Chapter 1

Stochastic Programming
from Modeling Languages

Emmanuel Fragniere! and Jacek Gondzio?

1.1 Introduction

The majority of deterministic mathematical programming problems have a compact
formulation in terms of algebraic equations. Therefore they can easily take advan-
tage of the facilities offered by algebraic modeling languages. These tools allow
expressing models by using convenient mathematical notation (algebraic equations)
and translate the models into a form understandable by the solvers for mathematical
programs.

Algebraic modeling languages provide facility for the management of a math-
ematical model and its data, and access different general-purpose solvers. The use
of algebraic modeling languages (AMLs) simplifies the process of building the pro-
totype model and in some cases makes it possible to create and maintain even the
production version of the model.

As presented in other chapters of this book, stochastic programming (SP) is
needed when exogenous parameters of the mathematical programming problem are
random. Dealing with stochasticities in planning is not an easy task. In a standard
scenario-by-scenario analysis, the system is optimized for each scenario separately.
Varying the scenario hypotheses we can observe the different optimal responses of
the system and delineate the “strong trends” of the future. Indeed, this scenario-
by-scenario approach implicitly assumes perfect foresight. The method provides a
first-stage decision, which is valid only for the scenario under consideration. Having
as many decisions as there are scenarios leaves the decision-maker without a clear
recommendation. In stochastic programming the whole set of scenarios is combined
into an event tree, which describes the unfolding of uncertainties over the period
of planning. The model takes into account the uncertainties characterizing the
scenarios through stochastic programming techniques. This adaptive plan is much
closer, in spirit, to the way that decision-makers have to deal with uncertain future

2 Chapter 1. Stochastic Programming from Modeling Languages

in real life.

Most of the difficulties to model uncertainty through stochastic programming
originate from the lack of an agreed standard of its representation. Indeed, stochas-
tic programming problems usually involve dynamic aspects of decision making which
combined with uncertainty inevitably leads to a complicated model. To make the
problem tractable, uncertainty is usually expressed in terms of an approximate dis-
crete distribution. However, the need of accuracy in modeling inevitably leads to the
explosion of dimension in the size of the corresponding mathematical program. This
imposes additional limits on the way of modeling stochastic programming problems
and further complicates the management of such models. In consequence there still
does not exist a standard way of modeling stochastic programming problems in al-
gebraic modeling languages. However, AML developers are working on them and
have already come up with a number of possible extensions.

In this chapter we address the difficulties of modeling stochastic programs and
discuss in detail different approaches developed so far to deal with this problem.

The chapter is organized as follows. In Section 1.2 we briefly explain the
important role played by AMLs in the development of optimization based models. In
Section 1.3 we present different formulations of stochastic programs. In Section 1.4
we discuss specific issues related to an automatic generation of stochastic programs
that result in difficulties with standardization of their generation by AMLs. In
Section 1.5 we discuss the techniques of stochastic programming available to AMLs
and in Section 1.6 we comment on the crucial issues of communication between
the solver and the algebraic modeling language. Finally, in Section 1.7 we give our
conclusions.

1.2 Algebraic Modeling Languages

Algebraic Modeling Languages (AMLs for short) enable decision models to be for-
mulated with an algebraic notation. They use a generic model description in form
of a data file. The models developed with AMLs can be easily modified. The user
builds the model and provides the AML with the appropriate data. The AML
translates the model into a form that is understandable to a solver and invokes the
appropriate solver. In this setting, the solver is seen as a black box. The optimiza-
tion code may query the AML about any additional information on the problem.
For example, nonlinear optimization code may ask for the function values as well as
the first and the second derivatives at a given point. Once the solution of the math-
ematical program is found, it is returned to the AML and the results are reported
to the user.

AML enables a modeler to express the problem in an indez-based mathematical
form with abstract entities: sets, indices, parameters, variables and constraints. The
key notion in the AML is the ability to group conceptually similar entities into a set.
Once the entities are grouped in a given set, they can be referenced by indices to the
elements of this set. This leads to a problem formulation that is very close to the
formulation using algebraic notations. For instance, the mathematical operation
> icr Xi is represented by the expression SUM(I, X(I)) in the GAMS modeling

1.2. Algebraic Modeling Languages 3

t=1 t=2 t=3 t=4 t=5

OHH OO0

Figure 1.1. Deterministic Invendeman model.

language. The role of the AML is to expand the compact problem formulation
(problem structure and data) into the problem instance which is ready to be solved
by an appropriate optimization code. This operation is realized within the AML by
replicating every entity over the different elements of the set. This is often referred
to as a set-indexing ability of the AML. The user of an AML can define generic
expressions that are indexed over several sets. Set-indexing in such cases involves
compound sets.

There exist many algebraic modeling languages or more generally, optimiza-
tion modeling languages (Fragniere and Gondzio 2002). Algebraic modeling lan-
guages such as GAMS (Brooke, Kendrick, and Meeraus 1992), AMPL (Fourer,
Gay, and Kernighan 1993) or AIMMS (Bisschop and Entriken 1993) are routinely
used by the mathematical programming community.

To illustrate the use of such modeling tools, we first present the algebraic
formulation of a multiperiod inventory model with deterministic demands. A full
description of this model, called Invendeman, can be found in Chapter 10 of the book
by Thompson (1992). The model has the form of a simple optimization problem:

T

max Y ((pe — 2)z; — (pe +2)af — hIy)
t=1

st ap —af + L — Ly = —dy (1.1)
L <I

xy,xb, I > 0.

The objective function corresponds to the net profit. There are three generic
variables (inventory, quantity bought, quantity sold) and one generic constraint
(inventory balance), all indexed over time. A representation of a five-period instance
(T = 5) is shown in Figure 1.1. The variables used in the model have the following
meaning:

t is the time period, t =1,2,....; T,

T is the total number of time periods,

x/ is the quantity bought in period ¢,

x, is the quantity sold in period ¢,

2 is the unit transactions cost which has to be paid each time a purchase or
sale is made,

pt is the market price at time ¢; a seller gets p; — 2; a buyer pays p; + 2,

dy is the demand of the firm for the commodity at time £,

Iy is the initial stock of the commodity,

4 Chapter 1. Stochastic Programming from Modeling Languages

I; is the stock of inventory held at time ¢,

I is the required final inventory of the commodity,
I is the fixed warehouse capacity,

h is the unit holding cost for inventory.

We present below an extract of the corresponding model written using the
GAMS (Brooke, Kendrick, and Meeraus 1992) modeling language (the full model
along with the data can be found in Appendix .1).

OBJECTIVE.. PROFIT =E= SUM(INDEX, (P(INDEX)-2.0)*XMINUS(INDEX)
- (P(INDEX)+2.0)*XPLUS (INDEX) -H*I(INDEX-1));
INVBAL(T-1) .. XMINUS(T)-XPLUS(T)+I(T)-I(T-1) =E= -D(T);

We note that the formulation in GAMS is very close to the original algebraic
formulation. In general terms, algebraic modeling languages provide declarative
statements (as opposed to programming languages which contain procedural state-
ments such as Loops or if-then-else commands). This means that the code in the
case of an AML can be seen as a declaration of the properties of the optimization
problem.

The modeling language takes as an input, the algebraic formulation of the
model and a set of data. Next all operations are automated. The modeling language
generates a mathematical program, also called an instance of the problem. In
a particular case of the deterministic multiperiod inventory model, the generated
instance can be seen as a unique scenario. Later in this chapter we shall extend this
model to take uncertainty into account. This will necessitate considering several
scenarios.

1.3 Different Formulations of Stochastic
Programming Problems

A multistage stochastic program with recourse is a multi-period mathematical pro-
gram where parameters are assumed to be uncertain along the time path. The
term recourse means that the decision variables adapt to the different outcomes of
random parameters at each time period. A natural formulation of the stochastic
programming problem relies on recursion (Birge et al. 1987) to describe dynamics
of the modeled process. Several different formulations of SPs have been discussed
in detail in Part 1 of the book. Therefore we omit recursive formulations and only
briefly mention event trees and the deterministic equivalent formulation and an al-
ternative formulation with nonanticipativity constraints, two forms which are most
often used for modeling SPs using AMLs.

1.3.1 Event Tree and the Deterministic Equivalent Formulation

In a planning approach the evolution of uncertainties can be described as an al-
ternation of decisions and random realizations. In its simplest form the discrete
stochastic process can be represented as an event tree describing the unfolding of

1.3. Different Formulations of Stochastic Programming Problems 5

the uncertainty over the period of planning (see Figure 1.2). A path, from the root
to a leaf of the event tree, represents a scenario. Each scenario has a given proba-
bility. At each node of the event tree, a set of constraints and an objective function
are defined. This involves variables specific to that node and its predecessor nodes.
For instance, node 1 of the tree presented in Figure 1.2 corresponds to the first
stage and associated decisions are identical for scenarios 1, 2, 3 and 4. At stage 2,
decisions of scenarios 1 and 2 are identical. In the same way decisions of scenarios
3 and 4 are identical.

To formulate the deterministic equivalent of the multi-stage stochastic pro-
gramming problem we first need to enumerate all nodes of the event tree (see
Figure 1.2). We use a breadth-first search order, i.e., we start from a root node
corresponding to the initial stage and end with leaf nodes corresponding to the last
stage. Let ¢ = 1,2,...,T denote the stage and I; be the index of a node at stage
t. Thus the root node has index [; = 1 and the stage 2 nodes start from index 2.
Let L; denote the last node at stage . Hence the nodes that belong to stage ¢ > 1
have indices Iy = Ly_1+4+1,Li—1+2,...,L;. To capture dynamics in the model we
use a(ly) to denote the direct ancestor of node [;. Clearly, the ancestor of I; is a
node that belongs to stage ¢t — 1 (e.g., node 2 in Figure 1.2 is the ancestor of nodes
4 and 5). All decision variables x are indexed only by the node number in the event
tree: we use a superscript l;. The stage the variable belongs to is therefore defined
implicitly. The main constraint that describes system dynamics has the form

Tha®®) f Whalt = pb. |, =Ly 1+1,Li_1+2,..., Ly, (1.2)

where T is the technology matrix that varies with the node in the event tree and
W is the recourse matrix that varies only with time but does not depend, in our
example, on the realization within the same stage. One could obviously impose
different conditions on matrices T and W and use indexing with time ¢ or both
time and uncertainty [;.

The deterministic equivalent formulation of the multi-stage problem has the
following form

Lo Ls Lz
min c’xl'i‘zplz (qlz)lxlz"‘ Z pl3(ql3)’xl3+ et Z plT(qlT)’xlT
=2 l3=La+1 lr=Lrtl
s.t. Ax! = b
e = W =2 Ly,
Tlagalls) 4 Jy3ls his. I3 = Lo+1,..., L3,

(1.3)

Tlrgelr) 4 WTglt = plv lp = Lpg+1,..., Ly,
zh >0, ly=1,...,Lp.

The numbers of children of each node in the event tree may differ as they
depend on a probability distribution of the appropriate stochastic process. If the
depth-first-search ordering of the nodes in the event tree is maintained during the
generation of the mathematical program, the corresponding constraint matrix dis-

6 Chapter 1. Stochastic Programming from Modeling Languages

plays a nested dual block-angular structure. Links between the nested dual block-
angular structure and the algebraic formulation of the original model can be easily
established.

. /. Scenario 1
\‘ Scenario 2

/. Scenario 3
.\“ Scenario 4

Period 1 Period 2 Period 3

Figure 1.2. A simple event tree.

Figure 1.3. The constraint matriz associated with the event tree.

In our example (see Figure 1.2), node 1 is the root node, nodes 2 and 3 belong
to stage 2 (2 = 2,3), nodes 4 to 7 belong to stage 3 (I3 = 4, ..., 7). The deterministic
equivalent formulation of the problem is presented in (1.4). Let us observe that by
shifting =3 just after 2° and shifting the third constraint after the fifth one, we
immediately retrieve the structure presented in Figure 1.3. It is worth noting that
this reordering operation means changing the breadth-first-search order of nodes in
Figure 1.2 (1,2,3,4,5,6,7) to the depth-first-search order 1,2,4,5,3,6,7.

1.3. Different Formulations of Stochastic Programming Problems 7

min ¢zt +p*(¢%) 2 +0°(¢*) 2P+ (¢") 2 +0°(¢°) 2" +p°(¢%) 407 (¢T) =
s.t.
Ax? = b
T2z + W22 = h?
T3fl}'l + W2x3 — h3
T4 22 + Wizt = pt

TS.TQ + WSxS — h5 (14)

Note also that the probabilities in the objective function of problem (1.4) are not
scenario probabilities but (partial) path probabilities: p™ is the probability (at the
start) that a path goes through node n. Clearly, (1.4) represents a structured linear
program. Its structure should be exploited in the solution algorithm. Unfortunately,
if the model is written with an algebraic modeling language, the structure, easily
identifiable in the algebraic formulation, is usually lost when the corresponding
mathematical program is sent to the solver. Each algebraic modeling language uses
its own algorithm to generate an equivalent mathematical program, which scrambles
the structure.

1.3.2 Formulation with Nonanticipativity Constraints

Another way to write the deterministic equivalent consists in creating independent
copies of variables corresponding to every ancestor in the tree for every child of
this node. In other words, we replicate the variable 2(*) in (1.2) and create copies
x?_l for each I; corresponding to a child node of a(l;) in the event tree. We slightly
change the notation at this point and add explicitly the stage subscript to each
variable. Namely, with a given node [; at stage t we associate two variables: an
appropriate decision variable a:? (at stage t) and a copy of the decision variable at
the ancestor node corresponding to this particular child, xé’;l. For example, the
variable 2% representing the state corresponding to node 3 in stage 2 in Figure 1.2
would have two copies x$ and x5. Hence the last two constraints in (1.4) can be
replaced with the following two constraints

7625 + W3a$ = A
T2} + W3zl T

each with an independent set of variables. In case of example in Figure 1.2, for
node a(ly) = 3 we would have to add a constraint

TS = b

Such a constraint is called a nonanticipativity or a locking constraint.

8 Chapter 1. Stochastic Programming from Modeling Languages

The complete set of nonanticipativity constraints for problem (1.4) may thus
have the following form

af = af
xd = af
i = af (1.5)
r5 =
xS = al.

There are other ways of representing the nonanticipativity constraints (the cyclical
form is also frequently used).

1.4 Stochastic Programs in Algebraic Modeling
Languages

The presence of two different sets associated with time and uncertainty dimensions
in stochastic programs creates a difficulty to an algebraic modeling language. The
uncertainty (or scenarios) needs to be indexed over time, and algebraic modeling
languages normally do not provide such a facility. Consequently, none of the for-
mulations of stochastic programs presented in Section 1.3 can be easily modeled in
AMLs.

In this section, we make the assumption that probability distributions are
discrete and that problems contain multiple stages or periods. Consequently, the
problem can be represented in form of an event tree. This event tree is made of
scenarios. It is quite usual to relate variables of a given node with those that corre-
spond to the ancestor node in the previous stage. For example, any constraint that
describes dynamics of the system would have such a form. However, the constraints
which establish the link between the parent-child pair of nodes are particularly dif-
ficult to generate from the algebraic modeling language. The difficulty originates
from the lack of standard description of the event tree or, more precisely, the lack
of a tree-structured indexing system in AMLs.

When an AML generates the model, it performs extensive searches throughout
the event tree. Therefore the way the event tree is described becomes crucial.
Trees are obviously used in many computer science applications. There exist many
different ways of describing and coding trees, and event trees used in stochastic
programming could take advantage of these developments. Unfortunately, such
techniques are not usually available from AMLs. The difficulty lies in the type of
indexing system required to describe an event tree.

Trees like the one presented in Figure 1.2 are symmetric (every node except
the leaves has the same number of children). Tricks exist such as the one used by
Fragniere et al. (2000) to exploit the contiguity property to represent the symmetric
tree and to retrieve easily the ancestor or the children of a given node (cf. Ahuja
et al. 1993, pp. 774-776 for details). The idea is to use the breadth-first ordering
of nodes in the event tree. Consider, for example, a regular (symmetric) tree with
d children at every node. Then the predecessor of node i is the node a(i) = f%],
where the ceiling function [.] rounds up the argument to the next integer. The

1.4. Stochastic Programs in Algebraic Modeling Languages 9

successors of node i are nodes id—d+2,id—d+3,---,id+1. Unfortunately, this
addressing scheme cannot be generalized to unsymmetric event trees.

In many stochastic problems the discrete approximations of continuous distri-
butions of random variables have various densities in different branches of the tree.
Moreover, many models use trees that are automatically generated approximations
of the stochastic process. These factors may lead to choosing highly unsymmetric
event trees. Hence the restriction that only symmetric trees are modeled is un-
acceptable. The lack of efficient tree-structured indexing in algebraic formulations
remains the main difficulty when AMLs are applied to generate stochastic programs.
Although this could certainly be overcome at the cost of embedding some cumber-
some generation schemes in AMLs, the major developers of AMLs hesitate before
coding a devoted syntax to deal with stochastic programs in their modeling tools.

Modeling stochastic programs through AMLs is still in an early phase but
several attempts have been made to standardize this process. The following brief
literature review gives a nonexhaustive list of attempts made in this direction.

Gassmann and Ireland (1995, 1996) note that stochastic programming type
modeling could greatly benefit from the implicit declaration of scenarios, via the
declaration of random parameters. Buchanan et al. (2001) propose extensions to
AML that allow recursive definition of stochastic dynamic problems and facilitate
the link with sampling techniques. Leuba and Morton (1996) produce a complete
SMPS format, i.e., the core, time and stoch files (cf. the article by Gassmann in this
volume) directly from GAMS. Condevaux-Lanloy et al. (2001) extend the struc-
ture exploiting tool (Fragniere et al. 2000) to permit the formulation of the SMPS
format from the algebraic modeling language. In their approach the time-related
information is retrieved from the core model handled by the AML and the uncer-
tainty information is loaded directly into the specialized SMPS based solver outside
the AML. Entriken (2001) uses object-oriented programming techniques within the
optimization modeling language to facilitate the management of stochastic program-
ming models.

However, and in a general manner, we note the lack of standardization of
modeling stochastic programs in AMLs. This has at least two reasons. Firstly,
there is not yet a widely accepted syntax for a description of stochastic programs.
Secondly, there is not yet a compact and flexible format in which AMLs could send
the stochastic program to the specialized solver.

Below we illustrate the difficulties of tree-structured indexing in more detail
when we use locking constraints to extend the deterministic inventory management
problem to take uncertainty into account. The locking constraints have to be in-
dexed over the event tree. This is done by hand in the model discussed. Next, we
present the proposition made by the AMPL developers to model event trees.

1.4.1 Stochastic Extension of Multiperiod Inventory Model

In this section we present an extension of the multiperiod inventory problem that
takes uncertainty into account. We use explicit locking constraints in the GAMS
model presented in Section 1.2. Such an approach can be used to model both
symmetric and unsymmetric event trees. However, it is rather tedious to implement.

10 Chapter 1. Stochastic Programming from Modeling Languages

Consider again the inventory problem (1.1). Suppose we introduce uncertain-
ties in the future values of the demand parameters as represented by the event tree
of Figure 1.4 and we model the problem as a stochastic program with recourse.
This means that some decisions (activity levels) will be made after the information
about the true value has been obtained. However, some decisions have to be taken
immediately. These immediate decisions should take into account the expected cost
of the recourse.

The stochastic model written in GAMS includes a new index S which stands
for scenarios. Now the inventory balance constraint is generated for both the time
and the scenario dimensions. As we have four scenarios, h, 1, m and a, GAMS
would generate four independent problems, each of them associated with a different
set of data as indicated below.

TABLE

D(T,S) market demand
h 1 m a
0 0 0 0
0 0 0 0

200 200 150 150
300 250 250 200
400 400 400 400

0 0 0 0

b wN = O

Let us observe that all generic constraints and variables include the index
S. The objective in the stochastic inventory management problem is the expected
value of the profit over all possible scenarios:

OBJECTIVE.. PROFIT=E=SUM((INDEX,S),PROB(S)*((P(INDEX)-2.0)*XMINUS (INDEX,S)
- (P(INDEX)+2) *XPLUS (INDEX, S) -H*I (INDEX-1,8))) ;
INVBAL(T-1,S).. XMINUS(T,S)-XPLUS(T,S)+I(T,S)-I(T-1,S) =E= -D(T,S);

As has already been mentioned in Section 1.1, a possible way of dealing with
uncertainty is to define and analyse several independent scenarios. The model is
then solved independently for each scenario and the optimal solutions are gathered
and compared with each other. This approach does not provide the unique first
stage solution. Instead, it provides answers to “What-if” questions. The approach
we shall present below extends it to ensure that the first stage decisions are identical
for all scenarios.

We can achieve this by explicitly forcing the first stage decisions in all four
otherwise independent scenarios to be identical. In the GAMS model we add three
constraints AFI0SS1, AFTI0SS2 and AFI0SS3 that fix the initial inventory to be iden-
tical in all four scenarios h, 1, m and a. For example, the line

AFTIOSS1.. I("O","h")=E=I("O","1");
forces Iy in scenarios h and 1 to be the same, and the line

AFXMOSS1. . XMINUS("0","h")=E=XMINUS("0","1");

1.4. Stochastic Programs in Algebraic Modeling Languages 11

t=1 t=2 t=3 t=4 t=5

{3~)—7

Scenario 1 (core)
probability = 25%

Scenario 2
probability = 25%

1~
A —~(O)—1

Scenario 3
probability = 25%
Scenario 4

Rate Events probability = 25%

|:| Set of Decisions

Figure 1.4. Stochastic Invendeman model.

forces x, in scenarios h and 1 to be identical. Several similar constraints are added
for the variables at stage 1. At stage 2, however, only pairs of scenarios (h, 1) and
(m, a) are linked together. The number of necessary locking constraints is smaller
than those in stages 0 and 1. All the constraints called AF* in the GAMS model
are nonanticipativity constraints, where the last digit indicates the period in which
the constraint is to be found.

The approach presented here requires explicit formulation of all nonanticipa-
tivity constraints and significantly increases the number of constraints in the model,
as can be seen in the complete GAMS model given in Appendix .2. An important
advantage of this approach is that it can be used for both symmetric and unsym-
metric event trees. However, the approach is inefficient and prone to errors if a large
number of nonanticipativity constraints has to be added. Using logical operators in
set indexing would have allowed writing fewer locking constraints and leaving their
generation to the algebraic modeling language.

The extensive formulation presented in this section illustrates clearly that the
size of the simple model dramatically increases when the problem is transformed
into a stochastic program. This type of stochastic programming formulation is
therefore not tractable for large scale problems.

1.4.2 The AMPL Proposal

The developers of AMPL have proposed extensions to the syntax of their modeling
language to allow a description of event trees. We reproduce their proposal below,
following Fourer and Gay (1997). The modeling has been split into two steps. The
first step consists in the definition of scenarios.

12 Chapter 1. Stochastic Programming from Modeling Languages

e scenario scen-name; Create a new current scenario. Inherit all set and pa-
rameter data from parent that was previously current. Incorporate subsequent
data changes in child scenario only.

e scenario scen-name { indexing }; Create an indexed collection of scenar-
ios.

e scenario scen-name weight expr; Associate a probability or other weight.
expr denotes any arithmetic expression in current sets and parameters scenar-
ios.

The second step adds scenarios referencing.

e scenario scen-ref; Make the indicated scenario current. scen-ref denotes
either single scen-name or indexed scen-namefobject-ref].

e scenario scen-name parent scen-ref; Create new scenario having indicated
parent, overriding the default (implicitly build a tree of scenarios).

e nscens, scenname[ezpr], scen[erpr]. Extension of AMPLs generic names
to scenario references (loop over all scenarios in the tree).

This approach has not been implemented yet. When implemented it would
allow building stochastic programming models of small to medium sizes. However,
the proposal does not give a clue on how a large unsymmetric event tree can be
modeled within AMPL.

More generally, the developers of algebraic modeling languages do not want to
commit their languages to a specific syntax of event tree description. This syntax is
closely related to a standard in which problems are described in the AMLs and the
format in which they are passed to the specialized stochastic programming solvers.

1.5 SP Solution Techniques Available to AMLs

At the moment of writing this chapter, the only option available in AMLs is to
generate the full deterministic equivalent. The only alternative left is thus to use
the general purpose solvers that by default would use a direct solution method to
tackle the problem. This approach is quite efficient as long as the problem is small
to medium size and can be generated within memory limits. The need for accurate
modeling of stochastic processes inevitably leads to a size explosion in the model.
Even if the user is satisfied with the accuracy of the generated problem, and the
general purpose solver can solve this problem efficiently, there is a danger that the
generation of the problem significantly contributes to the overall solution process.
It is not unusual, for example, that model generation by an AML takes more time
than the following solution of the problem. Gondzio and Kouwenberg (2001) have
generated a medium scale stochastic model by the GAMS modeling language and
a specialized generation program (Kouwenberg 1999). The latter was 815 times
faster.

Over the years many specialized techniques have been developed for stochas-
tic programming. They usually exploit special structure of the problem. Many

1.5. SP Solution Techniques Available to AMLs 13

of these techniques rely on some variant of Benders decomposition (Van Slyke and
Wets 1969). The decomposition approach breaks the very large problem into smaller
manageable optimization problems. This has several advantages. First, the peak
memory requirement (needed to generate and then to read the deterministic equiva-
lent problem) can be avoided. Additionally, the problem can be passed to the solver
in pieces that are suitable for the decomposition approach. Therefore, as has been
observed by Fragniére et al. (2000), within the same memory limits decomposition-
based solvers can deal with problems that are at least an order of magnitude larger
than those solvable by a direct approach.

An alternative would consist in implementing simple decomposition technique
directly within AMLs. This approach is routinely used in certain economical ap-
plications: the decomposition loops are programmed in GAMS, for example, in the
context of nonlinear stochastic programming problems (Chang and Fragniere 1996).
Indeed, the presence of procedural statements such as if-then-else and do-while
provided by most AMLs makes it possible to implement simple optimization algo-
rithms. The interested reader can consult the library of examples of algorithms
implemented through AMPL which includes Benders decomposition (Fourer and
Gay 1999). The article by Gassmann and Gay in this volume shows how to imple-
ment a nested Benders algorithm within the AMPL control language. The authors
conclude that such an approach cannot be generalized because the AML-based de-
composition algorithm depends upon the syntax used by a particular model and is
not reusable in a different model. Moreover, the AML is not necessarily the best
environment to implement complicated optimization algorithms needed to solve
stochastic programming problems efficiently.

Although several efficient algorithms have been proposed for stochastic pro-
gramming, the limitations discussed so far prevent access to many of these tech-
niques from AMLs. Indeed, the research in stochastic programming provides evi-
dence that very large problems can be generated and solved. The research results
on solution techniques are very much ahead of current links to solvers available in
AMLs.

Below we recall some of the results that indicate currently achievable limits
of solvable problems. We underline that all the solution techniques use parallel
computing. Yang and Zenios (1997) solved test problems with up to 2.6 million
constraints and 18.2 million variables. They used a parallel direct interior point
method. Gondzio and Kouwenberg (2001) solved a financial planning problem with
7 decision stages and a total of 5 million scenarios at the planning horizon, the
linear program consisting of 12.5 million constraints and 25 million variables. They
used an interior point based variant of Benders decomposition run on a 16-processor
parallel machine. Blomvall and Lindberg (2000) solved a problem with 10 stages
and 1.9 million scenarios, resulting in a separable convex program with 119 million
constraints and 67 million variables. They used a direct interior point method with
a specialized Riccati-based solver for computing Newton directions and ran it on
a Beowulf cluster of 32 PCs. Linderoth and Wright (2001) solved a problem with
10 million scenarios, the linear program having 985 million constraints and 12,600
million variables (see also the article by Linderoth and Wright in this volume). They
used a variant of Benders decomposition and ran it on a grid of 1345 workstations.

14 Chapter 1. Stochastic Programming from Modeling Languages

To conclude, there is a need to improve the links between the AMLs and the
solvers. Attempts have already been made that go into this direction. For example,
Fragniere et al. (2000) have used GAMS to generate a one million scenario problem,
a linear program with 1111112 constraints and 2555556 variables. The problem was
solved by a specialized parallel interior point based decomposition algorithm running
on a cluster of 10 Linux PCs. The solver was accessed directly from the AML. Still
the problem was passed to the solver in a deterministic equivalent form. This
approach clearly demonstrates the need for improving the link between the AML
and the specialized solver to avoid the bottleneck generation of the deterministic
equivalent. We address this issue in the next section.

1.6 Communication Between Solver and AML

Every AML has a set of specialized routines to communicate with the solver. Usu-
ally, the whole problem is passed at once to the solver in form of a text or binary file.
This implies that sufficient memory has to be available to store the complete math-
ematical program. Typically AMLs generate the stochastic programming problem
in the deterministic equivalent form and call a general-purpose optimization code
to solve it. The size of the deterministic equivalent problem is proportional to the
number of nodes in the event tree. Therefore, the AML may require a vast amount
of memory to store it. As has already been mentioned, the real bottleneck is often
not the memory requirement but the time of the problem generation.

At least some of the earlier mentioned drawbacks of the problem generation
by AMLSs could be avoided if the SMPS format were used. Moreover, any efficient
solution method for stochastic programming is built upon the exploitation of the
special structure of the problem, and the complete structure information is available
from the SMPS format. At the moment of writing this chapter AMLs cannot gen-
erate stochastic problems in SMPS format. However, several attempts to overcome
this difficulty have already been made (Buchanan et al. 2001; Condevaux-Lanloy
et al. 2001; Messina and Mitra 1997). The problem has been treated in different
ways. One of them consists in developing the extensions of existing AMLs dedicated
to stochastic optimization.

Although s-Magic (Buchanan et al. 2001) does not produce SMPS format
from the problem, it uses the recursive definition and communicates with the solver
using a specialized memory efficient description of the problem. The problem is
represented in a compact format close in spirit to SMPS. Stochastic extension
(Condevaux-Lanloy et al. 2001) of the structure exploiting tool (Fragniere et al.
2000) uses the AML to generate the deterministic part of the model in form of the
core and time files in the SMPS format. The information of uncertainty is produced
outside the AML and communicated directly to the specialized solver. SPInE (cf.
Messina and Mitra 1997 and the article by Valente et al. in this volume) is a closed
modeling system that generates the SMPS format of the stochastic programming
problem and has access to built-in specialized optimization tools — the Benders
decomposition. Direct solution of the deterministic equivalent form of the problem
is also available as an option.

1.7. Conclusions 15

1.7 Conclusions

Stochastic programming is a promising technology for handling planning problems
in uncertain environments. At least this has always been said since the publication
of the seminal paper on linear programming under uncertainty (Dantzig 1955).
Unfortunately, due to modeling difficulties this technology has not yet reached the
wide audience it deserves. To facilitate incorporating uncertainty in the planning
models, user-friendly modeling systems are needed that can access the stochastic
programming technology. Widely used algebraic modeling languages are candidates
to close this gap.

In this chapter we underlined the difficulties in the use of uncertainty in the
modeling of real-life problems. We began our exposé with a discussion of an inven-
tory problem. Deterministic formulations of this problem in the algebraic modeling
language and in mathematical terms are very similar to each other. Then we ex-
plained the modification to include a stochastic dimension (uncertain demands) into
the problem. Although the problem remains simple, it illustrates all the difficulties
of including stochastic programs into modeling systems. We elaborated on different
approaches that allow writing stochastic programs directly in algebraic modeling
languages. We ended the chapter with a discussion of stochastic programming so-
lution techniques accessible from modeling systems. These systems certainly need
further development to reach industry standard. We expect that this progress will
be made in the next few years and the integrated modeling system for stochastic
programming will enable the modelers to popularize the stochastic programming
technology through relevant applications.

Acknowledgement

We are grateful to Gus Gassmann for constructive comments, resulting in an im-
proved presentation. The research of the first author was supported by the Fonds
National de la Recherche Scientifique Suisse, grant #1213-058892.99/1. The re-
search of the second author was supported by the Engineering and Physical Sciences
Research Council of UK, EPSRC grant GR/M68169.

16

Chapter 1. Stochastic Programming from Modeling Languages

Bibliography

Ahuja, R. K., T. L. Magnanti, and J. B. Orlin (1993). Network Flows. New York:
Prentice-Hall.

Birge, J., M. Dempster, H. Gassmann, E. Gunn, A. King, and S. Wallace (1987).
A standard input format for multiperiod stochastic linear programs. Commit-
tee on Algorithms Newsletter 17, 1-19.

Bisschop, J. and R. Entriken (1993). AIMMS: The modeling system. Paragon
Decision Technology.

Blomvall, J. and P. O. Lindberg (2000). A Riccati-based primal interior point
solver for multistage stochastic programming - extensions. Technical report,
Department of Mathematics, Link6ping University, 58183 Linkoping. To ap-
pear in: Optimization Methods and Software.

Brooke, A., D. Kendrick, and A. Meeraus (1992). GAMS: A User’s Guide. Red-
wood City, California: The Scientific Press.

Buchanan, C.; K. McKinnon, and G. Skondras (2001). The recursive definition
of stochastic linear programming problems within an algebraic modeling lan-
guage. Annals of Operations Research 104(1/4), 15-32.

Chang, D. and E. Fragniere (1996). SPLITDAT and DECOMP: Two new GAMS
I/0O subroutines to handle mathematical programming problems with an au-
tomated decomposition procedure. Stanford University, Department of Oper-
ations Research, manuscript.

Condevaux-Lanloy, C., E. Fragniere, and A. J. King (2001). SISP: a simplified
interface for stochastic program. To appear in: Optimization Methods and

Software.

Dantzig, G. B. (1955). Linear programming under uncertainty. Management Sci-
ence 1, 197-206.

Entriken, R. (2001). Language constructs for modeling stochastic linear programs.
Annals of Operations Research 104(1/4), 49-66.

Fourer, R. and D. Gay (1997). Proposals for stochastic programming in the AMPL
modeling language. International Symposium on Mathematical Programming,
Lausanne.

17

18 BIBLIOGRAPHY

Fourer, R. and D. Gay (1999). Implementing algorithms through
AMPL scripts (looping and testing 2). AMPL Web Page, URL:
http://www.ampl.com/cm/cs/what/ampl/NEW/LO0P2/index.html.

Fourer, R., D. Gay, and B. W. Kernighan (1993). AMPL: A Modeling Lan-
guage for Mathematical Programming. San Francisco, California: The Sci-
entific Press.

Fragniere, E. and J. Gondzio (2002). Optimization modeling languages. In
P. Pardalos and M. Resende (Eds.), Handbook of Applied Optimization, pp.
993-1007. New York: Oxford University Press.

Fragniére, E., J. Gondzio, R. Sarkissian, and J.-P. Vial (2000). Structure ex-
ploiting tool in algebraic modeling languages. Management Science 46(8),
1145-1158.

Fragniére, E., J. Gondzio, and J.-P. Vial (2000). Building and solving large-scale
stochastic programs on an affordable distributed computing system. Annals
of Operations Research 99(1/4), 167-187.

Gassmann, H. and A. Ireland (1995). Scenario formulation in an algebraic mod-
elling language. Annals of Operations Research 59, 45-75.

Gassmann, H. and A. Ireland (1996). On the automatic formulation of stochastic
linear programs. Annals of Operations Research 64, 83-112.

Gondzio, J. and R. Kouwenberg (2001). High performance computing for asset
liability management. Operations Research 49(6), 879-891.

Kouwenberg, R. (1999). LEQGEN: A C-tool for generating linear and quadratic
programs, User’s Manual. Rotterdam, The Netherlands: Econometric Insti-
tute, Erasmus University.

Leuba, A. and D. Morton (1996). Generating stochastic linear programs in S-MPS
format with GAMS. INFORMS Conference, Atlanta.

Linderoth, J. and S. J. Wright (2001). Decomposition algorithms for stochastic
programming on a computational grid. Technical Report MCS-P875-0401,
Mathematics and Computer Science Division, Argonne National Laboratory,
Argonne, IL 60439, USA.

Messina, E. and G. Mitra (1997). Modelling and analysis of multistage stochastic
programming problems: A software environment. European Journal of Oper-
ational Research 101, 343-359.

Thompson, G. (1992). Computational Economics. New York: Scientific Press.

Van Slyke, R. and R. J.-B. Wets (1969). L-shaped linear programs with ap-
plications to optimal control and stochastic programming. SIAM Journal of
Applied Mathematics 17, 638-663.

Yang, D. and S. A. Zenios (1997). A scalable parallel interior point algorithm
for stochastic linear programming and robust optimization. Computational
Optimization and Applications 7, 143-158.

.1. The GAMS Model of Deterministic Inventory Problem

19

.1 The GAMS Model of Deterministic Inventory

Problem
SETS
T time periods /0,1,2,3,4,5/
INDEX (T) / 1,2,3,4,5/
OPENING(T) /0 /
TERMINAL(T) / 5/;
PARAMETERS
P(INDEX) market price
/1 75
2 65
3 89
4 77
5 80/
D(T) market demand
/0 0
1 0
2 200
3 300
4 400
5 0/;
VARIABLES
PROFIT
POSITIVE VARIABLES
XMINUS(T) quantity sold at time T
XPLUS(T) quantity bought at time T
I(T) inventory held at time T;
EQUATIONS
OBJECTIVE calculating net profit
INVBAL(T) inventory balance at time T;
OBJECTIVE. . PROFIT =E= SUM(INDEX, (P(INDEX)-2.0)*XMINUS(INDEX)

- (P(INDEX)+2.0)*XPLUS (INDEX) -I(INDEX-1));
INVBAL(T-1).. XMINUS(T)-XPLUS(T)+I(T)-I(T-1) =E= -D(T);
I.UP(T) = 500;
I.FX(OPENING) 300;
I.FX(TERMINAL) 300;
MODEL INVENDEMAN/ALL/;
SOLVE INVENDEMAN USING LP MAXIMIZING PROFIT;

20 BIBLIOGRAPHY

.2 The GAMS Model of Stochastic Inventory

Problem
SETS
S scenarios /h,1,m,a/
T time periods /0,1,2,3,4,5/
INDEX(T) / 1,2,3,4,5/
OPENING(T) /0 /
TERMINAL (T) / 5/;
PARAMETERS
P(INDEX) market price
/1 75
2 65
3 89
4 77
5 80/
PROB(S) scenario probabilities
/h 0.25
1 0.25
m 0.25
a 0.25/
TABLE
D(T,S) market demand
h 1 m a
0 0 0 0 0
1 0 0 0 0
2 200 200 150 150
3 300 250 250 200
4 400 400 400 400
5 0 0 0 0
VARIABLES
PROFIT

POSITIVE VARIABLES
XMINUS(T,S) quantity sold at time T
XPLUS(T,S) quantity bought at time T
I(T,S) inventory held at time T;
EQUATIONS
OBJECTIVE calculating net profit
INVBAL(T,S) inventory balance at time T
AFIOSS1
AFI0SS2
AFIOSS3
AFXMOSS1
AFXM0SS2
AFXMOSS3
AFXPOSS1
AFXP0SS2
AFXP0SS3
AFI1SS1
AFTI1SS2

.2. The GAMS Model of Stochastic Inventory Problem 21

AFI1SS3

AFXM18S1

AFXM1SS2

AFXM1SS3

AFXP1SS1

AFXP1SS2

AFXP1SS3

AFI2SS1

AFI2SS2

AFXM2SS1

AFXM2SS2

AFXP2SS1

AFXP2SS2 ;
OBJECTIVE.. PROFIT =E= SUM((INDEX,S),PROB(S)*((P(INDEX)-2.0)*XMINUS (INDEX,S)

- (P(INDEX)+2.0)*XPLUS (INDEX,S)-H*I (INDEX-1,S)));

INVBAL(T-1,S8).. XMINUS(T,S)-XPLUS(T,S)+I(T,S)-I(T-1,8) =E= -D(T,S);

AFIOSS1. . I("o","n") =E= I("0","1");

AFI0SS2. . I("o","m") =E= I("0","a");

AFIOSS3.. I("o","m") =E= I("0","1");

AFXMOSS1. . XMINUS("O","h") =E= XMINUS("O","1");
AFXM0SS2. . XMINUS("O","m") =E= XMINUS("O0","a");
AFXMOSS3. . XMINUS("O","m") =E= XMINUS("O0","1");
AFXPOSS1. . XPLUS("O","h") =E= XPLUS("0","1");

AFXP0SS2. . XPLUS("0", "m" =E= XPLUS("0","a");

AFXP0SS3. . XPLUS("0","m") =E= XPLUS("0","1");

AFTI1SS1.. I("1","n") =E= I("1","1");

AFTI1SS2.. I("1","m") =E= I("1","a");

AFI1SS3.. I("1","m") =E= I("1","1");

AFXM1SS1. . XMINUS("1","h") =E= XMINUS("1","1");
AFXM1SS2. . XMINUS("1","m") =E= XMINUS("1","a");
AFXM1SS3. . XMINUS("1","m") =E= XMINUS("1","1");
AFXP1SS1. . XPLUS("1","h") =E= XPLUS("1","1");

AFXP1SS2.. XPLUS("1","m" =E= XPLUS("1","a");

AFXP1SS3. . XPLUS("1","m") =E= XPLUS("1","1");

AFI2SS1.. I("2","n") =E= I("2","1");

AFI2SS2.. I("2","m") =E= I("2","a");

AFXM2SS1. . XMINUS("2","h") =E= XMINUS("2","1");
AFXM2SS2. . XMINUS("2","m") =E= XMINUS("2","a");
AFXP2SS1. . XPLUS("2","h") =E= XPLUS("2","1");

AFXP28S2. . XPLUS("2","m") =E= XPLUS("2","a");

I.UP(T,S) = 500;

I.FX(OPENING,S) = 300;

I.FX(TERMINAL,S) = 300;

MODEL INVENDEMAN/ALL/;
SOLVE INVENDEMAN USING LP MAXIMIZING PROFIT;

