Applications of interior point methods for very large problems arising in imaging and optimal transport

Filippo Zanetti Jacek Gondzio Samuli Siltanen Salla Latva-Aijo Matti Lassas

University of Edinburgh, School of Mathematics

Modern Techniques of Very Large Scale Optimization 20 May 2022

・ロト ・ 同ト ・ ヨト ・ ヨト

IPM		Optimal tr
●00	000000	00000000

1 Interior point method introduction

2 Tomographic imaging applications

Optimal transport applications

イロト イヨト イヨト イヨト

æ

Interior point method

Pair of primal-dual convex QPs

$$\begin{split} \min_{x} c^{T}x + \frac{1}{2}x^{T}Qx, \quad \text{ s.t. } Ax = b, \quad x \geq 0, \\ \max_{y, s} b^{T}y - \frac{1}{2}x^{T}Qx, \quad \text{ s.t. } A^{T}y + s - Qx = c, \quad s \geq 0, \\ x, s, c \in \mathbb{R}^{n}, y, b \in \mathbb{R}^{m}, A \in \mathbb{R}^{m \times n}, Q \in \mathbb{R}^{n \times n} \text{ positive semidefinite.} \end{split}$$

An IPM enforces the non-negativity constraint using a logarithmic barrier.

At each iteration, a direction is computed that allows the approximation to get closer to **optimality** and **feasibility**.

IPM OO	Imaging	Optimal transport
Newton system		

The search direction is found using the **Newton** method

$$\begin{bmatrix} A & 0 & 0 \\ -Q & A^T & I \\ S & 0 & X \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta s \end{bmatrix} = \begin{bmatrix} r_P \\ r_D \\ r_\mu \end{bmatrix} = \begin{bmatrix} b - Ax \\ c + Qx - A^Ty - s \\ \sigma \mu e - XSe \end{bmatrix}$$

The system can be reduced to the Normal equations

$$A(Q + \Theta^{-1})^{-1}A^T \Delta y = r_P + A(Q + \Theta^{-1})^{-1}(r_D - X^{-1}r_\mu)$$

where $\Theta = XS^{-1}$, and solved using a factorization or the PCG.

・ロト ・回ト ・ヨト ・ヨト

臣

		I
00		C

maging

Optimal transport 00000000

Tomographic imaging

イロト イヨト イヨト イヨト

- 2

IPM	Imaging	Optimal tra
000	000000	00000000

Tomographic imaging

Problem formulation

	Imaging	
000	00000	

臣

Tomographic imaging

Problem formulation

イロト スピト メヨト メヨト

	Imaging
000	00000

Tomographic imaging

Problem formulation

QP formulation

$$\min_{x \ge 0} \ \frac{1}{2} x^T \mathcal{Q} x - m^T \mathcal{G} x, \tag{1}$$

where

$$\mathcal{Q} = \begin{bmatrix} c_{11}^2 + c_{21}^2 & c_{11}c_{12} + c_{21}c_{22} \\ c_{11}c_{12} + c_{21}c_{22} & c_{12}^2 + c_{22}^2 \end{bmatrix} \otimes R^T R + \begin{bmatrix} \alpha & \beta \\ \beta & \alpha \end{bmatrix} \otimes I,$$

 $c_{11}, c_{12}, c_{21}, c_{22} > 0, \ \alpha > \beta > 0.$

R is accessed through matrix-vector products performed using the **Radon transform**.

	Imaging	Optimal transport
000	000000	0000000
IPM formulation		

Lemma

If $\alpha \geq \beta$, problem (1) is convex.

Applying an IPM to this problem, we need to solve:

 $(\mathcal{Q} + X^{-1}S)\Delta \mathbf{x} = \mathbf{f}$

This can be done using the Preconditioned Conjugate Gradient (PCG).

Gondzio, Lassas, Latva-Aijo, Siltanen, Z. Material-separating regularizer for multi-energy X-ray tomography. Inverse Problems, 38 (2022)

	Imaging
000	000000

Preconditioner

$$\mathcal{Q} + X^{-1}S = \begin{bmatrix} c_{11}^2 + c_{21}^2 & c_{11}c_{12} + c_{21}c_{22} \\ c_{11}c_{12} + c_{21}c_{22} & c_{12}^2 + c_{22}^2 \end{bmatrix} \otimes \underbrace{R^T R}_{\beta} + \begin{bmatrix} \alpha & \beta \\ \beta & \alpha \end{bmatrix} \otimes I + X^{-1}S$$

・ロト ・四ト ・ヨト ・ヨト

- 12

	Imaging	
000	000000	

Preconditioner

$$\mathcal{Q} + X^{-1}S = \begin{bmatrix} c_{11}^2 + c_{21}^2 & c_{11}c_{12} + c_{21}c_{22} \\ c_{11}c_{12} + c_{21}c_{22} & c_{12}^2 + c_{22}^2 \end{bmatrix} \otimes \underbrace{R^T R}_{\beta} + \begin{bmatrix} \alpha & \beta \\ \beta & \alpha \end{bmatrix} \otimes I + X^{-1}S$$

$$\mathcal{P} = \begin{bmatrix} c_{11}^2 + c_{21}^2 & c_{11}c_{12} + c_{21}c_{22} \\ c_{11}c_{12} + c_{21}c_{22} & c_{12}^2 + c_{22}^2 \end{bmatrix} \otimes \underbrace{\rho I}_{\beta} + \begin{bmatrix} \alpha & \beta \\ \beta & \alpha \end{bmatrix} \otimes I + X^{-1}S$$

・ロト ・四ト ・ヨト ・ヨト

- 12

	Imaging
000	000000

A 3 1 A 3 1

э

Preconditioned matrix

Lemma

The eigenvalues of the preconditioned matrix $\mathcal{P}^{-1}(\mathcal{Q} + X^{-1}S)$ are independent of the IPM iteration and satisfy

$$\lambda \in \left[\frac{\alpha - \beta}{\rho \Lambda_F + \alpha + \beta}, \frac{\sigma_{max}^2(R)\Lambda_F + \alpha + \beta}{\rho \lambda_F + \alpha - \beta}\right]$$

Z Gondzio Siltanen Latva-Aijo Lassas IPM for imaging and optimal transport Edinburgh, 20 May 2022 9/18

Results

JTV IP Ground truth

Z Gondzio Siltanen Latva-Aijo Lassas IPM for imaging and optimal transport Edinbu

Edinburgh, 20 May 2022

10 / 18

000		000

æ

Discrete optimal transport

Image from en.wikipedia.org/wiki/Transportation_theory_(mathematics)

イロト イヨト イヨト イヨト

IPM	Imaging	Optimal transport
000	000000	0●000000
Problem formulation		

Optimal transport formulation

$$\min_{\substack{\mathcal{P} \in \mathbb{R}^{m \times m}_+ \\ \mathcal{P} \mathbf{e}_m = \mathbf{a}, \ \mathcal{P}^T \mathbf{e}_m = \mathbf{b}}} \sum_{i,j} \mathcal{C}_{ij} \mathcal{P}_{ij}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ =

IPM 000	Imaging 000000	Optimal transport 0000000
Problem formulation		

Optimal transport formulation

$$\min_{\substack{\mathcal{P} \in \mathbb{R}^{m \times m}_+ \\ \mathcal{P} \mathbf{e}_m = \mathbf{a}, \ \mathcal{P}^T \mathbf{e}_m = \mathbf{b}}} \sum_{i,j} \mathcal{C}_{ij} \mathcal{P}_{ij}$$

Kantorovich Linear Program

$$\begin{split} \min_{\mathbf{p} \in \mathbb{R}^{m^2}} & \mathbf{c}^T \mathbf{p} \\ \text{s.t.} & \begin{bmatrix} \mathbf{e}_m^T \otimes I_m \\ I_m \otimes \mathbf{e}_m^T \end{bmatrix} \mathbf{p} = \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \end{bmatrix} = \mathbf{f} \\ & \mathbf{p} \geq 0 \end{split}$$

・ロト ・四ト ・ヨト ・ヨト

- 12

IPM 000	Imaging 000000	Optimal transport 00000000
IPM formulation - 1		

Highly structured constraint matrix

• 2*m* rows

• m^2 columns

・ロト ・日ト ・ヨト ・ヨト

æ

Solved with a sparse mixed IPM-Column Generation approach:

- Keeps the iterates as **sparse** as possible
- Exploits second order method convergence

Linear system solved using the Schur complement of the normal equations:

- PCG with incompete Cholesky factorization in the early stage
- Full LDL^T factorization in the late IPM iterations

Highly optimized matrix-free sparse implementation

A full IPM would involve a **dense** Schur complement and very **large** and dense vectors

æ

Test problems

DOTmark collection

Class 1 Class 2 Class 3 Class 4 Class 5

Class 6 Class 7 Class 8 Class 9 Class 10

res	$\operatorname{Constraints}$	Variables $(\times 10^6)$
32	2,048	1.0
64	8,192	16.8
128	32,768	268.4
256	131,072	4,295.0

Cost functions: 1-norm, 2-norm, ∞ -norm.

IPM 000	Imaging 000000	Optimal transport 00000000
Results		

Comparison of $\mathbf{SparseIPM}$ and IBM ILOG Cplex **network simplex** solver

イロト イヨト イヨト イヨト

æ

IPM	Imaging	Optimal transport
000	000000	00000000
Large instances results		

Scalable results up to 4 Billion variables (DOTmark class 1 problems)

Image: A matched block of the second seco

< ≣⇒

臣

Thanks for the attention

Z Gondzio Siltanen Latva-Aijo Lassas IPM for imaging and optimal transport Edinburgh, 20 May 2022 18/18

・ロト ・回ト ・ヨト ・ヨト