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Abstract

We describe a set of procedures for computing and updating an inverse representation of

a large and sparse unsymmetric matrix A. The representation is built of two matrices: an

easily invertible, large and sparse matrix A0 and a dense Schur complement matrix S. An

e�cient heuristic is given that �nds this representation for any matrix A and keeps the size

of S as small as possible.

Equations with A are replaced with a sequence of equations that involve matrices A0 and

S. The former take full advantage of the sparsity of A0; the latter bene�t from applying

dense linear algebra techniques to a dense representation of the inverse of S.

We show how to manage �ve general updates of A: row or column replacement, row and

column addition or deletion and a rank one correction. They all maintain an easily invertible

form of A0 and reduce to some low rank update of matrix S.

An experimental implementation of the approach is described and the preliminary com-

putational results of applying it to handling working basis updates that arise in linear pro-

gramming are given.

Key words: large sparse unsymmetric matrix, inverse representation, Schur com-

plement, general updates.
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1 Introduction

In this paper we describe a method for the inverse representation of a large and sparse unsym-

metric matrix A. The representation is expected to be used to solve equations

Ax = b and AT y = d; (1)

where x; b; y and d are vectors from Rn.

We present a method for updating this representation after the following modi�cations of A:

{ row replacement,

{ column replacement,

{ row and column addition,

{ row and column deletion,

{ rank one change.

LU decomposition (cf. Du� et al. [5], Chapter 8) is probably the most widely used method

for representing an inverse of a sparse unsymmetric matrix A. Simplicity and e�ciency of its

update after column replacement is one of its main advantages. The updates by the method of

Bartels and Golub [1] preserve sparsity of LU factors and ensure accuracy of the representation

that is su�cient for most practical applications. There exist many e�cient implementations of

this method [4, 29, 32], including an extension of Gill et al. [13] for di�erent updates of a general

(rectangular) A.

The Bartels-Golub updates of sparse LU factors have one basic disadvantage: they are

achieved by a purely sequential algorithm. Hence, relatively little can be done to specialize

them for new computer architectures.

We feel motivated to look for a parallelisable method for the inverse representation of a

sparse unsymmetric matrix A. Additionally, in order to cover a wider �eld of applications we

would like to be able to update this representation inexpensively and in a stable way after simple

modi�cations of A.

The method presented in this paper satis�es these requirements.

We propose to represent the inverse of A with two matrices: an easily invertible fundamental

basis A0 and a Schur complement S (hopefuly, of small size). The fundamental basis is an easily

invertible matrix close to A (subject to the row and column permutations). The \closeness"

is measured with the number of columns of A that have to be replaced with appropriate unit

vectors in order to get a nonsingular matrix permutable to A0. The number of columns that do

not �t the required structure determines the size of the Schur complement. It is in our interest

to keep this number as small as possible.

Many di�erent forms of A0 might be chosen. The most suitable one would clearly depend

on the particular structure of A. The �rst suggestion is to let A0 be triangular. Although it

seems very restrictive, this simple form already covers a large class of matrices, as e.g., linear

programming bases arising in network or stochastic optimization [20]. (The structure inherent

to these problems implies that all bases are \nearly triangular".)
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As shown in [17], the general linear programming bases can always be permuted to a form

close to a block triangular matrix with at most 2x2 irreducible blocks. This particular form of

A0 ensures that equations with it can be solved very e�ciently since the sparsity of A0 as well

as that of the right hand side vectors can be fully exploited.

It was also shown in the abovementioned paper that the Schur complement inverse repre-

sentation of A�1 can be updated in a stable and e�cient way after column replacement in A (a

usual modi�cation of the linear programming bases).

In this paper we extend the set of available updates of this representation with four new

modi�cations to A: row replacement, row and column addition or deletion and a rank one update.

We show that in all cases the update resolves to one or at most two rank one corrections to the

Schur complement. Those, in turn, can be handled in a stable way when dense LU factorization

[16] is applied to represent S�1.

The motivation for the development of the method presented in this paper was a need for

a reliable inverse representation of the working basis in a new approach to the solution of large

linear optimization problems [19]. Hence, our illustrative test examples will come from this

particular application. However, we want to stress that the method presented can be used in a

much wider context whenever a sequence of equations with large and sparse unsymmetric matrix

A is to be solved and some rows/columns of it are supposed to be replaced, deleted or bordered

to A.

Let us mention that Schur complements are widely used in general engineering computations

[3, 22] as well as in the optimization applications [12]. Their use for handling the inverse represen-

tation of linear programming bases has been addressed by many authors [2, 6, 9] independently

of the author's own interest [17, 20].

Some features of the method presented in this paper make it a particularly attractive al-

ternative to the approach that uses Bartels-Golub updates of the sparse LU factorization [13].

The most important one is splitting the factorization step into \sparse" and \dense" parts.

Fundamental basis A0 shares the structure of A, hence it is supposed to be large and sparse.

All equations with A0 will take full advantage of this fact. In contrast, the Schur complement

matrix S is expected to be small and �lled su�ciently to justify the use of dense factorization

to represent its inverse. The use of explicit LU factors of S signi�cantly simpli�es the control

of accuracy: sparsity does not in
uence the choice of the most stable elementary operator. An-

other important feature of the approach presented in this paper is that its factorization step is

structurally parallelisable. Finally, we underline a simplicity and low cost of handling a rank

one update of A.

The paper is organized as follows. In Section 2, the factorization step is discussed in detail. In

particular, we address the heuristics for permuting a given matrix to a bordered triangular form,

their extensions to �nd a bordered block triangular form with 2x2 pivots on the diagonal, and

the issue of accuracy control in the A�1 representation. In Section 3, the techniques of updating

the inverse of A after matrix modi�cations mentioned earlier are described. Additionally, we

3



address the issues of complexity and e�ciency of the updates. In Section 4, we discuss the well

known con
ict that appears in sparse matrix computations between preserving a sparsity of A�1

representation and ensuring its accuracy. In Section 5, we give some preliminary computational

results obtained with an experimental implementation of the method proposed. Final remarks

and conclusions are the subject of Section 6.

2 Factorization

2.1 Fundamentals

Let A0 be an n � n matrix, call it a fundamental basis, that di�ers from A with k columns.

These di�erent columns are determined by the partitioning matrix V 2 Rk�n that is built of k

unit vectors, each matching one column removed from A. Subject to column permutation, A

can be expressed in the form [2]

A = [A1jC] ; (2)

where A1 2 R
n�(n�k) contains columns that belong to A and A0 while C contains columns of

A that are not in A0. Hence

AV T = C and A = A0 + (C �A0V
T )V: (3)

Let us introduce an augmented matrix

Aaug =

"
A0 C

V 0

#
: (4)

The pivoting operation done on the whole block A0 reduces Aaug to

"
In A�10 C

0 �S

#
(5)

where S denotes the Schur complement [3, 22]

S = V A�10 C: (6)

Lemma 1. Let the representation (2)-(3) be given. If A;A0 2 Rn�n are nonsingular, then

rank(Aaug) = n+ k and rank(S) = k.

Proof. From the de�nition, rows of V are linearly independent. Let us permute the rows and

columns of Aaug so that the nonzeros of V are placed in the upper left corner of it. Its �rst k

columns form now a unit matrix in Rk�k. As A0V
T = V T , the permuted matrix has the form

"
Ik 0 0

V T A1 C

#
=

"
Ik 0

V T A

#
.

4



The nonsingularity of A 2 Rn�n thus yields the nonsingularity of Aaug (rank(Aaug) = n+ k).

Let us observe that Schur complement S is obtained after pivoting out the (nonsingular) leading

block A0 from nonsingular Aaug. Hence it is also nonsingular.

The following two lemmas from [2] show how the equations with A can be replaced with

equations that involve Aaug. The latter reduce to a sequence of equations with the fundamental

basis A0 and with the Schur complement S.

Lemma 2. Vector x obtained by solving the following sequence of equations

A0~x = b;

SxC = V ~x;

A0x0 = b� CxC ; (7)

x = x0 + V TxC ;

is the solution of the equation

Ax = b: (8)

Lemma 3. Vector y obtained by solving the following sequence of equations

~yTA0 = dT ;

yTCS = dTV T � ~yTC; (9)

yTA0 = dT + yTCV;

is the solution of the equation

yTA = dT : (10)

2.2 Bordered triangular form of a matrix

Hellerman and Rarick [23] observed that all large, sparse, unsymmetric matrices can be permuted

to a nearly triangular form. This form may be exploited to determine a pivot order which well

preserves the sparsity of the LU factors of the matrix. Their Preassigned Pivot Procedure (P 3)

was later extended to a more e�cient P 4 heuristic and armed with accuracy control in P 5

algorithm [7] (Precautionary Partitioned Preassigned Pivot Procedure).

The P 5 heuristic transforms a given matrix to a spiked triangular form, i.e., triangular except

for several columns called spikes. This form is closely related to a bordered triangular form. The

latter can be easily obtained from the former by permuting all spikes to the end of the matrix.

Stadtherr and Wood [30] proposed another ordering scheme, SPK1 to permute the matrix

to a spiked triangular form. Both P 5 and SPK1 heuristics proceed similarly: they perform

backward and forward triangularizations until nontriangularizable blocks are found and spikes

are to be chosen. Then the algorithms look for a row with a minimum number of entries, say p,

in the active submatrix. Clearly, p � 2; otherwise triangularization could proceed. The ordering
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heuristics will now eliminate p � 1 spikes to create at least one singleton row and enable the

triangularization process to be continued.

To determine a spike, P 5 algorithm analyzes all columns that have an entry in a row of

length p and chooses the one that has the maximum number of nonzero entries in rows of length

p for a spike. Removing this spike from the active submatrix leads to creating the maximum

possible number of rows that have length p� 1. These rows will be analyzed in the next step of

the method.

In the SPK1 algorithm, the search for spikes is simpli�ed since, in general, more than one

spike is eliminated at once. First, the appropriate row with the minimum row count p has to be

found. If there is a tie, then for each row candidate, a sum of column counts for columns having

nonzeros in that row is computed. The row with the largest sum is chosen. In the next step, all

columns having nonzeros in this row are analyzed. The one with the smallest column count is

assigned to the row. The remaining p� 1 columns become spikes.

Let us observe that spike selection rule in SPK1 is considerably less involved than that of

P 5 which incorporates some local look{ahead e�ort into the choice of spike. The comparison of

the computational results of running SPK1 and P 4 heuristics [30] showed that on 
owsheeting

matrices, SPK1 ran always considerably faster and often produced smaller number of spikes.

However, even then, it led to an important loss of e�ciency in the numerical phase of the LU

factorization.

In our Schur complement inverse representation, the whole border (the block of spikes) is

handled as a matrix C. Spikes removed from A are replaced with appropriate unit vectors to

create a triangular A0 matrix. Hence the situation is much simpler: we are only concerned with

a fast reordering to the bordered triangular form of the matrix that keeps the size of the border

as small as possible. SPK1 perfectly satis�es these requirements.

2.3 The use of 2x2 pivots

The most important factor that determines the e�ciency of the Schur complement inverse rep-

resentation is the size of the matrix S, i.e., the number of columns in C. In order to reduce this

number, we shall extend the structure of the fundamental basis to a block triangular matrix

with at most 2x2 diagonal blocks. The motivation for choosing this particular structure of A0 is

twofold. Firstly, such a matrix still remains easily invertible, which is crucial for the e�ciency

of solves with A and for the computation of the Schur complement (6). Secondly, the P 5 and

SPK1 heuristics for �nding a bordered triangular form of the matrix can be easily extended to

algorithms for �nding a bordered block{diagonal form of A.

In order to detect a 2x2 pivot we modify the heuristics in the following way. Every time

when the list of singleton rows and columns in the active part of A is exhausted, we check the

number of nonzero entries p in the row with the minimum row count. If p > 2, then p� 2 spikes

are determined and eliminated from the active submatrix (producing at least one row with only

2 nonzero entries).
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When the minimum row count p in the active submatrix equals 2, a special routine of [17]

(Section 2.1), is used to look for 2x2 pivots. The algorithm scans all rows of length 2 in the active

submatrix. It analyzes a pair of columns that have entries in a given row of length 2: it looks

for another row of the same length that has nonzero elements in these two marked columns. If

such a row is found, the two rows and two columns marked determine a 2x2 block pivot. In the

opposite case, one more spike has to be determined in the active submatrix of A.

A reader interested in the issues of implementation of the technique to detect 2x2 pivots is

refered to [17] for more details.

2.4 Stability control

The application of P 5 or SPK1 preorderings in a standard LU factorization leads often to serious

accuracy problems when pivots which occur in the numerical phase of the decomposition are

too small [8, 31]. Spikes have to be additionally reordered then to ensure the stability of the

factorization. Unfortunately, such an operation considerably increases the �ll{in.

In the approach presented in this paper, all spikes are handled separately through the Schur

complement matrix (6). Matrix S is decomposed to explicit LU factors by the method of [16].

Complete pivoting is performed to ensure stability (cf. [15]). This is equivalent to permuting the

columns of matrix C (the spikes of A) but it does not a�ect the structure of the fundamental

basis. Consequently, we may hope to obtain a stable representation of S�1 under the additional

condition that matrix S alone was computed accurately.

Lemmas 2 and 3 and the de�nition of the Schur complement (6) indicate another critical

point for the accuracy of A�1 representation, namely, equations with A0. Since the fundamental

basis is block triangular with at most 2x2 diagonal blocks, we impose stability conditions on its

diagonal blocks.

To become a 1x1 pivot, an element aij has to satisfy

jaijj � � max
1�k�n

jakj j; (11)

where � is a prescribed threshold from the interval (0; 1]. The accuracy check for a 2x2 pivot

candidate is slightly more complicated. Assume such a candidate has been found in rows i and

j and columns p and q of A

P2 =

"
aip aiq

ajp ajq

#
; (12)

and that aip is its largest element in the absolute value. We decompose P2 to the LU form

P2 =

"
1 0

~ajp 1

# "
aip aiq

0 ~ajq

#
; (13)

where ~ajp = ajp=aip and ~ajq = ajq � aiqajp=aip, and check if the following stability criteria is

satis�ed

jaipj � � max
1�k�n

jakpj and j~ajqj � � max
1�k�n

jakqj; (14)
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with the same � as in (11).

The conditions (11) and (14) are supposed to prevent large growth factor [21, 25] when

solving equations with A0 or its transpose. The larger � (the closer to one), the more stable the

equations with A0 become.

Let us observe that conditions (11) and (14) can easily be veri�ed during the reordering

phase and that they add very little computational e�ort. They introduce a useful safeguard

against the loss of accuracy in solves with A0 [24]. Hence when a pivot candidate is found in

the reordering phase, it is checked for accuracy and, if the appropriate condition is not satis�ed,

it is rejected. A column containing the unacceptably small pivot candidate becomes a spike. If

a 2x2 pivot candidate (12) is rejected for stability reasons, then one of two columns p and q

becomes a spike and the remaining one becomes a candidate for a 1x1 pivot.

Note that by rejecting pivots that do not satisfy conditions (11) or (14), we only delay the

manifestation of numerical di�culties to the phase of LU decomposition of the Schur comple-

ment. In this phase, however, we hope to have a reliable tool of complete pivoting to preserve

the accuracy.

Too large a value of � would result in an increase of the number of pivot rejections and,

consequently, in the growth of a size of matrix C and the resulting Schur complement. This would

undoubtedly have an undesireable e�ect on the e�ciency of the method. Hence we always look

for a compromise value of �. Our experience (limited to matrices arising in linear programming

applications) justi�es the choice of � = 0:01. Such a value of � has been found su�cient to solve

more than 90% of problems from our collection of about 200 linear optimization models, some

of them known to be very di�cult. For the remaining 10% of problems, the parameter � had to

be adjusted to � = 0:02 or � = 0:05 (in 3 cases even to � = 0:1). These adjustments are done

automatically once the program faces numerical di�culties.

3 Updates

We shall now describe the techniques of updating the A�1 representation after �ve di�erent

modi�cations of A. In all cases, the algorithm follows the same scheme: it preserves the sparsity

structure of A0 (in two cases it leaves A0 unaltered) and it resolves to updates of the Schur

matrix.

We thus avoid a sparsity structure analysis that has to be done in the Bartels{Golub updating

method (and nonnegligibely contributes to its overall cost, see e.g., [4, 13, 29, 32]). We also

bene�t from the simplicity of accuracy control in routines that maintain explicit LU factors of

S. Moreover, as long as the size of S is kept small (our experience shows that this is almost

always the case in linear programming applications), the updates of S remain cheap.

In the following part of this section we shall assume that matrix A is nonsingular and that

is has a representation (2)-(4). In case of each update, the modi�ed matrix will be denoted with
�A. We assume it is nonsingular.
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3.1 Row and column addition

Assume matrix A is bordered with a row rT and a column c

�A =

"
A c

rT �

#
: (15)

Following (2), we shall partition the new row rT = (rT1 ; r
T
C) and expand subvector r

T
1 to rT0 2 R

n

�lling with zeros all positions marked with the rows of V . This new row rT0 is appended to A0

while the remaining part rTC as well as column c are appended to the border. A new row

eTn+1 2 R
n+1 appears in a modi�ed V ; it means that the last column of the new fundamental

basis has to be replaced with the last column of the modi�ed border. As a result we obtain

�A0 =

"
A0 0

rT0 1

#
; �C =

"
C c

rTC �

#
and �V =

"
V 0

0 1

#
:

Hence, the new Schur complement is an (k + 1)� (k + 1) matrix

�S = �V �A�10
�C =

"
S cS

rTS �S

#
: (16)

with

rTS = rTC � rT0 A
�1
0 C;

cS = V A�10 c; (17)

�S = � � rT0 A
�1
0 c:

Summing up, this update resolves to bordering the Schur matrix with a new row and a new

column. The following result gives su�cient conditions for the update to be done.

Observation 4. If A 2 Rn�n and �A 2 R(n+1)�(n+1) of (15) are nonsingular, then the update

is well{de�ned.

Proof. Nonsingularity of A0 implies nonsingularity of �A0. Hence, from the de�nition, the Schur

complement inverse representation of �A with matrices �A0, �V and �C is well de�ned.

The overall cost of this update is dominated by one forward transformation with A0 (to

compute A�10 c), one backward transformation with A0 (to compute rT0 A
�1
0 ) and the operations

to maintain the explicit LU factors of S after a row and a column is added to it (16).

3.2 Column exchange

Assume a column of A is to be replaced with a new one c. Two cases may occur: the removed

column is in A1 (and, consequently, in A0) or it is one of the columns of the border C.

9



Case 1. Column p of A0 has to be removed.

The update does not alter A0. Column p of A0 is suspended by adding a new row eTp (eTp 2 R
n)

to V . The entering column is appended to C. Hence

�A0 = A0; �C =
h
C c

i
and �V =

"
V

eTp

#
;

which gives the following Schur complement

�S =

"
S cS

rTS �S

#
(18)

with

rTS = eTpA
�1
0 C;

cS = V A�10 c; (19)

�S = eTpA
�1
0 c:

Consequently, this update needs a row and a column to be bordered to S. Its cost is dominated

by the calculation of eTpA
�1
0 ; A�10 c and recomputing the explicit LU factors of �S from those of

the old Schur complement.

The reader may quickly verify that the update is well de�ned.

Case 2. Column ~p of C is to be removed.

The update leaves A0 and V unaltered but it needs modifying C to

�C = C + (c� Ce~p)e
T
~p ;

where e~p is a ~p-th unit vector in Rk. The new Schur complement

�S = V A�10 C + V A�10 (c� Ce~p)e
T
~p = S + (V A�10 c� Se~p)e

T
~p ; (20)

has thus one column replaced. This upate is well de�ned and, additionally, it is also very cheap:

it needs computing A�10 c and maintaining LU factors of S after column exchange in it.

The modi�cations presented by now involve the columns of A and can be handled relatively

easily. The reason for that comes from the fact that our Schur complement inverse representation

is \column oriented", i.e., that we treat specially column border in A. In the worst case, any

operation on a column of A can only a�ect the border C.

In contrast, operations that involve the rows of A have to a�ect both the fundamantal basis

A0 and the border C. In the approach presented in this paper, they are always decomposed

into two steps. At the �rst one, a row and a column is dropped from the matrix. However, in

order to make sure that the new fundamental basis �A0 is nonsingular, we impose an additional

condition that the row and column removed have the same index p. This particular update is

the subject of the following section.
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3.3 Deletion of the p-th row and column of A

To delete a row and a column from A, we need to replace row p and column p of A0 with

appropriate unit vectors of Rn and we have to replace row p of C with zeros. We assume here

that column p of A remains at position p in A0; the update cannot be done if this column stays

in the border.

To replace column p of A0 with ep, we write

A
0

0 = A0 + (ep �A0ep)e
T
p :

Next, we replace row p of A
0

0 with eTp

A
00

0 = A
0

0 + ep(e
T
p � eTpA

0

0):

Simple manipulations give

A
00

0 = A0 + epe
T
p �A0epe

T
p � epe

T
pA0 + epe

T
pA0epe

T
p : (21)

This matrix can be represented in a form of a rank two update of A0

A
00

0 = A0 + Y ZT ; (22)

where

Y = [ep �A0epjep] 2 R
n�2 and Z =

h
epjappep �AT

0 ep
i
2 Rn�2; (23)

with app = eTpA0ep = (A0)pp.

Applying Sherman-Morrison-Woodbury formula to (22), we obtain

(A
00

0)
�1 = A�10 + epe

T
p �

1

eTpA
�1
0 ep

A�10 epe
T
pA

�1
0 : (24)

The last equation can be combined with a de�nition of the new border in which row p is replaced

by zeros

C
0

= C � epe
T
p C;

to de�ne the new Schur complement

�S = V (A
00

0)
�1C

0

= S +
1

eTpA
�1
0 ep

(�V A�10 ep)(e
T
pA

�1
0 C): (25)

Summing up, this update transforms A0 to A
00

0 , removes row p and column p from A
00

0 , removes

row p from C and requires a rank one change of S. Note that there is no use to keep a one

at position (A
00

0)pp. We thus drop row p and column p from A
00

0 . This \collapsing" operation

produces �A0 2 R
(n�1)�(n�1). Analogously, the empty row p is removed from C

0

giving the new
�C. It is easy to see that these operations do not a�ect �S de�ned by (25).
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A cost of this change of A is comparable to the one of the row and column addition update:

we need to solve two eqations with A0 (to compute A�10 ep and eTpA
�1
0 ) and to maintain explicit

LU factors of S after rank one change to it. Additionally, the sparsity structure of A0 has to be

modi�ed to remove row and column from it.

Unfortunately, there is no guarantee for this update to be completed successfully. It might

happen that the matrix A with row p and column p removed becomes singular. We cannot

detect such a situation up until the update of the LU factorization of S.

We are now ready to pass to the presentation of the following two updates of A.

3.4 Row exchange

Assume that the p-th row of A is to be replaced with a new one: rT . We shall decompose this

update into two steps. First, we apply the procedure of the previous section, i.e., we remove

row p and column p from A0 and we remove row p from C. Next, we add the new row rT and

the (earlier removed) column p to such modi�ed A.

The cost of this update is roughly speaking two times larger than those of the three update

techniques presented earlier.

3.5 Row and column deletion

Assume a row p and a column q of A are to be removed. As this update involves a row of A, it

has also to be decomposed into two steps. First, we remove row p and column p from A0 and

we remove row p from C. In the second step, we replace column q with the (earlier removed)

column p.

The overall cost of this modi�cation is comparable to that of the row exchange update (and

is about two times larger than the other three updates).

3.6 Rank one update

We shall be concerned in this section with the following change of A

�A = A+ crT ; (26)

where c; r 2 Rn. This modi�cation di�ers considerably from the �ve updates presented by now,

because it a�ects the whole matrix at a time. It used to draw a lot of attention [10, 13, 14] due

to its presence in numerous applications (although in the linear programming approach [19] this

correction did not appear). By its nature, rank one update may cause dramatic �ll-in in the LU

factors [14].

Below, we shall show that a straightforward extension of the Schur complement inverse

representation described in this paper can handle this update. Recall that our aim is to solve

equations
�Ax = b and �AT y = d; (27)
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where x; b; y and d are vectors from Rn.

Similarly to the analysis presented at the beginning of Section 2, we introduce the new

augmented matrix

~Aaug =

"
A c

rT �1

#
: (28)

Although there is an important di�erence between ~Aaug and the previously de�ned augmented

matrix (4) that is manifested by the presence of �1 in the lower right corner of ~Aaug, the idea

to use the Schur complement remains the same.

Two observations given below show how equations (27) can be replaced with equations that

involve ~Aaug.

Observation 5. Vector x obtained by solving the following system of equations

~Aaug

"
x

x0

#
=

"
b

0

#
(29)

is the solution of the equation

�Ax = b: (30)

Proof. From (29) it follows that we can eliminate x0

x0 = rTx;

and from the remaining part of that equation obtain

Ax+ cx0 = Ax+ crTx = (A+ crT )x = �Ax = b.

Observation 6. Vector y obtained by solving the following system of equations

~AT
aug

"
y

y0

#
=

"
d

0

#
(31)

is the solution of the equation
�AT y = d: (32)

Proof. Analogous to the proof of the previous observation.

Let us observe that, given the Schur complement inverse representation (2)-(4) of A, we

easily guess the one of ~Aaug:

~A0 =

"
A0 0

rT 1

#
; ~C =

"
C c

0 �1

#
and ~V =

"
V 0

0 1

#
:
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The new Schur complement has the form

~S =

"
S cS

rTS �S

#
; (33)

where

rTS = �rTA�10 C;

cS = V A�10 c; (34)

�S = �(1 + rTA�10 c):

The overall cost of this update is comparable to the one of row and column addition to A. It

is dominated by computing A�10 c and rTA�10 and the operations needed to maintain the explicit

LU factors of S after a row and a column are added to it.

We would like to mention once again the di�erence between the rank one update of A

and the other modi�cations presented in the previous sections. We did not derive the Schur

complement inverse representation of �A form that of A. Instead, we replaced equations (27)

with (29) and (31), respectively. They involve a larger matrix ~Aaug for which the required

inverse representation can easily be obtained.

We pay for this transformation since we need to deal with a matrix in a larger space. Each

time an equation with �A is to be solved, its right hand side is extended to Rn+1. When the

solution to (29) or (31) is found, the required vector x or y is retrieved from it. Clearly, these

operations can be made very e�ciently.

3.7 Modi�cations of S

The updates of A�1 inverse representation cause various modi�cations to the Schur matrix:

column exchange, row and column addition or rank one change. We decided to follow [17] and

to apply the explicit LU decomposition for handling the inverse of S. One new update | a rank

one change | was added to the set of routines that implement the method of [16].

We have already mentioned that the accuracy of S�1 inverse representation is crucial for the

stability of the method presented in this paper. The use of the explicit LU factors of S facilitates

the accuracy control during the decomposition of (6) as well as during the updates that follow

it.

The size of the Schur matrix after refactorization step is usually small; it seldom exceeds 100

and very rarely grows over 200. In the latter case, in particular, the use of the sparsity-exploiting

LU decomposition [13] to manage the inverse of S might become advantageous. However, this

possibility is not exploited in our implementation.

4 Sparsity, accuracy and e�ciency

In this section, we shall very brie
y address some issues that are crucial for the e�ciency and

the stability of the method's implementation.
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4.1 Storing A0 and S

Equations with the fundamental basis constitute the main computational e�ort in the method

presented in this paper. Every refactorization needs k forward transformations with A0 to

calculate the Schur matrix (6), (k is the size of S). Each update of A requires one, two or four

equations with A0 or its transpose to be solved.

It is thus crucial to store A0 in a way that ensures a comfortable access to its rows and

columns. It facilitates the implementation of dropping row and column p from A0 and it allows

exploiting the sparsity of A0 and that of the right hand side vectors in all equations with A0.

Consequently, we store A0 as a collection of sparse columns and we use row linked lists for row

wise access to it. This requires three integer arrays and one double precision array of length

nA0, where nA0 is the number of nonzero entries in A0, and two integer arrays of length n (cf.

Du� et al. [5]).

In our approach the Schur matrix is decomposed into explicit LU factors. Hence we need

one double precision array of size k � k to remember it.

Additionally, a few integer arrays of size n are needed to store row and column permutations

of A and to provide work arrays for an e�cient implementation of the SPK1 heuristic.

4.2 Sparsity versus accuracy

There exists a well known con
ict in sparse matrix computations between preserving sparsity

and ensuring accuracy of an inverse representation.

For example, it often happens that if the factorization uses a preassigned pivot order based

only on the analysis of the sparsity structure, then unacceptably small pivots appear in the

numerical phase of the decomposition [8, 31]. To preserve the accuracy, the pivot order has to

be changed in such case. The new pivot order may then be far from optimal (in the sense of the

previously applied heuristic), which would manifest itself in a signi�cant increase of �ll-in.

This di�culty is easier to overcome if the pivot choice is made dynamicaly with the progress

of factorization [26]. Such an approach is particularly popular in the linear programming appli-

cations [13, 29, 32]. Similar technique is applied when the Bartels-Golub updates of sparse LU

factors are computed. The choice betwen two available Gaussian elementary operators favorizes

sparsity by default. However, seriously unstable operations (causing large growth factor) are

rejected: the sparsity is sacri�ced in such case for the accuracy. By the way, even then, there is

no guarantee for su�cient accuracy of the decomposition [28] although the cases of instability

are very rare in practice.

The con
ict mentioned above manifests itself also in the method presented in this paper.

In order to ensure a high accuracy of solves with the fundamental basis, we reject columns

with too small diagonal elements (or unstable 2x2 blocks) after accuracy tests (11) and (14).

Each rejection of the pivot candidate during the SPK1 heuristic creates a new spike, hence

increases the size of the border C. Consequently, we have to deal with a larger Schur matrix.
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The \sparse" task of the factorization simpli�es: equations with A0 get easier (although their

number increases with the number of columns in C). In contrast, the \dense" task of the

factorization | a decomposition of the Schur complement | becomes more important.

Our computational experience showed that the number of columns removed from A0 for

stability reasons is small and, except for some rare cases when A is poorly scaled, negligible.

We would like to underline a role of the choice of the suitable form of the fundamental basis

for a particular application. We consider this to be the most promising direction for further

development of the inverse representation method described in this paper. An extension of the

structure of A0 (e.g., to a block triangular matrix with diagonal blocks that are small but are

not limited to the size of 2) could perhaps help decrease the size of the Schur complement.

4.3 Block{update matrix

Lemmas 2 and 3 show how equations with A and its transpose can be replaced with a sequence

of two equations with the fundamental basis A0 and one equation with the Schur matrix S.

We could save on one solve with A0 if we decided to store the block{update matrix

B = A�10 C; (35)

that must nevertheless be computed to construct S (cf. (6)). This option has been mentioned

in [12] and practically analyzed by Eldersveld and Saunders [6]. Note that once B is available,

the third of equations (7) simpli�es to

x0 = A�10 b�A�10 CxC = ~x�BxC : (36)

Analogously, the �rst two equations of (9) reduce to

yTCS = dTV T � dTA�10 C = dTV T � dTB: (37)

The computational experience of [6] did not show clear advantage of the use of block{update

matrix. There are examples where the matrix B �lls dramatically despite the sparsity of A0

and C. In these cases, multiplications with B may become prohibitively expensive. Hence,

it is advantageous to retrieve only the necessary information from the appropriate rows of B

(S = V B), accept the need of one more solve with A0, and forget the block{update matrix.

The block{update option has also another drawback of sometimes excessive storage require-

ments. This, however, seems less important due to a modern tendency to sacri�ce storage

economy in order to execute faster.

5 Numerical results

The method presented in this paper has been implemented and applied to handle the working

basis updates in the new linear programming approach [19]. The computational results discussed

here are derived from this particular application.
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Table 1: Problems statistics.

Problem Original dimensions After presolve

nr nc nonz nr nc nonz

25fv47 820 1571 10400 768 1534 9957

80bau3b 2235 9301 20413 1965 8736 19048

bnl2 2280 3489 13999 1848 3007 12458

degen3 1503 1818 24646 1503 1818 24363

d
001 6071 12230 35632 5907 12065 35021

�t2p 3000 13525 50284 3000 13525 50284

ganges 1309 1681 6912 835 1168 5423

greenbea 2389 5302 30715 1848 3886 23112

pilot 1440 3449 41092 1340 3326 40454

pilotnov 951 1968 12186 830 1871 11492

sierra 1222 2016 7252 1129 2008 6956

stocfor2 2157 2031 8343 1968 1854 7064

stocfor3 16675 15695 64875 15336 14382 55088

truss 1000 8806 27836 1000 8806 27836

pds-02 2953 7535 21252 2601 7172 15499

pds-06 9881 28655 82269 9114 27852 60038

pds-10 16558 48763 140063 15579 47729 102960

GE 10339 11098 53763 8350 9699 34650

NL 7195 9718 102570 6472 9246 39278

WORLD2 3723 3133 17800 2588 2421 10063

We applied the method to solve a large collection of linear optimization problems that con-

tains about 200 models and includes the Netlib suite of 95 problems [11]. Solution of a nontrivial

linear program needs thousands or tens of thousand of iterations, each slightly modifying the

working basis. Hence it creates perfect conditions to test a new updating method.

The abovementioned linear optimization approach succeeded to solve almost all tests from

our collection of di�cult programs, which con�rmed the reliability of the Schur complement

inverse representation presented in this paper. We have chosen a subset of 20 representative

di�cult problems to illustrate the behavior of our updating method. Table 1 presents the prob-

lems statistics in their original form and after running a presolve analysis on them [18] (nr; nc

and nonz are the numbers of rows, columns and nonzero entries, respectively). Problems GE,

NL and WORLD2 belong to our collection of linear optimization test examples1; the remaining

problems are available via Netlib.

Table 2 collects information on the solution of these problems. It contains the statistics of the

1To get these problems, send a request to the author: gondzio@ibspan.waw.pl
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Table 2: Solution statistics.

Problem Working bases iters Updates Schur 2x2

n0 nmax nopt RCadd Crep Rrep RCdel kF kU

25fv47 477 623 609 8884 1128 6657 181 991 71 102 38

80bau3b 0 1811 1809 14620 3556 8909 407 1832 12 47 16

bnl2 1050 1448 1432 7269 1815 3298 685 1775 48 83 36

degen3 712 1148 1140 6522 1423 3710 413 1387 88 117 0

d
001 5860 5905 5904 85964 11732 67865 2987 9492 60 97 1

�t2p 3000 3000 3000 14233 0 14233 0 0 12 51 2

ganges 791 811 811 799 27 773 0 3 33 64 1

greenbea 1667 1768 1746 22206 1005 20184 84 988 74 101 41

pilot 162 1254 1250 16643 3615 9691 783 2711 218 247 44

pilotnov 556 703 702 3545 267 3126 17 149 129 158 54

sierra 499 584 571 703 109 549 8 38 40 76 5

stocfor2 966 1336 1336 919 408 312 195 40 16 50 1

stocfor3 7516 10651 10651 7750 3639 2440 1470 527 110 140 0

truss 999 1000 999 10265 16 10360 0 0 60 109 397

pds-02 2431 2495 2486 2823 113 2644 10 77 2 46 0

pds-06 8525 8716 8716 17885 862 16256 111 786 6 49 0

pds-10 14575 14868 14868 44746 1728 41262 338 1678 8 51 0

GE 3845 5497 5436 15359 4684 5844 2343 3242 130 159 51

NL 1331 5345 5341 45340 15031 14783 5271 11773 78 109 17

WORLD2 72 1466 1396 28807 9011 6623 5708 8455 45 82 30

size of the working bases: n0; nmax and nopt are their initial, maximum and �nal (corresponding

to the optimum) dimensions, respectively. The following columns of Table 2 report the number

of iterations to reach optimality, iters and the numbers of di�erent working basis updates: row

and column addition, RCadd, column replacement, Crep, row replacement, Rrep and row and

column deletion, RCdel. Its last three columns give an insight into the e�ciency of the SPK1

heuristic; they contain the maximum sizes of the Schur complement after refactorizations, kF

and during the updates, kU and the maximum number of 2x2 pivots.

The results collected in Table 2 bring a lot of useful information. The most important is

that the linear programming bases can, in practice, always be permuted to the bordered block

triangular form with a size of the border kept manageable. The dimension of the border after

refactorization is surprisingly small for some nontrivial large scale bases.

These results con�rm also advantages of the use of 2x2 pivots in the fundamental basis.

If a triangular fundamental basis were to be used, then the size of the Schur matrix would
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Table 3: E�ciency of the representation.

Problem Working basis Factorization Update

n nonz k 2x2 torder tS tLU tFactor tUpdate

25fv47 606 3185 68 36 0.07 0.05 0.04 0.16 0.011

80bau3b 1803 5129 10 12 0.15 0.01 0.00 0.16 0.009

bnl2 1445 4126 45 35 0.11 0.05 0.01 0.17 0.012

degen3 1145 8552 86 0 0.18 0.10 0.05 0.33 0.017

d
001 5867 14122 50 0 0.50 0.36 0.02 0.88 0.011

�t2p 3000 34208 10 0 0.57 0.13 0.00 0.70 0.061

ganges 811 4302 33 0 0.07 0.02 0.00 0.09 0.004

greenbea 1756 10371 63 35 0.20 0.10 0.03 0.33 0.010

pilot 1236 17710 196 25 0.33 0.55 1.00 1.88 0.086

pilotnov 699 3907 129 50 0.08 0.10 0.20 0.38 0.015

sierra 577 1258 36 5 0.04 0.02 0.00 0.06 0.003

stocfor2 1274 3272 13 0 0.08 0.01 0.01 0.10 0.006

stocfor3 10363 27922 108 0 0.81 0.95 0.07 1.83 0.037

truss 1000 3794 56 358 0.06 0.07 0.03 0.16 0.007

pds-02 2484 5078 0 0 0.20 0.00 0.00 0.20 0.005

pds-06 8716 17866 4 0 0.72 0.03 0.00 0.75 0.013

pds-10 14831 30136 2 0 1.27 0.02 0.00 1.29 0.018

GE 4439 10277 116 14 0.38 0.44 0.09 0.91 0.022

NL 5106 18845 60 9 0.49 0.30 0.03 0.82 0.025

WORLD2 1445 4482 40 26 0.12 0.05 0.01 0.18 0.011

increase, on the average, by the number of 2x2 pivots (in a case of TRUSS, this would be a real

disaster). The clear advantages of the use of 2x2 pivots undoubtedly encourage to look for other

more suitable forms of the easily invertible fundamental bases such that the size of the Schur

complement could be further reduced.

Let us now proceed to the analysis of the CPU time e�ciency of the method presented. In

particular, we shall concentrate on the analysis of the speed of the new updates. The e�ciency

of the factorization step followed by the simplex updates, i.e., column replacements, has already

been analyzed in [17] and compared with e�cient implementations of the Bartels-Golub updates

of sparse LU factors: MA28 of Du� [4], LUSOL of Gill et al. [13] and LA05 of Reid [29]. The

updates handled with the Schur complements were shown there to be slightly faster, on the

average, than the LA05 implementation incorporated into XMP code [27].

The matrix modi�cations analysed in this paper are more complicated, hence more expensive

from the computational point of view. In particular, row replacement and row and column

deletion are about two times slower than the remaining updates. Fortunately, as the results
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collected in Table 2 show, they are less frequent than row and column addition and column

exchange.

Table 3 reports CPU time in seconds of the factorization and the average time of a single

update for representative working bases in the earlier selected linear programs. The results

reported here were obtained by running our FORTRAN implementation of the method on a

33MHz SUN SPARC 10 workstation. The program was compiled with an option -O. The results

start with statistics of the working basis: its size, n, the number of nonzero entries, nonz, the

size of the Schur matrix just after the refactorization, k and the number of 2x2 pivots found.

The following columns contain the CPU times for a factorization and for a single update (an

average of 50 updates directly following this factorization). Additionally, in the factorization

time we distinguish time spent in the SPK1 heuristic to reorder the matrix to a bordered block

triangular form, torder, time spent to compute the Schur matrix (6), tS , time to decompose S to

the explicit LU factors, tLU and their sum tFactor = torder + tS + tLU .

Analysis of Table 3 leads to the following observations. The factorization step is quite e�cient

unless the Schur matrix grows to a large size in which case the computation of S and its LU

decomposition become dominating terms. (Note that these steps may bene�t the most from the

parallelisation.) The average time of the update is reasonable: it varies from 1% to 9% of the

factorization time.

6 Conclusions

We have described a set of procedures to update the Schur complement inverse representation

of a sparse, unsymmetric matrix after various modi�cations. We have demonstrated practical

e�ciency of the approach on a representative set of problems that arise in linear programming

applications.

The method was shown to be a reliable and acceptably e�cient tool for handling general

updates (including a rank one correction) of sparse, unstructured matrices.

We have presented a useful extension of the SPK1 heuristic [30] to a new one that reorders

a given matrix to a bordered block triangular form with 2x2 pivots allowed on the diagonal.

The method described in this paper splits the factorization and update steps into sparse and

dense tasks. Both of them could bene�t much from parallelisation. The latter additionally o�ers

the simplicity of accuracy control in the updates (and is well-suited to vectorization).

Summing up, the method presented in this paper seems to be an attractive alternative to

the Bartels-Golub updating scheme.
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