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What is it about...

Primal dual method for convex optimization

Best approximation method for Kuhn-Tucker set

1

Dynamical system related to the above

2 ’Bird eye’ view at the solution method for solving the optimisation problem (Flam, ’92)

Minimizex ıHf (x)

via trajectories of the related dynamical system (solution method obtained under suitable
discretization)

dx

dt
= F (x), with F (x) depending on the solution method

defining the dynamical system related to the best approximation method, for convex
optimization, for operator inclusion problems

Lipschtzness of the right-hand side

There is no global Lipschitzess of the right-hand side of the proposed dynamical
system, the right-hand side of the proposed dynamical system is only locally
Lipschitz

3
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Operator inclusions problems

Let H,G be Hilbert spaces, A : H → H, B : G → G be maximally monotone
operators and L : H → G be a linear, bounded continuous operator.
The primal inclusion problem is to find u ∈ H such that

0 ∈ Au + L∗BLu. (P)

The dual inclusion problem to (P) is to find v∗ ∈ G such that

0 ∈ −LA−1(−Lv∗) + B−1v∗. (D)

A point u ∈ H solves (P) if and only if v∗ ∈ G solves (D) and (u, v∗) ∈ Z , where
point from the Kuhn Tucker set given by

Z := {(u, v∗) ∈ H× G | − L∗v∗ ∈ Au and Lu ∈ B−1v∗}. (set Z)

It is known that Z is a closed convex set. We assume Z 6= ∅.

The aim

Find a point (x̄ , v̄∗) from Z
under some conditions x̄ solves (P) and v̄∗ solves (D)
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Relation to convex optimization problems - primal-dual framework

A = ∂f , B = ∂g - subdifferentials of convex functions f and g ,
f : H → (−∞,+∞] g : G → (−∞,+∞], proper, convex, l.s.c. with
conjugates f ∗, g∗

L : H → G, a linear continuous operator with conjugate L∗

under some constraint qualification problem P corresponds to the
minimization

minimizex∈H f (x) + g(Lx) (P)

the problem (D) corresponds to Fenchel-Rockafellar dual problem

minimizev∗∈G f ∗(−L∗v∗) + g∗(v∗) (D)

and the associated Kuhn–Tucker set is the set Z coincides with
(set Z)

Z = {(x , v∗) ∈ H× G | − L∗v∗ ∈ ∂f (x) and Lx ∈ ∂g∗(v∗)}

The aim

Find a point (x̄ , v̄∗) from Z
under some conditions x̄ solves (P) and v̄∗ solves (D)
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The approach

The idea of Eckstein and Svaiter is to construct halfspaces satisfying

Z ⊂ Hϕ := {(u, v∗) ∈ H×H | ϕ(u, v∗) ≤ 0}

(in their original formulation L = Id), with

ϕ(u, v∗) := 〈u − b | b∗ − v∗〉+ 〈u − a | a∗ + v∗〉, (a, a∗) ∈ gphA, (b, b∗) ∈ gphB.

This idea has been continued by Zhang and Cheng, Alatoibi and Combettes and
Shahzad.
J. Eckstein and B. F. Svaiter. “A family of projective splitting methods for the sum of two maximal monotone operators”. In:

Mathematical Programming 111.1 (2008), pp. 173–199. issn: 1436-4646. doi: 10.1007/s10107-006-0070-8. url:

http://dx.doi.org/10.1007/s10107-006-0070-8

Hui Zhang and Lizhi Cheng. “Projective splitting methods for sums of maximal monotone operators with applications”. In: Journal of

Mathematical Analysis and Applications 406.1 (2013), pp. 323 –334. issn: 0022-247X. doi:

https://doi.org/10.1016/j.jmaa.2013.04.072
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Inspiration - Eckstein and Svaiter, 2007 - decomposable separator

1 original problem: 0 ∈ Ax + Bx (no L and H = G)

2 extended solution set

Se(A,B) = {(x , v∗) ∈ H×H | − v∗ ∈ Ax and v∗ ∈ Bx}

3 this is the Kuhn-Tucker set Z

4 Fact 1: x ∈ (A + B)−1(0) ⇔ ∃ v∗ ∈ H s.t. (x , v∗) ∈ Se(A,B)

proof: 0 ∈ Ax + Bx ≡ ∃ v∗ ∈ H − v∗ ∈ Ax and v∗ ∈ Bx

5 Fact 2: A,B : H⇒ H, then Se(A,B) is closed and convex

6 Let (b, b∗) ∈ GphB and (a, a∗) ∈ GphA and let ϕ : H×H → R

ϕ(x , v∗) := 〈x − b, b∗ − v∗〉+ 〈x − a, a∗ + v∗〉

7 Fact 3. Given (b, b∗) ∈ GphB and (a, a∗) ∈ GphA. We have
1 Se(A,B) ⊂ {(x, v∗) ∈ H×H | ϕ(x, v∗) ≤ 0}
2 additionally: ϕ is both continuous and affine,

∇ϕ = 0 ⇔ (b, b∗) ∈ Se(A,B), b = a, a∗ = −b∗
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Successive Fejér approximations iterative scheme

Let H, G be real Hilbert spaces and let Z be defined by (set Z). Let
{Hn}n∈N ⊂ H× G, be a sequence of convex closed sets such that Z ⊂ Hn, n ∈ N.
The projections PHn (x) of any x ∈ H× G onto Hn are uniquely defined.

Algorithm 1 Generic primal-dual Fejér Approximation Iterative Scheme

1: Choose an initial point x0 ∈ H× G
2: Choose a sequence of parameters {λn}n≥0 ∈ (0, 2)
3: for n = 0, 1 . . . do
4: Choose Hn convex closed such that Z ⊂ Hn

5: xn+1 = xn + λn(PHn (xn)− xn)
6: end forreturn

J. Eckstein and B. F. Svaiter. “A family of projective splitting methods for the sum of two maximal monotone operators”. In:

Mathematical Programming 111.1 (2008), pp. 173–199. issn: 1436-4646. doi: 10.1007/s10107-006-0070-8. url:

http://dx.doi.org/10.1007/s10107-006-0070-8

Hui Zhang and Lizhi Cheng. “Projective splitting methods for sums of maximal monotone operators with applications”. In: Journal of

Mathematical Analysis and Applications 406.1 (2013), pp. 323 –334. issn: 0022-247X. doi:

https://doi.org/10.1016/j.jmaa.2013.04.072
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Convergence result

Theorem

For any sequence generated by Iterative Scheme 1 the following hold:

1 {xn}n∈N ⊂ H× G is Fejér monotone with respect to the set Z , i.e

∀n∈N ∀z∈Z ‖xn+1 − z‖ ≤ ‖xn − z‖,

2

+∞∑
n=0

λn(2− λn)‖PHn (xn)− xn‖2 < +∞,

3 if
∀x ∈ H× G ∀{kn}n∈N ⊂ N xkn ⇀ x =⇒ x ∈ Z ,

then {xn}n∈N converges weakly to a point in Z .

A. Alotaibi, P. L. Combettes, and N. Shahzad. “Solving Coupled Composite Monotone Inclusions by Successive Fejér Approximations of

their Kuhn-Tucker Set.”. In: SIAM Journal on Optimization 24.4 (2014), pp. 2076–2095. doi: 10.1137/130950616. eprint:

http://dx.doi.org/10.1137/130950616. url: http://dx.doi.org/10.1137/130950616
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Han,b∗n :=
{
x ∈ H× G |

〈
x | s∗an,b∗n

〉
≤ ηan,b∗n

}
,

s∗an,b∗n
:= (a∗n + L∗b∗n , bn − Lan), ηan,b∗n := 〈an | a∗n 〉+ 〈bn | b∗n 〉 ,

(*)

with

an := JγnA(pn − γnL∗v∗n ), bn := JµnB(Lpn + µnv
∗
n ),

a∗n := γ−1
n (pn − an)− L∗v∗n , b∗n := µ−1

n (Lpn − bn) + v∗n ,

where for any maximally monotone operator D and constant ξ > 0,
JξD(x) = (Id + ξD)−1(x).
Parameters µn, γn > 0 are suitable defined.
It easy to see Hϕn = Han,b∗n , where ϕn = ϕ(an, b∗n ).
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Best approximation iterative schemes

Here we study iterative best approximation schemes in the form of Algorithm 2. For
any x , y ∈ H× G we define

H(x , y) := {h ∈ H× G | 〈h − y | x − y〉 ≤ 0}.
As previously, let {Hn}n∈N ⊂ H× G be a sequence of closed convex sets, Z ⊂ Hn for
n ∈ N.

Algorithm 2 Generic primal-dual best approximation iterative scheme

Choose an initial point x0 = (p0, v∗0 ) ∈ H× G
Choose a sequence of parameters {λn}n≥0 ∈ (0, 1]
for n = 0, 1 . . . do

Fejérian step
Choose Hn such that Z ⊂ Hn

xn+1/2 = xn + λn(PHn (xn)− xn)
Let Cn be a closed convex set such that Z ⊂ Cn ⊂ H(xn, xn+1/2).
Haugazeau step
Choose Cn such that Z ⊂ Cn ⊂ Hn

xn+1 = PH(x0,xn)∩Cn
(x0)

end forreturn

The choice of Cn = H(xn, xn+1/2) has been already investigated in
Abdullah Alotaibi, Patrick L. Combettes, and Naseer Shahzad. “Best approximation from the Kuhn-Tucker set of composite monotone

inclusions”. In: Numer. Funct. Anal. Optim. 36.12 (2015), pp. 1513–1532. issn: 0163-0563. doi: 10.1080/01630563.2015.1077864.

url: http://dx.doi.org/10.1080/01630563.2015.1077864
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Convergence

Theorem

Let Z be a nonempty closed convex subset of H× G and let x0 = (p0, v∗0 ) ∈ H× G.
Let {Cn}n∈N be any sequence satisfying Z ⊂ Cn ⊂ H(xn, xn+1/2), n ∈ N. For the
sequence {xn}n∈N generated by Algorithm 2 the following hold:

1 Z ⊂ H(x0, xn) ∩ Cn for n ∈ N,

2 ‖xn+1 − x0‖ ≥ ‖xn − x0‖ for n ∈ N,

3

+∞∑
n=0
‖xn+1 − xn‖2 < +∞,

4

+∞∑
n=0
‖xn+1/2 − xn‖2 < +∞.

5 If
∀x ∈ H× G ∀{kn}n∈N ⊂ N xkn ⇀ x =⇒ x ∈ Z ,

then xn → PZ (x0).
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Generic best approximation algorithm

Let x0 = (u0, v∗0 ) ∈ H× G.

1: for n = 0, 1, . . . do
2:

(un+1, v∗n+1) = PH1(x0,(un,v∗n ))∩H2(un,v∗n )(x0)

3: end for

where, for suitably chosen s and η,

H1(x0, (u, v
∗)) :={h ∈ H× G | 〈h − (u, v∗) | x0 − (u, v∗)〉 ≤ 0},

H2(u, v∗) :={h ∈ H× G | 〈h | s(u, v∗)〉 ≤ η(u, v∗)}, Z ⊂ H2(u, v∗),

s : H× G → H× G, η : H× G → R

Yves. Haugazeau. “Sur les inequations variationnelles et la minimisation de fonctionnelles convexes”. French. PhD thesis. [S.l.]: [s.n.],

1968

Abdullah Alotaibi, Patrick L. Combettes, and Naseer Shahzad. “Best approximation from the Kuhn-Tucker set of composite monotone

inclusions”. In: Numer. Funct. Anal. Optim. 36.12 (2015), pp. 1513–1532. issn: 0163-0563. doi: 10.1080/01630563.2015.1077864.

url: http://dx.doi.org/10.1080/01630563.2015.1077864

Inertial variants

(un+1, v∗n+1) = PH1(x0,(un,v∗n ))∩H2(un,v∗n )∩H3((un,v∗n ),(un−1,v
∗
n−1))(x0)
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Lipschitzness of data

1 Let (u, v∗) ∈ D := clB( x0+PZ (x0)
2

,
‖x0−PZ (x0)‖

2
). Then PZ (x0) ∈ H1(x0, (u, v∗))

and for all (u, v∗) /∈ D, PZ (x0) /∈ H1(x0, (u, v∗))

2 Let γ, µ ∈ R++. Operator η : D → R, defined as

η(u, v∗) :=〈JγA(u − γL∗v) |
1

γ
(u − γL∗v − JγA(u − γL∗v))〉

+ 〈JµB(Lu + µv∗) | L∗(Lu + µv∗)〉

is (locally) Lipschitz continuous on D.

3 Let γ, µ ∈ R++. An operator s : H× G → H× G defined as

s(u, v∗) :=

[ 1
γ

(u − γL∗v − JγA(u − γL∗v)) + 1
µ
L∗(Lu + µv∗ − JµB(Lu + µv∗))

JµB(Lu + µv∗)− LJγA(u − γL∗v)

]
is Lipschitz continuous on H× G.

4 H1(x0, (u, v
∗)) ∩ H2(u, v∗) ={

x ∈ H× G
∣∣∣∣ 〈x | x0 − (u, v∗)〉 ≤ 〈(u, v∗) | x0 − (u, v∗)〉,

〈x | s(u, v∗)〉 ≤ η(u, v∗)

}
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Optimization and Dynamical Systems
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Dynamical systems and iterative solution schemes
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Dynamical system related to algorithm 2

We investigate, for any given x0, w̄ ∈ H× G, the following dynamical system, solution
of which asymptotically approaches solution of (P)-(D),

ẋ(t) = Q(w̄ , x(t),Tx(t))− x(t), t ≥ 0,

x(0) = x0,
(S)

where T : H× G → H× G, fixed point set of the operator T is Z , FixT = Z , with Z
defined by (set Z) and Q : (H× G)3 →H× G,

Q(w̄ , b, c) := PH(w̄,b)∩H(b,c)(w̄), (1)

is the projection P of the element w̄ onto the set H(w̄ , b) ∩ H(b, c) which is the
intersection of two hyperplanes of the form

H(z1, z2) := {h ∈ H× G | 〈h − z2 | z1 − z2〉 ≤ 0}, z1, z2 ∈ H× G. (2)

In particular,
H(w̄ , b) = {h ∈ H× G | 〈h − b | w̄ − b〉 ≤ 0}.

Under suitable discretization the system (S) leads to primal-dual best approximation
scheme introduced for finding (p, v∗) ∈ Z in
Abdullah Alotaibi, Patrick L. Combettes, and Naseer Shahzad. “Best approximation from the Kuhn-Tucker set of composite monotone

inclusions”. In: Numer. Funct. Anal. Optim. 36.12 (2015), pp. 1513–1532. issn: 0163-0563. doi: 10.1080/01630563.2015.1077864.

url: http://dx.doi.org/10.1080/01630563.2015.1077864
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Example 1

First order dynamical systems related to optimization problems have been discussed by
many authors.
A natural assumption is that the vector field F is globally Lipschitz and consequently,
the existence and uniqueness of solutions to the dynamical system is guaranteed by
classical results (see e.g. the bok by Brezis) For instance, Abbas, Attouch and Svaiter
considered the following system

ẋ(t) + x(t) = proxµΦ(x(t)− µB(x(t))),

x(0) = x0,
(3)

where Φ : H → R ∪+∞ is a proper, convex and lower semicontinuous function
defined on a hilbert space H, B : H → H is β-cocoercive operator and
proxµΦ : H → H is a proximal operator defined as

proxµΦ(x) = arg min
y∈H
{Φ(y) +

1

2µ
‖x − y‖2}.
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Example 2

Radu Boţ and Erno Csetnek, a dynamical system is studied in a form

ẋ(t) = λ(t)(T(x(t))− x(t)), t ≥ 0

x(0) = x0,
(4)

where T : H → H is a nonexpansive operator, λ : [0,∞)→ [0, 1] is a Lebesgue
measurable function.
By taking T = JγA(Id − γB), where A : H → H is a maximally monotone operator,
Boţ and Csetnek obtain the system

ẋ(t) = λ(t)[JγA(x(t)− γB(x(t)))− x(t)],

x(0) = x0.
(5)

This system under special discretization leads to the forward-backward algorithm for
solving operator inclusion problem in a form

find x ∈ H s.t. 0 ∈ A(x) + B(x).
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The problem

The most essential difference between (S)

ẋ(t) = Q(w̄ , x(t),Tx(t))− x(t), t ≥ 0,

x(0) = x0,
(S)

and the systems (3), (4), (5) is that, in general, one cannot expect that the vector
field Q given in (S) is globally Lipschitz with respect to variable x as it is the case of
dynamical systems (3), (4) and (5).

The contribution related to (S) is as follows.

1 The existence and uniqueness of solutions to dynamical system (S) by studying a
more general problem (DS-0).

2 Extendability of solutions to dynamical system (DS-0)

3 The behaviour at +∞ of solutions to (DS-0)
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Formulation of the system (S) in the general form (DS-0)

Let w̄ , z̄ ∈ X and the associated norm in Hilbert space X be defined as
‖ · ‖ =

√
〈· | ·〉. Let D ⊂ X be a closed convex subset of X such that w̄ , z̄ ∈ D and

〈z̄ − x | w̄ − x〉 ≤ 0 for all x ∈ D. (6)

Note that the condition (6) immediately implies that w̄ and z̄ are boundary points of
the set D.
Let r be such that ‖w̄ − z̄‖2 > r > 0. We consider set D̂ related to D (see Figure 1):

D̂ = {x ∈ D | ‖x − w̄‖2 ≥ r}.

We consider the following Cauchy problem

ẋ(t) = F (x(t)), t ≥ t0 ≥ 0,

x(t0) = x00 ∈ D̂ \ {z̄},
(DS-0)

where F : D̂ → X is a continuous function on D̂ and locally
Lipschitz on D̂ \ {z̄} and bounded on D̂ (‖F (x)‖ ≤ M, M > 0,

x ∈ D̂).
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Pictures

Moreover, we assume:

1 z̄ is the only zero point of F in D̂, i.e. F (x) = 0 iff x = z̄.

2 for all x ∈ D̂, for all h ∈ [0, 1] we have x + hF (x) ∈ D̂
Together with assumptions 1, 2 we also consider the following assumption, related to
the projection2:

1 〈F (x) | w̄ − x〉 ≤ 0 for all x ∈ D̂.

Figure: Illustration of the considered sets.

2Here, for f (x) := F (x) + x (so that F (x) = f (x)− x) we have that z̄ ∈ H(w̄, f (x)).
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Remark

Remark

The motivation for considering a nonconvex set D̂ comes from the
following observation. Consider F : D → X defined as

F (x) = PC(x)(w̄), (7)

where PC(x)(w̄) is the projection of w̄ onto C(x), C : D ⇒ X is a
multifunction given by C(x) = H(w̄ , x) ∩ H(x , g(x)) (see formula
(2) for H(·, ·)) and g : X → X satisfies z̄ ∈ H(x , g(x)) for all
x ∈ X . Under a suitable assumption on g , the function F given by
(7) is locally Lipschitz on D \ {w̄ , z̄} see last section below
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Definitions

Definition

Let
T = [t0;T ), t0 < T ≤ +∞ or T = [t0;T ], t0 < T < +∞.

Solution of

ẋ(t) = F (x(t)), t ≥ t0 ≥ 0,

x(t0) = x00 ∈ A \ {z̄},
(DS-A)

where F : A→ X , A ⊆ X , on interval T is any function

x(·) ∈ C 1(T ,A)

satisfying

1 initial condition x(t0) = x0;

2 equation ẋ(t) = F (x(t)) for all t ∈ T , where the differentiation is understood in
the sense of strong derivative on space X , where at the boundary point of the
interval T , in the case when it belongs to T , the differentiation is understood in
the one-sided way.
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Definitions

Definition

A solution x(t) to problem (DS-0). on interval T1 = [0,T ] (or T1 = [0,T )) is called
non-extendable if there is no solution x2(·) ∈ C1(T2, D̂) on any interval T2 of this
problem satisfying conditions:

1 T2 ) T1;

2 ∀t ∈ T1, x2(t) = x(t).

Remark

If x(t) is a solution of Cauchy problem (DS-0) on interval T = [0,T ] (or T = [0,T )),
then restriction of x(t) on any interval T1 = [t0, t1] ⊂ T (or T1 = [t0, t1) ⊂ T ) is a
solution of Cauchy problem (DS-0) on T1 with initial condition x0 = x(t0).
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Existence uniqueness and extendibility of solutions to (DS-0)

Theorem (Existence and uniqueness)

Suppose that assumptions 1, 2 and 3 hold. There exists a unique solution of (DS-0)
on [t0,+∞).

Theorem (Behavior at +∞)

Let x(t) be a solution of (DS-0) on [t0,+∞). Assume that either

1 X is finite-dimensional and limt→+∞ x(t) exists, or

2 X is infinite-dimensional and for every sequence {tn}n∈N, tn → +∞

x(tn) ⇀ x̃ =⇒ x̃ = z̄, (8)

where x(t) is a unique solution of (DS-0).

Then the trajectory x(t) satisfies the condition limt→+∞ x(t) = z̄, where convergence
is understood in the sense of the norm of X .
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Projective dynamical system

Now we give an example of the system (DS-0): the projective dynamical system

ẋ(t) = PC(x)(w̄)− x ,

x(t0) = x0 ∈ D̂, t0 ≥ 0,
(PDS)

where C(x) : D ⇒ X is a multifunction such that:

1 for all x ∈ D, z̄ ∈ C(x) and PC(x)(w̄) = x iff x = z̄,

3 〈PC(x)(w̄)− x | w̄ − x〉 ≤ 0 for all x ∈ D,

4 for all x ∈ D, C(x) is closed and convex.

Condition 4 ensures that the projection onto C(x), x ∈ D is uniquely defined and
therefore 3 is equivalent to the condition:

∀x ∈ D ∀h ∈ C(x) 〈h − x | w̄ − x〉 ≤ 0.

Let us note that in this setting (1, 3, 4) assumption 2 is satisfied since for all x ∈ D̂
and for any h ∈ [0, 1]

x + h(PC(x)(w̄)− x) = (1− h)x + hPC(x)(w̄) ∈ D,

‖x + h(PC(x)(w̄)− x)− w̄‖2 = ‖x − w̄‖2

− 2h〈PC(x)(w̄)− x | w̄ − x〉+ h2‖PC(x)(w̄)− x‖2 ≥ ‖x − w̄‖2 ≥ r ,

i.e. x + h(PC(x)(w̄)− x) ∈ D̂.
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Solvability of the projected dynamical system

As a consequence of Theorem 7 we can formulate the following theorem.

Theorem

Suppose that 1, 3 , 4 holds. Assume that PC(x)(w̄) is locally Lipschitz continuous on

D̂ \ {z̄} and continuous on D̂. Then the system (PDS) has a unique solution on
[t0,+∞).

To investigate the local Lipschitzness of PC(x)(w̄) on D̂ \ {z̄} (and

the continuity of PC(x)(w̄) on D̂) one should take into account the
form of multifunction C. Behaviour of the projection of a given w̄
onto polyhedral multifunction C given by a finite number of linear
inequalities and equalities were investigated by EB& KR, AM0,
2020
For the multifunction C(x) = H(w̄ , x) ∩ H(x ,Tx), i.e. in the case
when PC(x)(w̄) = Q(w̄ , x ,Tx), we obtain the dynamical systems of
the form (DS-0) related to different solution schemes depending on
the choice of the operator T.
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Dynamical systems of the form (DS-0) related to different operators T.

For C(x) = H(w̄ , x) ∩ H(x ,Tx), when PC(x)(w̄) = Q(w̄ , x ,Tx), we obtain the
dynamical systems of the form (DS-0) related to different solution schemes

1 When T = JA, A : X → X is maximally monotone we obtain dynamical system
related to Haugazeau scheme for finding x ∈ X such that 0 ∈ Ax

2 When T = (1/2)(Id + JγA ◦ (Id − γB)), A : X → X is maximally monotone,
B : X → X is β-cocoercive, γ ∈ [0, 2β] we obtain dynamical system related to
Haugazeau scheme for finding x ∈ X such that 0 ∈ Ax + Bx

3 When T is defined as in For instance, in the primal-dual iterative scheme for
finding zeros of sum of maximally monotone operators the operator
T : H× G → H× G is defined as

T(x) = PH(x)(x),

H(x) := {h ∈ H× G | 〈h | s∗(x)〉 ≤ η(x)},
(9)

and, for any x = (p, v∗) ∈ H× G,

s∗(x) := (a∗(x) + L∗b∗(x), b(x)− La(x));

η(x) := 〈a(x) | a∗(x)〉+ 〈b(x) | b∗(x)〉;
a(x) := JγA(p − γL∗v∗), b(x) := JµB(Lp + µv∗);

a∗(x) := γA(p − γL∗v∗), b∗(x) := µB(Lp + µv∗), γ, µ ∈ (0, 1),

 (10)

where JA : H → H is the resolvent of operator A, JA = (Id − A)−1, and, for any
γ > 0, γA : H → H is Yosida approximation of A, γA = 1

γ
(Id − JγA).

(10) we obtain dynamical system related to Haugazeau scheme for finding
(p, v∗) ∈ H× G such that 0 ∈ Ap + B(Lp) and 0 ∈ −LA−1(−Lv∗) + B−1v∗
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Local Lipschitzness of projection onto moving sets
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Lipschitzness of projections onto moving polyhedral sets

General Parametric Problem

minimize ϕ0(x , p) subject to x ∈ X
ϕi (x , p) ≤ 0, i = 1, ...,m

all the functions ϕi : X × P → R̄ are C2 around the reference point (x̄ , p̄),
Mordukhovich, Nghia (2014), Ralph, Dempe (1995), and the references therein.

Dontchev, Rockafellar, Implicit Functions and Solution Mappings, Springer 2009, 2014

Mangasarian-Fromowitz, constant rank constraint qualifications
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Lipschitzness of projection onto moving polyhedral sets

Let X be a Hilbert space and D ⊂ X . Let C : D ⇒ X set-valued mapping given as
C := C(p),

C(p) :=

{
x ∈ X | 〈x | gi (p)〉 = fi (p), i ∈ I1

〈x | gi (p)〉 ≤ fi (p), i ∈ I2

}
, C(p) 6= ∅, p ∈ D,

where fi (p) : D → R, gi (p) : D → X , i ∈ I1 ∪ I2 are locally Lipschitz functions on D.

Let x0 ∈ D. For p ∈ D the function G(p) = PC(p)(x0) is well defined.

Finding PC(p)(x0) is equivalent to finding y ∈ C(p) which solves variational inequality

〈x0 − y | x − y〉 ≤ 0 for all x ∈ C(p). (VI)

Let
P(x0, p) := {x ∈ X | x0 ∈ x + ∂xh(x , p)},

where stands ∂xh(x , p) for the partial limiting subdifferential of h with respect to x .
If h(x , p) = ιC(p)(x), where ι is the indicator function of C(p), then

P(x0, p) = PC(p)(x0) = (NC(p) + I )−1(x0),

where NC(p) is the normal cone to C(p). The case where

C(p) :=
{
x ∈ Rn | 〈x | gi 〉 ≤ fi (p), i ∈ I2

}
, C(p) 6= ∅, p ∈ D,

was investigated e.g. in
N. D. Yen. “Lipschitz Continuity of Solutions of Variational Inequalities with a Parametric Polyhedral Constraint”. In: Mathematics of

Operations Research 20.3 (1995), pp. 695–708. issn: 0364765X, 15265471. url: http://www.jstor.org/stable/3690178
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General stability result

Theorem (Mordukhovich, Nghia, Pham)

Let p̄ ∈ D, v̄ ∈ H and x̄ = P(v̄ , p̄). Suppose that

(A) the mapping p → epi(ind(·, p)) is Lipschitz-like around
(p̄, (x̄ , ind(x̄ , p̄))) = (p̄, (x̄ , 0)).

Then the following conditions are equivalent.

(I) The graphical subdifferential mapping Gr : D ⇒ H×H defined as

Gr(p) = {(x , x ′) | x ∈ C(p), x ′ ∈ N(x ,C(p))} (11)

is Lipschitz-like around (p̄, x̄ , v̄ − x̄).

(II) There exist a neighbourhood W (v̄) of v̄ and a neighbourhood U(p̄) of p̄ so that
the estimate

‖(v1 − v2)− 2κ0[P(v1, p1)− P(v2, p2)]‖ ≤ ‖v1 − v2‖+ `0‖p1 − p2‖ (12)

holds for all (v1, p1), (v2, p2) ∈W × U with some positive constants κ0 and `0.

[1] B. S. Mordukhovich, T. T. A. Nghia, and D. T. Pham. “Full Stability of General Parametric Variational Systems”. In: Set-Valued

and Variational Analysis (2018). issn: 1877-0541. doi: 10.1007/s11228-018-0474-7
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Relaxed constant rank constraint qualification (RCRCQ)

For any (p, x) ∈ D ×H let Ip(x) := {i ∈ I1 ∪ I2 | 〈x | gi (p)〉 = fi (p)} be the active
index set for p ∈ D at x ∈ H.

Definition

The Relaxed constant rank constraint qualification (RCRCQ) is satisfied at (x̄ , p̄),
x̄ ∈ C(p̄), if there exists a neighbourhood U(p̄) of p̄ such that, for any index set J,
I1 ⊂J ⊂ Ip̄(x̄), for every p ∈ U(p̄) the system of vectors {gi (p), i ∈ J} has constant
rank. Precisely, for any J, I1 ⊂ J ⊂ Ip̄(x̄)

rank(gi (p, ), i ∈ J) = rank(gi (p̄), i ∈ J) for all p ∈ U(p̄).

L. Minchenko and S. Stakhovski. “Parametric Nonlinear Programming Problems under the Relaxed Constant Rank Condition”. In: SIAM

Journal on Optimization 21.1 (2011), pp. 314–332. doi: 10.1137/090761318. eprint: https://doi.org/10.1137/090761318. url:

https://doi.org/10.1137/090761318

This definition has been introduced in finite dimensional case by Minchenko and
Stakhovski for more general set-valued mappings

H(p) :=

{
x ∈ Rn | ξi (p, x) = 0, i ∈ I1

ξi (p, x) ≤ 0, i ∈ I2

}
,

where ξi : Rn × Rm → R, i ∈ I1 ∪ I2 are continuously differentiable functions with
respect to variable x . Non-parametric versions of constant rank qualifications has been
studied by Kruger and Minchenko and Outrata, Andreani and Haeser and Schuverdt
and Silva.
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R-regularity of a set-valued mapping

Let C : D ⇒ H be a multifunction defined as C(p) := C(p), where

C(p) =

{
x ∈ H

∣∣∣∣ 〈x | gi (p)〉 = fi (p), i ∈ I1,
〈x | gi (p)〉 ≤ fi (p), i ∈ I2

}
, (13)

and fi : D → R, gi : D →H, i ∈ I1 ∪ I2, I1 = {1, . . . ,m}, I2 = {m + 1, . . . , n} are
locally Lipschitz on D.

Definition

Multifunction C : D ⇒ H given by (13) is said to be R-regular at a point (p̄, x̄), if for
all (p, x) in a neighbourhood of (p̄, x̄),

dist (x ,C(p)) ≤ αmax{0, |〈x | gi (p)〉 − fi (p)|, i ∈ I1, 〈x | gi (p)〉 − fi (p), i ∈ I2}

for some α > 0.

Theorem

Let H be a Hilbert space, fi : D → R, gi : D → R be locally Lipschitz on D ⊂ X . If
the set-valued mapping C : D ⇒ H given by (13) is R-regular at (p̄, x̄), p̄ ∈ D,
x̄ ∈ C(p̄), x̄ ∈ lim infp→p̄ C(p), then C is Lipschitz-like at (p̄, x̄)
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Lagrange multipliers

Let p ∈ D, w ∈ H, w /∈ C(p). Projection of w onto set C(p) is defined as

PC(p)(w) = arg min
x∈C(p)

‖w − x‖. (14)

Denote Gi (x , p) = 〈x | gi (p)〉 − fi (p), i ∈ I1 ∪ I2 and

G(x , p) = [Gi (x , p)]i=1,...,n ,

Let λ ∈ Rn and

Lw (p, x , λ) := ‖x − w‖+ 〈λ | G(x , p)〉,

The set of Lagrange multipliers corresponding to (14) are defined as

Λw (p, x) := {λ ∈ Rn | ∇xLw (p, x , λ) = 0 where, for i ∈ I2, λi ≥ 0, λiGi (x , p) = 0},

Then

∇xLw (p,PC(p)(w), λ) =
PC(p)(w)− w

‖PC(p)(w)− w‖
+

n∑
i=1

λigi (p), (15)

If w /∈ C(p), condition ∇xLw (p,PC(p)(w), λ) = 0 is equivalent to the following

w − PC(p)(w)

‖PC(p)(w)− w‖
=

n∑
i=1

λigi (p) ⇔ w − PC(p)(w) =
n∑

i=1

λ̂igi (p), (16)

where λ̂i = λi‖PC(p)(w)− w‖, i = 1, . . . , n.
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RCRCQ and Lagrange multipliers

We start with the proposition which relates RCRCQ condition to the boundedness
(with respect to p,w) of Lagrange multiplier set

ΛM
w (p,PC(p)(w)) := {λ ∈ Λw (p,PC(p)(w)) |

n∑
i=1

|λi | ≤ M}.

Theorem

Let multifunction C given by (13) satisfy RCRCQ at (x̄ , p̄), x̄ ∈ C(p̄). Assume that
x̄ ∈ lim inf

p→p̄
C(p). Then there exist numbers M > 0, δ > 0, δ0 > 0 such that

ΛM
w (p,PC(p)(w)) 6= ∅ for p ∈ p̄ + δ0B, w ∈ x̄ + δB, w /∈ C(p).
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Boundedness of multipliers and R-regularity

In the next proposition we relate the boundedness of the Lagrange multiplier set
ΛM
w (p,PC(p)(w)) to the R-regularity of C at (p̄, x̄). For sets C(p) given as solution

sets to parametric systems of nonlinear equations and inequalities in finite-dimensional
spaces this fact has been already proved in [10, Theorem 2].

Theorem

Let p̄ ∈ D, x̄ ∈ C(p̄) and x̄ ∈ lim inf
p→p̄

C(p). Assume that there exist numbers M > 0,

δ1 > 0, δ2 > 0 such that

ΛM
w (p,PC(p)(w)) := {λ ∈ Λw (p,PC(p)(v)) |

n∑
i=1

|λi | ≤ M} 6= ∅

for all p ∈ (p̄ + δ1B) ∩ S and for all w ∈ (x̄ + δ2B), w /∈ C(p). Then the multifuction
C is R-regular at (x̄ , p̄).
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Main results

Let p̄ ∈ D. The lower Kuratowski limit is defined as

lim inf
p→p̄

C(p) := {x ∈ X | ∀pk → p̄ ∃ xk ∈ C(pk ) s.t. xk → x}

Now we show that, if the multifunction C is R-regular at (p̄, x̄), then C is
Lipschitz-like at (p̄, x̄).

Theorem

Let H, G be Hilbert spaces and fi : D → R, gi : D →H are locally Lipschitz at
p̄ ∈ D. If the set-valued mapping C : D ⇒ H, given by (13), is R-regular at (p̄, x̄),
x̄ ∈ C(p̄), then C is Lipschitz-like at (p̄, x̄)

Theorem

Let H,G be Hilbert spaces. Let multifunction C : D ⇒ H, given by (13), satisfy
RCRCQ at (p̄, x̄), x̄ ∈ C(p̄) and the functions fi : D → R, gi : D →H, i ∈ I1 ∪ I2, be
locally Lipschitz at p̄ ∈ D. Assume that x̄ ∈ lim inf

p→p̄
C(p). Then C is Lipschitz-like at

(p̄, x̄).
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Lipschitzness of the projection - consequence of theorem of Mordukhovich,
Nghia, Pham

For any (p, x) ∈ D ×H , Ip(x) := {i ∈ I1 ∪ I2 | 〈x − fi (p) | gi (p)〉 = 0} is the active
index. For any index set L, L ⊂ Ip̄(x̄) \ (I1 ∪ K̄) satisfying

gi (p̄), i ∈ I1 ∪ K̄ ∪ L, linearly independent (17)

CL(p) =

{
x ∈ H

∣∣∣∣ 〈x | gi (p)〉 = fi (p), i ∈ I1 ∪ K̄ ∪ L,
〈x | gi (p)〉 ≤ fi (p), i ∈ I2 \ (K̄ ∪ L)

}
.

Theorem (Main result)

Let p̄ ∈ D, x̄ ∈ C(p̄), v̄ /∈ C(p̄), x̄ = PC(p̄)(v̄) and:

1

v̄ − x̄ =
∑

i∈I1∪K̄

λ̄igi (p̄), λ̄i > 0, i ∈ K̄ ⊂ Ip̄(x̄) ∩ I2,

where gi (p̄), i ∈ I1 ∪ K̄ are linearly independent,

2 (RCRCQ) is satisfied at (p̄, x̄),

3 x̄ ∈ lim inf
p→p̄

CL(p) for any L satisfying (17).

Then there exist a neighborhood W of v̄ and U of p̄ such that the Lipschitzian
estimate

‖(v1 − v2)− 2κ0[PC(p1)(v1)− PC(p2)(v2)]‖ ≤ ‖v1 − v2‖+ `0‖p1 − p2‖ (18)

holds for all (v1, p1), (v2, p2) ∈W × U with some positive constants κ0 and `0.
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Consequence for the vector field related to proximal primal-dual dynamical
system

Consequence for the vector field related to proximal primal-dual dynamical system

Let I1 = ∅, I2 = {1, 2}, z̄ = PZ (x0) . Let x0 ∈ H× G, p̄ ∈ D \ {x0,PZ (x0)} and

C(p) := C(u, v∗) := H1(x0, (u, v
∗)) ∩ H2(u, v∗) ={

x ∈ H× G
∣∣∣∣ 〈x | x0 − (u, v∗)〉 ≤ 〈(u, v∗) | x0 − (u, v∗)〉,

〈x | s(u, v∗)〉 ≤ η(u, v∗)

}
Let g1(p) := g1(u, v∗) := x0 − (u, v∗), g2(p) := g2(u, v∗) := s(u, v∗). Then gi (p̄),
i ∈ Ip̄(PC(p̄)) are linearly independent and the set-valued mapping C satisfies
(RCRCQ) at (PC(p̄), p̄).

Remark

Let us note that g1(x0) = g1(u0, v∗0 ) = 0 and g2(PZ (x0)) = g2(ū, v̄∗) = s(ū, v̄∗) = 0
and at points x0,PZ (x0) (RCRCQ) does not hold.

44 / 48



Motivations Optimization and Dynamical Systems Local Lipschitzness of projection onto moving sets Relaxed constant rank constraint qualification (RCRCQ) Insights into general (non polyhedral) case

45 / 48



Motivations Optimization and Dynamical Systems Local Lipschitzness of projection onto moving sets Relaxed constant rank constraint qualification (RCRCQ) Insights into general (non polyhedral) case

General case -Lipschitz-likeness of the constraint set under (RCRCQ)

Let H be a Hilbert space and G be a normed space.
Let us consider a set-valued mapping F : G ⇒ H, defined as F(p) := F (p), where

F (p) := {x ∈ H | hi (p, x) ≤ 0, i ∈ I , hi (p, x) = 0, i ∈ I0}, (19)

where p ∈ G is a parameter, x ∈ H stands for the decision variable, I = {1, . . . ,m},
I0 = {m + 1, . . . , n} (we admit the case I0 = ∅).
Functions hi : G ×H → R, i = 1, . . . , n, are assumed to be (jointly) continuous
together with their partial gradients with respect to x , ∇xhi , i = 1, . . . , n.
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Relaxed constant rank condition in the general case

Let P ⊂ G, X ⊂ H and I (p, x) := {i ∈ I | hi (p, x) = 0} be the set of indices of active
inequality constraints at (p, x) ∈ grF .

Definition

1 The set-valued mapping F satisfies the Relaxed Constant Rank Constraint
Qualification, or shortly, RCRCQ (relative to P × X ) at (p0, x0) ∈ grF , if for any
index set K ⊂ I (p0, x0)

rank{∇xhi (p, x) : i ∈ I0 ∪ K} = rank{∇xhi (p
0, x0) : i ∈ I0 ∪ K}

for (p, x) ∈ P × X from a neighbourhood of (p0, x0)

2 The set F (p0) satisfies RCRCQ at x0 ∈ F (p0) if for any index set K ⊂ I (p0, x0)

rank{∇xhi (p
0, x) : i ∈ I0 ∪ K} = rank{∇xhi (p

0, x0) : i ∈ I0 ∪ K}

for all x in a neighbourhood of x0.
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Thank you for your attention!
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