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GRF+Spectral+Properties+GMRF
Bayes+Linear obs+Gaussian mixture posterior (ILA)

Non-Gaussian observations; transformations, Point process, INLA
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Non-linear predictors; location+group size+detection probability

o~

EUSTACE




Covariance functions and SPDEs

The Matérn covariance family on R?

21—u y
Cov(z(0),z(s)) = o ) (sllsl)” K (| s]l)
Scale k > 0, smoothness v > 0, variance 02 > 0

Whittle (1954, 1963): Matérn as SPDE solution

Matérn fields are the stationary solutions to the SPDE

—

(k= V- V)a/z (s)=W(s), a=v+d/2

‘%7'

W( )Whlte noise, V.-V = ZZ 1 852 0'2 = ﬁl&r)dm

White noise has K (s,s’) = (s — s). Do not confuse with independent noise,
v, K(s,s") =1(s = s’), which has non-integrable realisations.
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GMRFs: Gaussian Markov random fields

Continuous domain GMRFs

If 2:(s) is a (stationary) Gaussian random field on {2 with covariance
kernel K (s, s'), it fulfills the global Markov property

{z(A) L 2(B)|z(S), forall AB-separating sets S C Q}

if the power spectrum can be written as 1/.5,.(w) = polynomial
in w, for some polynomial order p. (Rozanov, 1977)

Generally: Markov iff the precision operator Q = R~ islocal.

Discrete domain GMRFs

x = (1,...,2,) ~N(m, Q") is Markov with respect to a neighbourhood
structure {N;,7 =1,...,n}if Q;; = 0 whenever j # N; U .

» Continuous domain basis representation with Markov weights:
n
2(8) = X p—y k()T
» Many stochastic PDE solutions are Markov in continuous space, and can be
approximated by Markov weights on local basis functions. f—
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Matérn driven heat equation variations

> The iterated heat equation is a simple non-separable space-time SPDE family:

B
(K2 — A)V/2 (b% + (k2 = A2 x(s,t) = W(s,t)/T

> Fourier spectra are based on eigenfunctions e, (s) of —A.

onR? —Ae,(s) = ||w||*ew(s), and e, are harmonic functions.
onS?, —Aei(s) = Mper(s) = k(k + 1)ex(s), and ey, are spherical
harmonics.

> The power spectrum on R? x R is

1
T2(2m)3 (K2 + [|wa |2)7 [62w7 + (K2 + [|w.]|2)°]”
which leads to Matérn covariances marginally in space, and in time for each

spatial frequency.
> The finite element approximation has precision matrix structure

S:I; (w87 wt) -

at+f+ry
Q= > MMt

=0 *
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Linear models

Statistical linear models can be formulated as Bayesian hierarchical models, with a
simple network of conditional prior densities:

0 ~ p(@) (variance parameters)
x|0 ~ N(p,,Q,(0)"") (latent Gaussian variables)
y|0,x ~ N(Ax, Qy‘m(e)*l) (observed linear combinations)

Inference about 8 and  is based on the posterior densities
p(Bly) = /p(@, x|y)dx (Soon: How can we compute this?)
p(zly) = /p(:c|y, 0)p(0]y) dO (continuous mixture distribution)

where x|y, 0 ~ N (1, Q;‘Z) with

o~
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x18,y ~ N(i, 6°), p=0, o’=1
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X8y ~ N(u(8), 6®), E(uly)=0, o°=1
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x18,y ~ N(u(6), o(6)?), E(uly)=0, E(c’ly)=1

p(xly)
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Integration techniques for linear models

For p(0]y), we don’t need to actually integrate. For any ™,

p(0,y) p(=|6,
S(oly) — 1OY) p(zl0.y)
_ p(@)p(="|0)p(y|6, x)
p(y)p(z*|0,y)
All components are known except for the normalisation factor p(vy).

Use numerical optimisation to find the mode w.r.t. € and place integration points
around it. Then

plaly) ~ Zp (x|, 01)p(Or|y)w

where w,?l = >, p(Ox|y) for a regular integration grid.
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Integration techniques for generalised linear
models

If p(y|@, x) is non-Gaussian or the expectation if non-linear in x, p(x|y, 0) is also
non-Gaussian.

Find the mode of p(x |0, y) w.r.t. z, and evaluate the expression for p(0|y) there.
This is a Laplace approximation pLA(0|y), using Gaussian approximations

pa(z|6,y).
The resulting mixture posterior density for w|y is an integrated Laplace approximation.

Going one step further, evaluating

paily) =D pualwily, 0x)pia(Orly)w
K

where pa(x;|y, 0}) are Laplace approximations of the componentwise marginal
e, densmes we’ve found the integrated nested Laplace approximation (INLA) method.

*
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EUSTACE

EU Surface Temperatures for All Corners of Earth

EUSTACE will give publicly available daily estimates of surface air temperature since
1850 across the globe for the first time by combining surface and satellite data using
novel statistical techniques.
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Partial hierarchical representation

Observations of mean, max, min. Model mean and range.

Data sources

Conditional specifications, e.g.

(TITL, Q) ~ N (Th, @0 )

Qs,

o~

EUSTACE



Observed data

Observed daily 7 mean and Tiange for station FRW00034051

FRWO00034051
g
g
1955 1960 1965
time (vear)
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Power tail quantile (POQ) model

The quantile function (inverse cumulative distribution function) F, ' (p), p € [0, 1], is
defined as a quantile blend of left and right tailed generalized Pareto distributions,

1—(2p)~° 00
frm=4{, 2 970
51og(2p), 0 =0,

@@-p)~?-1 6+0
FON o E— (1 ) — 20 2 ’
ff ) =~fy 1-p) {;log(Q(lp))v 6= 0.

_ T _
Fy'(p) =00+ 5 [(1 =M fo, () + 1+ 1), 0],
The parameters 0 = (6, 01 = log 7, 05 = logit[(vy + 1)/2], 03, 64) control the
median, spread/scale, skewness, and the left and right tail shape.

This model is also known as the five parameter lambda model.

A spatio-temporally dependent Gaussian field (s, t) with expectation 0 and variance
1 can be transformed into a POQ field by

a(s) t) - F&i,t)(¢(u(sv t))a
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Density

DTR values (deg C)
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For these stations, POQ does a slightly better job than a Gamma distribution.
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Diurnal range distributions; quantile model

After seasonal compensation:
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For these stations only POQ comes close to representing the distributions.
o, Note: Some of the mixture-like distribution shapes may be an effect of unmodeled
/';station inhomogeneities as well as temporal shift effects. f—
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Transformed expectations

The transformation model essentially leads to a hierarchical model of the form

0 ~ p(0) (variance parameters)
x|0 ~ N(p,,Q,(0)"") (latent Gaussian random fields)
y|0,x ~ N (h(Ax), lex(e)—l) (observations)

for a nonlinear function 2.(n) = [h1(n1), ..., hn(1,)] .
Constructing the Laplace approximations involves finding the Gaussian approximation

x|y, 0 ~ ./\/(u;w, [@Q71,]7") by quasi-Newton iteration:

1 1
QX =Q, + ATJ*TQW,J*A, (one h.o.t. eliminated)

z|y

iy = 1, — alQi,) 7 [@ulksy, — o) — ATITQ, Ly — h(Aws,))]
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Finding animals: Poisson point processes

Animals detected at sea can be modelled by inhomogeneous point processes. Given
an intensity function \(s), the observation log-likelihood is

logp(ulN) = — [ As)ds+ Y log(Aw)

Usually, A is modelled as a log-linear function of Gaussian latent variables and random
fields.

o~
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All points
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Finding animals: Poisson point processes

Animals detected at sea can be modelled by inhomogeneous point processes. Given
an intensity function \(s), the observation log-likelihood is

log p(y|A) = — /A<s> s+ Y log(A(w)

Usually, A is modelled as a log-linear function of Gaussian latent variables and random
fields.

Not all animals are detected, since they are far away from the observer. This changes
the intensity function by the probability of detection, g(s), so that the density of the
observation model is A(s)p(s)
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Observed points
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Finding animals: Poisson point processes

Animals detected at sea can be modelled by inhomogeneous point processes. Given
an intensity function \(s), the observation log-likelihood is

log p(y|A) = — /A<s> s+ Y log(A(w)

Usually, A is modelled as a log-linear function of Gaussian latent variables and random
fields.

Not all animals are detected, since they are far away from the observer. This changes
the intensity function by the probability of detection, g(s), so that the density of the
observation model is A(s)g(s).

Larger groups are easier to detect than others. We therefore need to model g(s, m)
and p(m|s), the distribution of group sizes as a function of space!

The combined locations and marks, (y,,;, mi) follow a joint point process wth intensity

A(s)p(mls)g(s,m).
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Observed points, stratified by group size

o _]
<
o
™
-
£
5 R
>
<
2
o
-
o
@ O:es Oe® O OO0 OO eee B®O
O @O @OODO e @@® CO WO O O oa» @O o O @ ® © OO a»

T T T T T T
-4 -3 -2 -1 0 1

o~

EUSTACE




The likelihood

B 1 x| — (m — a:l)Q
Plmle) = ) T [ QGXP(Ql'z)}

has Poisson-process log-likelihood version

log pep(m|z) = — /p(m’\a:) dm’ +log p(m|x) = —1 + log p(m|x).

Linearising log p(m|x) at some x*,

2

log p* (m|x) = log p(m|z*) + Z
k=1

0log p(m|x) 2k — 22)

83% xrx=x*

which leads to the Poisson-process likelihood

logpio(mla) =~ [ p*(m'le) dm’ + Lo (mfz).

>
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Exact (black) and linearised likelihoods (red and blue)
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Exact (black) and linearised likelihoods (red and blue)

log(pee(m | x))
-2.55

-2.65
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Summary

» Gaussian SPDEs provide a multitude of practically useful spatial statistics models
with Markov properties

> INLA methods provide fast approximate Bayesian inference for a large class of
latent Gaussian models

» Complex observation mechanisms can be incorporated
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Addendum (IA&TEXing notes that, for obvious
reasons, did not make it into the talk)

In the Poisson process version of the linearised likelihood for multiple (1) observations,
log pio(mla) = —n [ " (m'la) dm’ + Y log ().
k

the second term is linear in & and the integral is not 1 except for at least © = x*.
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Spelling out the details:

_ %)2
log p*(m|x) = — log V21 — x5 — (m w*l)
262w2
m— T * (mizI)Q
+ GQT(II — 1)+ (*1 BT (z2 — 23)
1
= —log V2w — x2 — 2673[
(m —27)*(1 = 2(22 — 23)) — 2(m — 27) (21 — 27)]
= —logV2m — 22

1—2(z2 —a}) [ o
_ — -

262x§

1 — 2] 2
1—2(x2 — x3)
n 1—2(z2 — ) [

1 — ] } 2
20275 1—2(x2 — )

x5
/p*(m\m)dm: ° exp{—mg+
R

1 —2(z2 —x3) >0,
(x1 —=})?
V1= 2(z2 — z3) 26223 [1 — 2(x — a3)]
«/\\‘\W["J

) &
et
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Exact (black) and linearised likelihoods (red and blue)
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Exact (black) and linearised likelihoods (red and blue)
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General behaviour (written for a 1-dimensional « for simplicity). Derivative of
f(m,x) =log p(m|z) w.rt. denoted f,(m, x).

f(m, x) = log p(m|z)
fp(m,x) = f/ef(m,z) dm+ f(m,z) = =1+ f(m,z)
(m,z) = f(m,2") + fa(m,2")(z — 2%)

(

m,r) = — /ef(m’z*)J’f‘”(m’r*)(m‘m*) dm + f(m,z") + fo(m,2")(z — z¥)
= = [ Bl ) o, 0)
=latx =2a"] = —/fm(mw*)ef(m’z*)dm—i- fo(m,z™)

: « f(m’a:) T
T / o) 0T g fy(ma%)

ef(m,:v) —
S /ef(m’z) dm + fo(m,z¥)
ax - €T )
= fl(m7 x*>

>
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(cont.)

2 £k d
0 fg(znvx) _ 7/ fx(m7x*)2ef(m,:r*)+fz(m,z*)(zfz*) dm
xXr
=late =a"] = f/fz(m, x*)Qef(m“*) dm

= —E [fu(m,2")?lm ~ p(m|z*)]
[(from likelihood theory)]

- -_ Pz (mla™®) ’ Paz(m|z”) m ~ p(mlz*
—E I {p(m|x*) ] p(m|z*) ‘ v )]
_g| e e

~E 57 (o) ...  ~ p(m] )}

=E 8(12 log p(m|x) . m e p(m|x*)}

z")]

i.e. the second order derivative at the linearisation point is the expected Fisher

“information. f'
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= E[fox(m, 2")[m ~ p(m
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