hit a vanishingly small target in a very high (infinte)
dimensional space

— It is possible to construct random walk / MALA/ HMC
Metropolis-Hastings algorithms that know where the prior is
concentrated

— It is hard to include likelihood information!
— One solution is to split the posterior into a part that is

controlled by the data (low-dimensional) and the part that’s
mostly controlled by the prior (very high dimensional).

— Preliminary results (ask Óli Páll!) are very promising!
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The problem with MCMC?

Itis



very
extremely
unspeakably
unbelievably
exceptionally
extraordinarily
terrifically
remarkably
impractically

slow.
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A case for approximate inference

MCMC is a general method for solving generic problems
— We are not solving a generic problem
— We are solving a problem where most of the posterior

structure is driven by the prior
— In fact, the conditional x | y ,θ is almost Gaussian!
— This observation is the basis of the Integrated Nested Laplace

Approximation (INLA)
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Approximating the conditional

— If we do not use them, the full conditional for x looks like

π(x | . . .) ∝ exp

(
−1

2
xT Qx +

∑
i

log(π(yi |xi))

)

≈ exp
(
−1

2
(x − µ)T (Q + diag(c))(x − µ)

)
= πG(x | . . .)

— The Gaussian approximation is constructed by matching the
• mode, and the
• curvature at the mode.

www.ntnu.no D. Simpson, Markovian spatial statistics



33

Approximating the hyperparameter
posterior

We can construct an independence sampler, using πG(·).
The Laplace-approximation for θ|x :

π(θ | y) ∝ π(θ) π(x |θ) π(y |x)

π(x |θ,y)

≈ π(θ) π(x |θ) π(y |x)

πG(x |θ,y)

∣∣∣∣∣
x=mode(θ)

Hence, we do first
— Evaluate the Laplace-approximation at some “selected” points
— Build an interpolation log-spline
— Use this parametric model as π̃(θ|y)

www.ntnu.no D. Simpson, Markovian spatial statistics
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Putting it all together

The final step in the (simplified) INLA approximation is to note that

π(x | y) =

∫
π(x | y ,θ)π(θ|y) dθ

≈
∑

k

wkπ(x | y ,θk )π̃(θk |y)

This approximation can be improved by applying further Laplace
approximations to the marginals.

www.ntnu.no D. Simpson, Markovian spatial statistics
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Limitations and notes

— This is exact (up to integration error) for Gaussian-Gaussian
models.

— This is harder to program well than MCMC, but it’s worth it!
— This approximation performs well in practice as long as the

“effective number of replicates” is large compared to the
“effective number of parameters”

— Integrating out θ is easier when it has low dimension The
R-INLA software package contains an implementation of these
(and other) ideas

www.ntnu.no D. Simpson, Markovian spatial statistics
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The village green preservation society

Direct methods
All methods from sampling from a Gaussian require a factorisation
of the covariance matrix Σ = RRT or the precision matrix
Q = Σ−1 = LLT . This is always† done with a Cholesky
factorisation.

— Fine for small problems.
— Computes the determinant for free!
— Obviously doesn’t scale well.....

www.ntnu.no D. Simpson, Markovian spatial statistics



38

What is a “massive” problem

Folk definition
A problem becomes massive when the methods I want to use no
longer work.

— Solving “massive” problems require investment in modelling.
— Solving “massive” problems require investment in computation.
— Solving “massive” problems requires compromise.

Inverse problems are “massive” problems.

www.ntnu.no D. Simpson, Markovian spatial statistics
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Whatever happened to Baby Jane?

We’ve forgotten θ!
— We need to keep track of the “change-in-volume”
|Q(θ∗)|/|Q(θ)|.

— (For technical reasons, we need to estimate each determinant
separately)

— ITERATIVE METHODS DO NOT COMPUTE DETERMINANTS

— DETERMINANTS ARE very HARD TO COMPUTE

www.ntnu.no D. Simpson, Markovian spatial statistics
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But we can do better

We can construct approximate samples
— Deterministic, modern iterative methods from numerical linear

algebra
— They are fast!
— They can scale!
— Best cases, we can get O(n log n) or even O(n) samples!

www.ntnu.no D. Simpson, Markovian spatial statistics
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I like big buts

But...
www.ntnu.no D. Simpson, Markovian spatial statistics
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The problem with iterative methods

Iterative methods (LSQR for least squares sampling, and the
matrix function methods) have one major drawback:

THEY DON’T COMPUTE THE
LOG-DETERMINANT!

DETERMINANTS ARE VERY DIFFICULT TO
COMPUTE!
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Idea 1: Approximate factorisations

Concept: Even if we don’t want to use the approximate
factorisation to compute the sample, it will give a decent
approximation to the determinant.

Problem: We have no control over the error. Furthermore, there is
no way of checking how good your answer is.

www.ntnu.no D. Simpson, Markovian spatial statistics
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Idea 2: Matrix functions (Bai et al ’96)

If the Cholesky decomposition is unavailable, a better way is to use
the identity

log(det(A)) = tr(log(A)) =
n∑

i=1

eT
i log(A)ei .

Is there a cheap way to approximate tr(log(A))?

www.ntnu.no D. Simpson, Markovian spatial statistics
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A Stochastic Estimator of the Trace

Theorem (Hutchinson ’90)

Let B ∈ Rn×n be a symmetric matrix with non-zero trace. Let Z be
the discrete random variable which takes the values −1,1 each
with probability 1/2 and let z be a vector of n independent samples
from Z . Then zT Bz is an unbiased estimator of tr(B) and Z is the
unique random variable amongst zero mean random variables for
which zT Bz is a minimum variance, unbiased estimator of tr(B).

Therefore
log(det(A)) = E

(
zT log(A)z

)
.

This can be estimated using a Monte Carlo method.

www.ntnu.no D. Simpson, Markovian spatial statistics
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Can we control the variance?

For large Gaussian problems, L̃ = zT log(Q)z is an unbiased
estimator.
— The best choice of z has i.i.d. ±1 random variables.
— But the variance can be very large.
— Can we use the structure of the problem to reduce it?
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Can we design a better set of random
variables

Let’s take a close look at zT log(Q)z .
— For any vector z ∈ −1,1n

zT log(Q)z =
n∑

i=1

[log(Q)]ii + 2
∑
i 6=j

zizj [log(Q)]ij

— Clearly, the off diagonal elements of Q “pollute” the solution.
— Fun fact: [log(Q)]ij ≤ e−κd(i,j), where d(i , j) is the graph

distance.
— Can we use this? Decompose z =

∑
c∈C zc where C is a

partition of {1,2, . . . ,n}.
— We want to make sure near-by points aren’t in the same c.

Solution: Graph colouring!

www.ntnu.no D. Simpson, Markovian spatial statistics
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— For any vector z ∈ −1,1n

zT log(Q)z =
n∑

i=1

[log(Q)]ii + 2
∑
i 6=j

zizj [log(Q)]ij

— Clearly, the off diagonal elements of Q “pollute” the solution.
— Fun fact: [log(Q)]ij ≤ e−κd(i,j), where d(i , j) is the graph

distance.
— Can we use this? Decompose z =

∑
c∈C zc where C is a

partition of {1,2, . . . ,n}.
— We want to make sure near-by points aren’t in the same c.

Solution: Graph colouring!
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A probing vector
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Putting it together

Here is the procedure that works best:
1. Pick a value p and produce a graph colouring of Qp.
2. For each colour c , construct a vector zc that is randomly ±1

(w.p. 1/2) at the vertices of that colour and zero everywhere
else

3. Use these vectors in Hutchinson’s estimator of log(det(Q))

Sometimes it’s worth doing a change of basis (wavelet transform).
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Variance reduction
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Some things we don’t yet know how to
do

— How to really scale these things?
— How bad is our MCMC allowed to be?
— What happens when multiple random fields interact in

non-linear way?
— How do we really do things like multivariate space/time

species distribution maps?
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More things we don’t know how to do

— PRIORS!: These are very important for some models. How
should we choose them

— Model checking
— The effect of mis-specification in finite dimensional models
— How to deal with the extra flexibility non-stationarity brings
— How should we parameterise space/time non-stationarity to

make it interpretable for “real people”?
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