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Abstract

Stochastic programs inevitably get huge if they are to model real life problems accurately. Nowa-

days only massive parallel machines can solve them but at a cost few decision makers can a�ord.

We report here on a deterministic equivalent linear programming model of 1,111,112 constraints

and 2,555,556 variables generated by GAMS. It is solved by an interior point based decomposition

method in less than 3 hours on a cluster of 10 Linux PC's.

Key words. Algebraic modeling language, distributed systems, �nancial planning, large

scale optimization, structure exploiting solver.

1 Introduction

The curse of dimensionality is a major problem in optimization. To depict real life situations with

greater accuracy, optimization models tend to be larger and larger, a trend that is probably encouraged

by the rapid development of cheap and powerful computers. Unfortunately, hardware improvements
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are not su�cient to sastisfy the growing appetite of modelers. Each time the current size limits are

pushed forward, the corresponding models, though quite detailed, are not deemed accurate enough

anymore. In this paper we propose a way to handle larger stochastic programming models. The

scheme uses existing software|the GAMS [7] modeling language with the SET extension [17], and

the decomposition algorithm for block angular linear programs [23]|and a cheap parallel machine

made of a cluster of PC's. Our implementation of decomposition algorithm uses two in-house codes

ACCPM [22] and HOPDM [21]. The use of ACCPM for stochastic optimization was discussed in [1].

The literature in applied optimization reports some case studies where huge models were success-

fully applied in business. For instance in [27], a semi-conductor company working in close cooperation

with the University of California Berkeley developed a linear programming problem to model its pro-

duction system. Several models, which had had up to 160,000 constraints, were generated with a

customized matrix generator and solved using IBM's Optimization Subroutine Library (OSL) soft-

ware. As reported in the paper, the considerable investment in this modeling e�ort was worthwile

since the company turned out to be pro�table. However, software and hardware capabilities still

seemed to have limited the model dimensions.

The inclusion of risk management techniques in models is an important motivation for creating huge

optimization problems. Indeed, if exogenous parameters are to be replaced by probability distributions,

the size of models explodes. Applications that involve both risk management and optimization (also

known as stochastic programming, see [4, 13, 14, 24, 32] for more detail) are quite appropriate in

�nance. A particularly relevant example is the asset liability model for Yasuda, a Japanese insurance

company, developed by the Russel Company [8]. The model contained up to 256 scenarios with

an overall size of 31,062 constraints and 44,004 variables. The deterministic model was already a

quite comprehensive description of Yasuda business which forced the modelers to de�ne probability

distribution with poor discretization, thereby keeping the model size to amenable level.

Still in �nance, Zenios in [34, 25, 35] solved stochastic programming models with up to 130,172

scenarios corresponding to a model with 2,603,440 constraints and 18,224,080 variables on a parallel

machine CM-5 with 64 processors. To our knowledge these are the largest stochastic programming

models ever solved. Unfortunately, the hardware costs are very large, far beyond the budget of

small businesses and/or research groups. Moreover, the necessary software adjustments to parallelize

existing LP codes are sometimes complicated and expensive.

This is the reason why we have developed an integrated concept that is driven by the modeling

language. This concept gives the modeler easy access (i.e., via algebraic modeling languages) to pow-

erful and cheap distributed systems. It also opens the door to a�ordable experimentations in the �eld
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of large-scale optimization modeling. Using this approach we have generated the �nancial planning

model suggested by Birge and formulated it with one million scenarios using the GAMS modeling

language [7]. We used SET (Structure Exploiting Tool) [17] to extract the particular structure of this

model which in this case was decomposable. Then using a parallelized interior point decomposition

method, we were able to solve this problem on a cluster of 10 Linux PC's in less than three hours.

The paper is organized as follows. In section 2, we present the main idea of the decomposition

algorithm and its adaptation to interior point methods. In section 3, we show how to transform an

algebraic modeling language to have automatic access to a parallel machine. In Section 4, we present

experiments with a �nancial planning model realized on a cluster of PC's. Finally we conclude this

paper indicating possible implications of these developments.

2 An interior point decomposition for stochastic optimization

Decomposition is an algorithmic device that breaks down computations into several independent sub-

problems. It is thus ideally suited to distributed computations and to problems that are too large to be

handled with a frontal approach. However, the necessary condition for a given model to be a candidate

for the decomposition is that its constraint matrix presents some particular block structure (e.g., primal

and/or dual block angular structures [17]). In this section we explain �rst the decomposition algorithm

applied to the dual block angular structure which suits the structure of the �nancial planning model

introduced in section 4. Second we show how the decomposition algorithm can take advantage of

interior point techniques to solve the master and the subproblems.

To introduce the decomposition algorithm, we present the formulation of a two-stage stochas-

tic linear program which displays a dual block-angular structure. Although there exist other block

structures that could bene�t from decomposition techniques, this structure corresponds to the one

exhibited in our �nancial planning model.

2.1 The two-stage problem

We start this section from a brief summary on the stochastic optimization problem. The reader

interested in more details on this type of optimization problems and various methods of solving them

is referred to [4, 13, 14, 24, 32].
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Consider the following two-stage stochastic linear program

min E~�
fhc; xi +Q(x; ~�)g

s.t. Ax = b;

x � 0;

(1)

where ~� is a random vector and � is the set of all possible �, x 2 Rn1
+ is the vector of �rst stage

variables, A 2 Rm1�n1 is the �rst stage constraint matrix, b 2 Rm1 is the �rst stage right hand side

vector, c 2 Rn1 is the objective function vector of the �rst stage. Q(x; �) is the optimal value of another

linear program; it is a function of the �rst stage decisions x and of the outcomes (q(�); h(�); T (�))

Q(x; �) = min
�
hq(�); yi j Wy = h(�)� T (�)x; y � 0

	
: (2)

In this expression y 2 Rn2
+ is the vector of second stage variables, T (�) 2 Rm2�n1 is a realization of

the random matrix which links �rst and second stages and W 2 Rm2�n2 is the technology matrix of

the second stage. We assume that this matrix is deterministic. Under this assumption, the problem

belongs to the class of stochastic programs with �xed recourse. Moreover, if the rank of matrix W

is equal to m2 the problem has complete �xed recourse. It implies that whatever are decision x and

outcome �, the second stage problem Q(x; �) = minfhq(�); yijWy = h(�)�T (�)x; y � 0g is feasible.

In a more general formulation of the problem (1-2), the matrix W could also be random.

The problem (1) is called the �rst stage problem. Decision x must be taken before the realization

� can be observed. The problem (2) is called the second stage problem or the recourse problem. After

the true environment is observed, di�erences that can appear between h(�) and T (�)x (for x given

and for h(�) and T (�) observed) are corrected by determining a recourse action y � 0 that satis�es the

following relation Wy = h(�) � T (�)x, and that minimizes the cost hq(�); yi. To sum up, the aim of

the two-stage problem is to �nd for the problem (1-2) a solution x which is feasible for all realizations

� and which minimizes the expected cost.

Let us consider the case where the distribution of the random vector ~� is discrete �l = (ql; hl; T l)

with probability pl � 0; l = 1; 2; : : : ; L; where
PL

l=1 p
l = 1. The two-stage problem (1-2) becomes

min c0x+

LX
l=1

plQ(x; �l)

s.t. Ax = b (3)

x � 0;
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where Q(x; �l); l = 1; 2; : : : ; L; is the optimal objective function of the recourse problem

Q(x; �l) = min hql; yi

s.t. Wy = hl � T lx;

y � 0:

For a given x, let ŷl(x) be the optimal solution of (4) for l = 1; 2; : : : ; L. The objective function of

(3) becomes c0x+

LX
l=1

plhql; ŷl(x)i. We are now left with a deterministic equivalent

min c0x + p1hq1; y1i + p2hq
2; y2i + : : : + pLhq

L; yLi

s.t.

Ax = b

T 1x + Wy1 = h1

T 2x + Wy2 = h2

...
. . .

...

TLx + WyL = hL

x � 0; y1 � 0; y2 � 0; : : : yL � 0:

(4)

The constraint matrix of this problem displays a dual block-angular structure.

2.2 Benders decomposition

The use of the decomposition principle to solve the primal block-angular formulation was �rst suggested

by Dantzig and Wolfe [12]. A dual concept, Benders' decomposition or partitioning, applicable to the

dual block-angular structure formulation, was presented in [2]. In both of these methods proposals

by subproblems are submitted to a master program which then solves the current linear programming

approximation for new pricing information which is then transmitted to the subproblems; the latter

reacts to these new prices with revised proposals, etc.

There exists a variety of decomposition methods applicable to stochastic optimization problems

[3, 18, 28, 29]. In this paper we are concerned with the decomposition approach that uses interior point

methods. We underline our interest in decomposition and not in a direct application of an interior

point method that was also proved to be an interesting alternative [5, 25].

Consider the problem

maximize hc0; x0i +
Pp

i=1hci; xii

subject to Tix0 + Wixi = bi i = 1; 2; : : : ; p;

xi � 0; i = 1; 2; : : : ; p;

(5)
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where ci; xi 2 Rni ; i = 0; 1; :::; p; bi 2 Rmi ; i = 1; :::; p, and all matrices Ti; i = 1; :::; p, and Wi; i =

1; :::; p, have appropriate dimensions. The constraint matrix of this linear program displays a dual

block-angular structure.

For a given x0, let L(x0) be the optimal value of the subproblem

maximize
Pp

i=1hci; xii

subject to Wixi = bi � Tix0; i = 1; 2; : : : ; p;

xi � 0; i = 1; 2; : : : ; p:

(6)

Then we can replace (5) with

maximize hc0; x0i+ L(x0)

subject to x0 � 0:
(7)

The function L(x0) is additive

L(x0) =

pX
i=1

Li(x0); (8)

where Li(x0), for i = 1; :::; p, is the value of

maximize hci; xii

subject to Wixi = bi � Tix0;

xi � 0:

(9)

In other words, the subproblem (6) is separable.

Problem (9) may be infeasible for some values of x0. Assume �rst that it is feasible. Then it has

an optimal solution xi(x0) with value Li(x0). Let �i(x0) be the dual optimal solution. The optimality

cut writes

Li(v) � Li(x0) + hT T
i (�i � �i(x0)); v � x0i; 8v:

Assume now that (9) is not feasible. If we assume that the dual is feasible1, then its dual is un-

bounded. Let di(x0) be a ray along which the dual objective hbi � Tix0; �i is unbounded, equivalently

hbi � Tix0; dii > 0. Then we have the feasibility cut

hT T
i di(x0); vi � 0; 8v;

that excludes v = x0 as not being part of the feasible domain of (5).

1Note that the dual is independent of x0. Should the dual be infeasible, then the primal problem would be either

unbounded or infeasible. We discard this pathological case.
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Let us observe that the exact optimality requirement may be replaced with the �-optimality; we

then obtain the weaker inequality

Li(v) � hT T
i ��i; v � x0i+ Li(x0) + �;

that de�nes a weaker LP relaxation [23].

2.3 Cutting plane methods to solve decomposed problems

In the formulation of the transformed problem, the Benders decomposition generates problems that

are usually di�cult despite the relatively small dimension of the variable space. The di�culty stems

from the fact that the problems are essentially nondi�erentiable. Their solving requires advanced

algorithmic tools. In this section we concentrate on the solution method. More speci�cally, we present

the generic cutting plane method, and its analytic center variant, to solve the nondi�erentiable problem

of interest.

Cutting plane methods apply to the canonical convex problem

min ff(x) j x 2 Q \Q0g; (10)

where Q � Rn is a closed convex set, Q0 � Rn is a compact convex set, f : Rn 7! R is a convex

function.

We assume that the set Q0 is de�ned explicitly, while the function f and the set Q are de�ned by

the following oracle. Given �x 2 intQ0, the oracle answers either one statement:

1. �x is in Q and there is a support vector

� 2 @f(�x), i.e., f(x) � f(�x) + h�; x� �xi; 8x 2 Rn:

2. �x is not in Q and there is a separation vector a such that

ha; x� �xi � 
; 
 � 0; 8x 2 Q \Q0:

Answers of the �rst type are named optimality cuts, whereas answers of the second type are feasibility

cuts.

The successive answers of the oracle to a sequence of query points xk 2 Q0 de�ne an outer

polyhedral approximation of the problem. Let fxjg, j 2 K = f1; � � � kg, be the sequence of query

points. The set K is partitioned into K = K1 [K2, where K1 and K2 correspond to optimality cuts

and feasibility cuts respectively. Let the oracle answer at xj be (dj ; cj), with (dj ; cj) = (�j ; f(xj)), for

j 2 K1, and (dj ; cj) = (aj; 
j) for k 2 K2. Let �k = minj2K1ff(x
j)g be the best recorded function
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value. The polyhedral approximation de�nes, in the epigraph space (x; z), the set of localization:

Fk = f(x; z) j x 2 Q0; z � �k;

h�j ; x� xji � z � �f(xj); j 2 K1;

haj ; x� xji � 
j ; j 2 K2

	
:

Clearly, Fk contains the optimal solutions of the initial problem.

The k-th step of the generic cutting plane algorithm is as follows.

1. Pick xk 2 Fk.

2. The oracle returns the generic cut hdk; xi � ck: either a feasibility cut or an optimality cut.

3. Update Fk+1 := Fk \
�
x j hdk; xi � ck

	
:

2.4 Interior point based decomposition

2.4.1 Selecting query points

Speci�c cutting plane algorithms di�er in the choice of the query point xk. Let us focus on two

strategies.

The most popular approach in decomposition is to query the oracle at the optimum of the current

polyhedral relaxation, i.e., (�x; �z) = argminfz j (x; z) 2 Fkg. This corresponds to solving the restricted

master program to optimality. This strategy was advocated by Kelley [26] and Cheney-Goldstein [10]

in the context of general cutting planes and is the same as in Dantzig-Wolfe [12] or Benders [2]. This

strategy selects extreme points in the localization set (basic solutions in the restricted master). This

choice often works well, but sometimes turns to a failure: the oracle queries at uninformative points

and the method stalls.

To overcome the instability of Kelley's method, many alternative schemes have been proposed.

Among them, center methods use some kind of center of the localization set. A choice that turned

out to be e�cient is to use the analytic center. It was �rst suggested by Sonnevend [30] in the context

of convex optimization. The method was �rst implemented and tested in [19]. It has been applied in

many di�erent contexts and has been proved to be e�cient and stable. (For a short survey, see [20]).

To de�ne the analytic center strategy let us introduce the slacks

sj =

8><
>:

z � f(xj)� h�j; x� xji; j 2 K1;


j � haj ; x� xji; j 2 K2;

8



and the associated potential

�k(x; z) = F0(x)� log(�k � z)�
X
j2K

log sj ;

where F0(x) is the barrier function associated with the set Q0. The analytic center strategy selects

(x; z) = argmin�k(x; z):

For a concise summary of the method and its convergence properties, see [20].

In practice, it is often the case that the function f is additive and the set Q is the intersection of

many sets. As shown in Section 2.2, this is the case of function (8) which turns out to be the sum of

several functions Li (each one of them corresponding to a subproblem) and the feasible set Q is the

intersection of the domains of these functions. In such a case, the oracle returns separate information

for each function Li.

Let us reformulate Problem (10) as

minf

mX
i=1

fi(x) j x 2 Q = Q0 \
p
i=1 Qig: (11)

For any x 2 Q0 the oracle associated with this formulation provides the answers:

1. �x is in Q and there are support vectors

�i 2 @fi(�x), i.e., fi(x) � fi(�x) + h�i; x� �xi 8x 2 Rn; i = 1; � � �m:

2. �x is not in Q and there are separation vectors ai such that

hai; x� �xi � 
i; 
i � 0; 8i such that �x 62 Qi; i = 1; � � � p; and 8x 2 Q \Q0:

The above oracle can be viewed as a collection of independent oracles, one for each function fi and

one for each Qi. This feature has two bene�cial consequences. Firstly, the disaggregate formulation

much improves the performance of any cutting plane method. Secondly, and most importantly in our

case, disaggregation naturally allows parallel computations.

2.4.2 Solving subproblems

The presence of uncertainty in stochastic optimization problems leads to huge size of the problems to

be solved. Even when broken down into pieces (subproblems), the sizes of these smaller blocks still

remain considerable. In the particular application we are interested in, for example, each subproblem

(9) has from few thousand to few tens of thousand rows and columns. This is clearly a demanding

optimization problem and we solve it with the LP code [21], an implementation of the infeasible
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primal-dual interior point method [33]. To save on the computation time we exploit the optimal

solution of one problem when solving subsequent one, i.e. we take advantage of the warm start facility

of the interior point method [23].

3 Accessing a distributed system via the modeling language

In this section, we �rst recall how to extract a block structure from algebraic modeling languages.

Second we present the parallel decomposition, realized with two home made products: ACCPM [22]

and HOPDM [21], that was hooked to the GAMS modeling language. Finally, we present its imple-

mentation on a cluster of 10 LINUX PC's.

3.1 Extracting block structures from an algebraic modeling language

Algebraic modeling languages such as AMPL [15] and GAMS [7] are widely used tools among the

modeling community. They enable the modelers to build models using equivalent algebraic notations

in a manner similar to the one they would use to write them, on a piece of paper. The only problem

with these kinds of tool is that they are not adapted to handle very large models. In fact, problems of

memory management represent the main bottleneck for solving large scale optimization models. For

this reason optimization problems that are generated from modeling languages rarely go beyond the

size of 50,000 constraints. In this section we will explain why these problems of memory management

occur.

Algebraic modeling languages work the following way. There is a �rst step where the algebraic

formulation, which is written by the modeler, is translated into a mathematical program. In a second

step, the mathematical program is optimized with an appropriate solver (e.g., linear, nonlinear). The

constraint matrix of the mathematical program is in most cases a sparse matrix. This is due to the fact

that each variable occurs only in very few equations of the model. However, although these matrices

are sparse most of the time, the number of non-zero elements increases fast with the size of the matrix.

Consequently, a general purpose solver that handles a large model generated in the usual manner by

a modeling language will encounter enormous di�culties in allocating su�cient memory to solve it.

(Technical information about memory allocation related to our experiments is given in section 4.)

An algebraic modeling language can thus be seen as a black-box. The concept behind can be very

appealing for the modeler who is not a computer expert. On the other hand, it has some weakness

when problems are very large and present, which is often the case, a decomposable structure. Indeed,

we saw in Section 2 that decomposable structures can be exploited by the solution algorithm giving
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to the solver smaller problems to handle. Moreover, subproblems can be solved independently on

di�erent nodes of a distributed system. But the problem is that the modeling language does not

enable to produce this kind of structure eventhough it was identi�ed in the algebraic formulation of

the model.

To overcome this problem we developed SET [17] that stands for Structure Exploiting Tool. This

tool enables the modeler to extract the desired structure from the modeling language providing a

few addidtional information. The additional information is expressed in the terms of the model

syntax. It is indeed important to respect the logical structure of the modeling language, in order to

interact with the decomposition method. There is a great wealth of e�cient decomposition methods

but unfortunately there is no uni�ed way of accessing them from the modeling language. Only few

experiences were limited to implementing the decomposition algorithm directly in the interface of

the modeling language as in [9] but this way of doing prevents any possibility to link them with a

distributed system. SET provided a general support for the decomposition directly from the modeling

language.

The main idea underlying this approach is that it is generally su�cient to permute the rows

and columns of the matrix to regain the decomposed structure. We need a minimum additional

information to generate these permutations, which usually are not unique since we do not care about

the permutation inside the blocks. Our tool is then able to produce a mapping which indicates to

which subproblem a given equation or variable belongs. To construct the mapping from the index sets

(e.g., time, locations, materials) [16], we require information on

� the number of subproblems;

� the set of rows and columns for each subproblem expressed in terms of the modeling language.

3.2 Accessing parallel decomposition from algebraic modeling language

BALP is an interior point decomposition code [23] that calls for two independent solvers, one to

compute the analytic center of the localization set and the other one to compute optimal solutions for

the subproblems. It is implemented on a cluster of 10 Pentium Pro PC's [31] linked with Ethernet

that allows a 10MB/s transfer rate. The operating system is LINUX and the parallel communication

is done with MPI [6].

Figure 1 summarizes the whole process. A compact formulation written with equivalent alge-

braic notations along with the data are fed to the algebraic modeling language. From this point,

all operations are automated. The algebraic modeling language produces the complete mathematical
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Figure 1: Passing structural information from AML to the solver.

programming formulation. SET provides the structural information on how to split the anonymous

matrix produced by the AML into blocks corresponding to the required block-angular formulation. It

then dispatches the subproblems to the di�erent PC's.

It is �nally left to the decomposition code to retrieve for each subproblem all appropriate elements

(i.e. ql, T l, W l, hl. Given x, as described in Section 2.2, subproblems are solved and return each a

vector �l or a direction dl.) The interior point solver uses this information to add new constraints to

the master problem and compute a new analytic center, etc.

4 Experiments with a �nancial planning model

In this section, we �rst describe the formulation of the �nancial planning model using GAMS notations

and the di�erent model sizes generated by GAMS. Then we present the execution times to solve these

problems on a cluster of 10 LINUX PC's. We also give some comments on speed-up in a parallel

implementation.

4.1 Description of the model

The model considered in this section is a simple �nancial planning problem suggested in [3] (It is

just used here for its generic properties and de�nitely not for its modeling content). At each period,

one can invest in 4 securities and cash. There are no transaction costs. The initial capital and the

desired wealth at the end of the planning period are de�ned exogenously. Prices of securities have

been computed by a multivariate log-normal random generator implemented in MATLAB. Prices

are assumed independent between periods. The time-scale dimension is de�ned over T periods. The

uncertainty dimension is de�ned at each node for N realizations. The corresponding event tree is

symmetric and involves N di�erent branches at each node except for the leaves. Hence the total

number of scenarios is NT . The objective is a piecewise linear function (a scenario is penalized when

the goal is not reached), which corresponds to the expected utility of all scenarios. The model is

written in the GAMS modeling language. The corresponding GAMS model can be found in the
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Appendix along with its equivalent algebraic formulation.

4.2 Results

Di�erent problem sizes are generated by varying the number of outcomes (or events) from the 6-periods

problem. The total number of scenarios is thus given by the formula N6, with 6 beeing the number

of periods and N the number of possible realizations at each time period. We only report in Table 1

experiments where the master contains the �rst two periods. This choice of cutting the model between

the second and the third periods corresponds to the best results we got. For instance, the number of

subproblems in P6R100 is 100. This problem has 6 periods and 10 realizations per node. Its overall

formulation (4) has 1,111,112 constraints and 2,555,556 variables.

Table 1: Description of problems generated by GAMS.

Problem Events Scenarios Rows Columns

P6R9 3 36 1094 3279

P6R16 4 46 5462 15018

P6R25 5 56 19532 50781

P6R36 6 66 55988 139968

P6R49 7 76 137258 338339

P6R64 8 86 299594 711534

P6R81 9 96 597872 1395033

P6R100 10 106 1111112 2555556

Table 2 shows the number of processors used to solve the di�erent problems. Its last column

gives the time to solve these problems with the decomposition algorithm. The P6R100 problem is

particularly interesting because of its very large size. To our best knowledge, this is the largest model

ever generated from a modeling language. It is solved in less than 3 hours. The parallel decomposition

was performed on 10 Pentium Pro PCs, each with 200 MHz processor and 64 MB of RAM. To be

able to solve the largest models we had to add 384 MB of swap space on each machine. In the

decomposition algorithm there is no need to keep all the data in memory at the same time, since while

a subproblem is handled by the solver of a speci�c node, the other suproblems may wait on the swap

to be processesed later. This is the main reason why we could solve, for the �rst time, such a huge

model from the modeling language in a short overall execution time. Memory management indeed
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represents the main bottelneck for solving large optimization problems.

Table 2: Execution times of the decomposition algorithm.

Problem Events SubProbs Procs Time [s]

P6R9 3 9 3 8

P6R16 4 16 4 20

P6R25 5 25 5 49

P6R36 6 36 6 100

P6R49 7 49 7 512

P6R64 8 64 8 1851

P6R81 9 81 9 6656

P6R100 10 100 10 10325

We also analysed the speed-ups obtained by the parallel code. To do this, we focused on a relatively

small problem, namely problem P6R36 (P6R64, P6R81 and P6R100 could not be solved with fewer

nodes). P6R36 problem has 55,988 constraints and 139,968 variables. As indicated by its name, it

contains 36 subproblems. We thus ran successively this problem on 1 to 10 processors.

As shown in Table 3, the speed-up corresponds to what we could reasonably expect with the

decomposition algorithm. These results con�rm (once again) that decomposition is particularly well

suited to parallel implementation.

5 Conclusion

We showed in this paper that advanced decomposition software and parallel computations can be

directly accessed from a modeling language at a minimal cost for the user. The approach takes

advantage of the fact that most models contain embedded block structures that can be exploited

by parallelisable optimization techniques, e.g., decomposition algorithms. So, in this framework the

modeling language can be viewed as the manager of the distributed system. The modeler becomes

more involved in the solution process. He/She intelligently exploits his/her personal insight into the

model to increase the e�ciency of the solution process.

To show the feasibility of this approach we implemented it on a cluster of 10 Pentium Pro PC's.

Stochastic �nancial planning models were generated with GAMS, a widely used algebraic modeling

language. A decomposable block structure was then automatically extracted and sub-blocks were
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Table 3: Speed-up for the P6R36 problem.

Processors Time [s] Speed-up

1 537.7 1.0

2 275.9 1.95

3 188.0 2.86

4 147.2 3.65

5 126.8 4.24

6 100.2 5.36

7 99.9 5.38

8 87.5 6.14

9 82.4 6.52

10 81.9 6.56

appropriately distributed on the cluster of PC's according to the modeler inputs. Finally, a parallelized

interior point decomposition method solves the problem. Decomposition is an algorithmic device

that breaks down computations into several independent sub-problems. It is thus ideally suited to

distributed computations, and to problems that are too large to be handled with a frontal approach.

Our largest problem, a �nancial planning model with one million scenarios, has 1,111,112 equations

and 2,555,556 variables. It was solved using this framework in less than three hours. So, we hope to

have contributed to making parallel large scale optimization accessible to the modeling community.
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A Multistage Financial Model

Indexes:

i: asset,

t: stage or period,

lt: node number of stage t,

Lt: last node number of stage t,

a(lt): immediate ancestor of node lt.

Variables:

Clt : cash (in tausend Dollars),

X
lt
i : asset (in tausend Dollars),

U lT : surplus end of period (in tausend Dollars),

V lT : de�cit end of period (in tausend Dollars).

Parameters:

wi: initial capital (in tausend Dollars),

wf : �nal capital (in tausend Dollars),

rc: return of cash,

plti : price of assets.

max

LTX

lT=LT�1+1

5U lT � 20V lT

s.c.

wi = Cl0 +
nX

i=1

X
l0
i ; l0 = 1;

rcC
l0 +

nX

i=1

r
l1
i X

l0
i = Cl1 +

nX

i=1

X
l1
i ; l1 = 2; : : : ; L1;

rcC
a(l2) +

nX

i=1

p
l2
i X

a(l2)
i = Cl2 +

nX

i=1

X
l2
i ; l2 = L1 + 1; : : : ; L2;

...
...

...

rcC
a(lT ) +

nX

i=1

p
lT
i X

a(lT )
i = wf + U lT � V lT ; lT = LT�1 + 1; : : : ; LT ;

Clt ; Xlt
i ; U lT ; V lT � 0; i = 1; : : : ; n; t = 1; : : : ; T; lt = Lt�1 + 1; : : : ; Lt:

19



B GAMS model

This section resproduces one of the models that was generated by GAMS and solved on the cluster of

PC's. This speci�c one creates a linear program with equations and variables. To keep a very compact

formulation we kept the same sample of prices for every periods. Those who are familiar with GAMS

know that it is not a tool intended to produce multistage stochastic programs (see [11] for more detail

on how to access a stochastic program generator form algebraic modeling languages). Here, we are

using the ALIAS command to generate symetric event tree distribution.

* Four-Period Portfolio

OPTION RESLIM = 10000;

OPTION ITERLIM = 25000;

OPTION LIMROW = 0;

OPTION LIMCOL = 0;

OPTION SOLPRINT = OFF;

SETS

S Scenarios /S1, S2, S3, S4, S5, S6, S7, S8, S9, SA0/

A Assets /USAB, FORS, CORP, GOVE/;

ALIAS (S,O,D,I,R,E);

SCALARS

RC Cash rate of return /1.05/

WI Initial capital /50/

WF Goal /75/;

TABLE P(S,A) Asset rates of return

USAB FORS CORP GOVE

S1 1.27 1.16 0.99 1.02

S2 1.20 1.41 1.04 1.05

S3 1.06 0.91 1.11 1.10

S4 1.23 0.83 1.05 1.04

S5 1.09 1.10 0.95 0.98

S6 1.15 1.28 1.25 1.18

S7 0.83 0.97 1.02 1.07

S8 0.83 0.77 0.91 0.98

S9 1.09 0.96 1.03 1.03

SA0 1.20 1.18 1.18 1.16;
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VARIABLES

EU

POSITIVE VARIABLES

C Cash Period 0

C1(S) Cash Period 1

C2(S,O) Cash Period 2

C3(S,O,D) Cash Period 3

C4(S,O,D,I) Cash Period 4

C5(S,O,D,I,R) Cash Period 5

X(A) Asset Period 0

Y(S,A) Asset Period 1

Z(S,O,A) Asset Period 2

W(S,O,D,A) Asset Period 3

N(S,O,D,I,A) Asset Period 4

M(S,O,D,I,R,A) Asset Period 5

U(S,O,D,I,R,E) Surplus Period 6

V(S,O,D,I,R,E) Deficit Period 6;

EQUATIONS

OBJECTIVE Calculating the expectation of the utility function

G Balance of Financial Flows Period 0

H(S) Balance of Financial Flows Period 1

T(S,O) Balance of Financial Flows Period 2

F(S,O,D) Balance of Financial Flows Period 3

Q(S,O,D,I) Balance of Financial Flows Period 4

B(S,O,D,I,R) Balance of Financial Flows Period 5

L(S,O,D,I,R,E) Balance of Financial Flows Period 6;

OBJECTIVE.. EU=E=SUM((S,O,D,I,R,E),5*U(S,O,D,I,R,E)-20*V(S,O,D,I,R,E));

G.. SUM(A,X(A))+C =L= WI;

H(S).. SUM(A,X(A)*P(S,A))+C*RC =G= SUM(A,Y(S,A))+C1(S);

T(S,O).. SUM(A,Y(S,A)*P(O,A))+C1(S)*RC =E= SUM(A,Z(S,O,A))+C2(S,O);

F(S,O,D).. SUM(A,Z(S,O,A)*P(D,A))+C2(S,O)*RC =E= SUM(A,W(S,O,D,A))+C3(S,O,D);

Q(S,O,D,I).. SUM(A,W(S,O,D,A)*P(I,A))+C3(S,O,D)*RC =E=

SUM(A,N(S,O,D,I,A))+C4(S,O,D,I);

B(S,O,D,I,R).. SUM(A,N(S,O,D,I,A)*P(R,A))+C4(S,O,D,I)*RC =E=

SUM(A,M(S,O,D,I,R,A))+C5(S,O,D,I,R);

L(S,O,D,I,R,E).. SUM(A,M(S,O,D,I,R,A)*P(E,A))+C5(S,O,D,I,R)*RC =E=
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WF+U(S,O,D,I,R,E)-V(S,O,D,I,R,E);

MODEL PORT /ALL/;

OPTION LP = ZOOM;

SOLVE PORT USING LP MAXIMAZING EU;

DISPLAY X.L, C.L;
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