


Different duals in conic optimization:

closure can tighten the duality gap

Immanuel Bomze, University of Vienna

joint work with:

J. Cheng, P. Dickinson, A. Lisser,

J. Liu, W. Schachinger, G. Uchida

COA Workshop Edinburgh, 8 June 2018



Overview

1. Duality principles



Overview

1. Duality principles

2. Conic complications



Overview

1. Duality principles

2. Conic complications

3. This nasty Minkowski sum !



Overview

1. Duality principles

2. Conic complications

3. This nasty Minkowski sum !

4. A hierarchy of duals; tightening the gap



Overview

1. Duality principles

2. Conic complications

3. This nasty Minkowski sum !

4. A hierarchy of duals; tightening the gap

5. Empirical evidence on multi-dim.knapsack problems



Linear optimization over cones and duality

Consider linear problem over convex cone K

inf
x∈K
{〈c,x〉 : 〈a0,x〉 = 1, 〈ai,x〉 = 0, i∈ [1:m]}

where {c, ai} ∪ K ⊂ Rd.



Linear optimization over cones and duality

Consider linear problem over convex cone K

inf
x∈K
{〈c,x〉 : 〈a0,x〉 = 1, 〈ai,x〉 = 0, i∈ [1:m]}

where {c, ai} ∪ K ⊂ Rd.

Note: Ax = b ⇐⇒ (x0 = 1) & [−b |A]

[
x0
x

]
= o,

so all linear constraints can be homogenized except one.



Linear optimization over cones and duality

Consider linear problem over convex cone K

inf
x∈K
{〈c,x〉 : 〈a0,x〉 = 1, 〈ai,x〉 = 0, i∈ [1:m]}

where {c, ai} ∪ K ⊂ Rd.

Note: Ax = b ⇐⇒ (x0 = 1) & [−b |A]

[
x0
x

]
= o,

so all linear constraints can be homogenized except one.

Dual problem: let L = {a1, . . . , am}⊥, so primal/dual pair is

p∗ = inf
x∈L∩K

{〈c,x〉 : 〈a0,x〉 = 1} and sup {y0 : c− y0a0 ∈ (L ∩ K)∗}



Linear optimization over cones and duality

Consider linear problem over convex cone K

inf
x∈K
{〈c,x〉 : 〈a0,x〉 = 1, 〈ai,x〉 = 0, i∈ [1:m]}

where {c, ai} ∪ K ⊂ Rd.

Note: Ax = b ⇐⇒ (x0 = 1) & [−b |A]

[
x0
x

]
= o,

so all linear constraints can be homogenized except one.

Dual problem: let L = {a1, . . . , am}⊥, so primal/dual pair is

p∗ = inf
x∈L∩K

{〈c,x〉 : 〈a0,x〉 = 1} and sup {y0 : c− y0a0 ∈ (L ∩ K)∗}

where B∗ =
{
s ∈ Rd : 〈s,x〉 ≥ 0 , all x ∈ B

}
.





What is called conic dual ...

... is motivated by LP as a model where K = Rd+: use

(L ∩ K)∗ = L∗+K∗ = L⊥+K∗ = span(ai) +K∗ .



What is called conic dual ...

... is motivated by LP as a model where K = Rd+: use

(L ∩ K)∗ = L∗+K∗ = L⊥+K∗ = span(ai) +K∗ .

So conic dual is

d∗ = sup


y0 : c−

m∑
i=0

yiai ∈ K∗




What is called conic dual ...

... is motivated by LP as a model where K = Rd+: use

(L ∩ K)∗ = L∗+K∗ = L⊥+K∗ = span(ai) +K∗ .

So conic dual is

d∗ = sup

y0 : c−
m∑
i=0

yiai ∈ K∗


and in the LP case (K∗ = Rd+) dual constraint reads

m∑
i=0

yiai ≤ c , as usual.



What is called conic dual ...

... is motivated by LP as a model where K = Rd+: use

(L ∩ K)∗ = L∗+K∗ = L⊥+K∗ = span(ai) +K∗ .

So conic dual is

d∗ = sup

y0 : c−
m∑
i=0

yiai ∈ K∗


and in the LP case (K∗ = Rd+) dual constraint reads

m∑
i=0

yiai ≤ c , as usual.

In LP (unless both infeasible) there is no duality gap, d∗ = p∗;



What is called conic dual ...

... is motivated by LP as a model where K = Rd+: use

(L ∩ K)∗ = L∗+K∗ = L⊥+K∗ = span(ai) +K∗ .

So conic dual is

d∗ = sup

y0 : c−
m∑
i=0

yiai ∈ K∗


and in the LP case (K∗ = Rd+) dual constraint reads

m∑
i=0

yiai ≤ c , as usual.

In LP (unless both infeasible) there is no duality gap, d∗ = p∗;
strong duality: optimal values are attained for primal and dual.



Linear optimization over matrix cones

Let K be a convex cone of symmetric n× n matrices X = X>.

Consider conic linear optimization problem in matrices

p∗ = min
{
〈C,X〉 : 〈A0,X〉 = 1 , X ∈ {A1, . . . ,Am}⊥ ∩ K

}
,



Linear optimization over matrix cones

Let K be a convex cone of symmetric n× n matrices X = X>.

Consider conic linear optimization problem in matrices

p∗ = min
{
〈C,X〉 : 〈A0,X〉 = 1 , X ∈ {A1, . . . ,Am}⊥ ∩ K

}
,

where the coefficients C, Ai are symmetric n× n matrices and

〈C,X〉 = trace (C>X) is Frobenius inner product of matrices.



Linear optimization over matrix cones

Let K be a convex cone of symmetric n× n matrices X = X>.

Consider conic linear optimization problem in matrices

p∗ = min
{
〈C,X〉 : 〈A0,X〉 = 1 , X ∈ {A1, . . . ,Am}⊥ ∩ K

}
,

where the coefficients C, Ai are symmetric n× n matrices and

〈C,X〉 = trace (C>X) is Frobenius inner product of matrices.

As before, conic dual is defined as

d∗ = sup


y0 : S = C−

m∑
i=0

yiAi ∈ K∗

.



Linear optimization over matrix cones

Let K be a convex cone of symmetric n× n matrices X = X>.

Consider conic linear optimization problem in matrices

p∗ = min
{
〈C,X〉 : 〈A0,X〉 = 1 , X ∈ {A1, . . . ,Am}⊥ ∩ K

}
,

where the coefficients C, Ai are symmetric n× n matrices and

〈C,X〉 = trace (C>X) is Frobenius inner product of matrices.

As before, conic dual is defined as

d∗ = sup

y0 : S = C−
m∑
i=0

yiAi ∈ K∗
 .

Of course, weak duality always holds: d∗ ≤ p∗.



Linear optimization over matrix cones

Let K be a convex cone of symmetric n× n matrices X = X>.

Consider conic linear optimization problem in matrices

p∗ = min
{
〈C,X〉 : 〈A0,X〉 = 1 , X ∈ {A1, . . . ,Am}⊥ ∩ K

}
,

where the coefficients C, Ai are symmetric n× n matrices and

〈C,X〉 = trace (C>X) is Frobenius inner product of matrices.

As before, conic dual is defined as

d∗ = sup

y0 : S = C−
m∑
i=0

yiAi ∈ K∗
 .

Of course, weak duality always holds: d∗ ≤ p∗.

However, when departing from LP, strong duality may fail.

Bomze
Hervorheben

Bomze
Hervorheben



Familiar cases: LP, SDP, and beyond

Departing? Indeed, for

K = Nn =
{
X = X>n× n : X≥O

}
. . . LP, barrier:−

∑
i,jlogXij ,

Bomze
Hervorheben



Familiar cases: LP, SDP, and beyond

Departing? Indeed, for

K = Nn =
{
X = X>n× n : X≥O

}
. . . LP, barrier:−

∑
i,jlogXij ,

and for

K = Pn =
{
X = X>n× n : X�O

}
. . .SDP, barrier:−

∑
ilogλi(X) .



Familiar cases: LP, SDP, and beyond

Departing? Indeed, for

K = Nn =
{
X = X>n× n : X≥O

}
. . . LP, barrier:−

∑
i,jlogXij ,

and for

K = Pn =
{
X = X>n× n : X�O

}
. . .SDP, barrier:−

∑
ilogλi(X) .

In above cases, the dual cone of K∗ = K (self-duality),

and problems solvable in polynomial time to desired accuracy.



Familiar cases: LP, SDP, and beyond

Departing? Indeed, for

K = Nn =
{
X = X>n× n : X≥O

}
. . . LP, barrier:−

∑
i,jlogXij ,

and for

K = Pn =
{
X = X>n× n : X�O

}
. . .SDP, barrier:−

∑
ilogλi(X) .

In above cases, the dual cone of K∗ = K (self-duality),

and problems solvable in polynomial time to desired accuracy.

But in general K∗ 6= K and conic optimization is NP-hard.



Familiar cases: LP, SDP, and beyond

Departing? Indeed, for

K = Nn =
{
X = X>n× n : X≥O

}
. . . LP, barrier:−

∑
i,jlogXij ,

and for

K = Pn =
{
X = X>n× n : X�O

}
. . .SDP, barrier:−

∑
ilogλi(X) .

In above cases, the dual cone of K∗ = K (self-duality),

and problems solvable in polynomial time to desired accuracy.

But in general K∗ 6= K and conic optimization is NP-hard.

Why bother?



Copositive optimization (COP)

COP encodes many NP-hard problems [Dür’10, Burer’12, B.’12].

Choose instead K = Cn = conv
{
xx> : x ∈ Rn,x ≥ o

}
,

the cone of completely positive matrices,



Copositive optimization (COP)

COP encodes many NP-hard problems [Dür’10, Burer’12, B.’12].

Choose instead K = Cn = conv
{
xx> : x ∈ Rn,x ≥ o

}
,

the cone of completely positive matrices, with its dual cone

C∗n =
{
S = S> is copositive; means: x>Sx ≥ 0 if x ≥ o

}



Copositive optimization (COP)

COP encodes many NP-hard problems [Dür’10, Burer’12, B.’12].

Choose instead K = Cn = conv
{
xx> : x ∈ Rn,x ≥ o

}
,

the cone of completely positive matrices, with its dual cone

C∗n =
{
S = S> is copositive; means: x>Sx ≥ 0 if x ≥ o

}
6= Cn .



Semidefinite cone P







Immanuel
Schreibmaschinentext





Copositive optimization (COP)

COP encodes many NP-hard problems [Dür’10, Burer’12, B.’12].

Choose instead K = Cn = conv
{
xx> : x ∈ Rn,x ≥ o

}
,

the cone of completely positive matrices, with its dual cone

C∗n =
{
S = S> is copositive; means: x>Sx ≥ 0 if x ≥ o

}
6= Cn .

Well known relations:

Cn ⊂ Pn ∩Nn



Copositive optimization (COP)

COP encodes many NP-hard problems [Dür’10, Burer’12, B.’12].

Choose instead K = Cn = conv
{
xx> : x ∈ Rn,x ≥ o

}
,

the cone of completely positive matrices, with its dual cone

C∗n =
{
S = S> is copositive; means: x>Sx ≥ 0 if x ≥ o

}
6= Cn .

Well known relations:

Cn ⊂ Pn ∩Nn ⊂ Pn +Nn



Copositive optimization (COP)

COP encodes many NP-hard problems [Dür’10, Burer’12, B.’12].

Choose instead K = Cn = conv
{
xx> : x ∈ Rn,x ≥ o

}
,

the cone of completely positive matrices, with its dual cone

C∗n =
{
S = S> is copositive; means: x>Sx ≥ 0 if x ≥ o

}
6= Cn .

Well known relations:

Cn ⊂ Pn ∩Nn ⊂ Pn +Nn ⊂ C∗n



Copositive optimization (COP)

COP encodes many NP-hard problems [Dür’10, Burer’12, B.’12].

Choose instead K = Cn = conv
{
xx> : x ∈ Rn,x ≥ o

}
,

the cone of completely positive matrices, with its dual cone

C∗n =
{
S = S> is copositive; means: x>Sx ≥ 0 if x ≥ o

}
6= Cn .

Well known relations:

Cn ⊂ Pn ∩Nn ⊂ Pn +Nn ⊂ C∗n . . . strict for n ≥ 5 .



Copositive optimization (COP)

COP encodes many NP-hard problems [Dür’10, Burer’12, B.’12].

Choose instead K = Cn = conv
{
xx> : x ∈ Rn,x ≥ o

}
,

the cone of completely positive matrices, with its dual cone

C∗n =
{
S = S> is copositive; means: x>Sx ≥ 0 if x ≥ o

}
6= Cn .

Well known relations:

Cn ⊂ Pn ∩Nn ⊂ Pn +Nn ⊂ C∗n . . . strict for n ≥ 5 .

Primal/dual pair in (COP) with conic duality:

p∗ = inf {〈C,X〉 : 〈A0,X〉 = 1,X ∈ L ∩ Cn} ,

d∗ = sup
{
y0 : C−

∑m
i=0 yiAi ∈ Cn∗

}
with L = {A1, . . . ,Am}⊥.



Strong duality in COP

In convex nonlinear programs (SOCP, SDP, COP),

we have classical duality results (Slater’s condition):



Strong duality in COP

In convex nonlinear programs (SOCP, SDP, COP),

we have classical duality results (Slater’s condition):

Strict primal feasibility: {X ∈ L : 〈A0,X〉 = 1} ∩ int Cn 6= ∅

implies zero duality gap and dual attainability



Strong duality in COP

In convex nonlinear programs (SOCP, SDP, COP),

we have classical duality results (Slater’s condition):

Strict primal feasibility: {X ∈ L : 〈A0,X〉 = 1} ∩ int Cn 6= ∅

implies zero duality gap and dual attainability, and

strict dual feasibility
{
y0 : S = C−

∑m
i=0 yiAi ∈ int C∗n

}
6= ∅

implies zero duality gap and primal attainability.



Strong duality in COP

In convex nonlinear programs (SOCP, SDP, COP),

we have classical duality results (Slater’s condition):

Strict primal feasibility: {X ∈ L : 〈A0,X〉 = 1} ∩ int Cn 6= ∅

implies zero duality gap and dual attainability, and

strict dual feasibility
{
y0 : S = C−

∑m
i=0 yiAi ∈ int C∗n

}
6= ∅

implies zero duality gap and primal attainability.

Otherwise, positive duality gap and all sorts of non-attainability

may happen in SDP [Vandenberghe/Boyd ’96, Helmberg ’00].



Strong duality in COP

In convex nonlinear programs (SOCP, SDP, COP),

we have classical duality results (Slater’s condition):

Strict primal feasibility: {X ∈ L : 〈A0,X〉 = 1} ∩ int Cn 6= ∅

implies zero duality gap and dual attainability, and

strict dual feasibility
{
y0 : S = C−

∑m
i=0 yiAi ∈ int C∗n

}
6= ∅

implies zero duality gap and primal attainability.

Otherwise, positive duality gap and all sorts of non-attainability

may happen in SDP [Vandenberghe/Boyd ’96, Helmberg ’00].

Same is true for COP, too.



Strong duality in COP

In convex nonlinear programs (SOCP, SDP, COP),

we have classical duality results (Slater’s condition):

Strict primal feasibility: {X ∈ L : 〈A0,X〉 = 1} ∩ int Cn 6= ∅

implies zero duality gap and dual attainability, and

strict dual feasibility
{
y0 : S = C−

∑m
i=0 yiAi ∈ int C∗n

}
6= ∅

implies zero duality gap and primal attainability.

Otherwise, positive duality gap and all sorts of non-attainability

may happen in SDP [Vandenberghe/Boyd ’96, Helmberg ’00].

Same is true for COP, too. Why ? Problems with addition ...



Minkowski summation

... looks innocent: take two closed convex sets B and C, consider

B+ C = {B + C : B ∈ B,C ∈ C}



Minkowski summation

... looks innocent: take two closed convex sets B and C, consider

B+ C = {B + C : B ∈ B,C ∈ C}

... is convex but need not be closed !!



Minkowski summation

... looks innocent: take two closed convex sets B and C, consider

B+ C = {B + C : B ∈ B,C ∈ C}

... is convex but need not be closed !!

Example. B =

{[
t 0
0 0

]
: t ∈ R

}
and C = P2.

[
−k 0
0 0

]
+

[
k −1
−1 1/k

]



Minkowski summation

... looks innocent: take two closed convex sets B and C, consider

B+ C = {B + C : B ∈ B,C ∈ C}

... is convex but need not be closed !!

Example. B =

{[
t 0
0 0

]
: t ∈ R

}
and C = P2.

[
−k 0
0 0

]
+

[
k −1
−1 1/k

]
=

[
0 −1
−1 1/k

]



Minkowski summation

... looks innocent: take two closed convex sets B and C, consider

B+ C = {B + C : B ∈ B,C ∈ C}

... is convex but need not be closed !!

Example. B =

{[
t 0
0 0

]
: t ∈ R

}
and C = P2.

[
−k 0
0 0

]
+

[
k −1
−1 1/k

]
=

[
0 −1
−1 1/k

]
→

[
0 −1
−1 0

]
as k →∞ ,



Minkowski summation

... looks innocent: take two closed convex sets B and C, consider

B+ C = {B + C : B ∈ B,C ∈ C}

... is convex but need not be closed !!

Example. B =

{[
t 0
0 0

]
: t ∈ R

}
and C = P2.

[
−k 0
0 0

]
+

[
k −1
−1 1/k

]
=

[
0 −1
−1 1/k

]
→

[
0 −1
−1 0

]
as k →∞ ,

which is not in B+ C.



Minkowski summation

... looks innocent: take two closed convex sets B and C, consider

B+ C = {B + C : B ∈ B,C ∈ C}

... is convex but need not be closed !!

Example. B =

{[
t 0
0 0

]
: t ∈ R

}
and C = P2.

[
−k 0
0 0

]
+

[
k −1
−1 1/k

]
=

[
0 −1
−1 1/k

]
→

[
0 −1
−1 0

]
as k →∞ ,

which is not in B+ C.

Example will return in various attires [B./Schachinger/Uchida’12]:















An example adapted from SDP

Here it works:

Example 1: n = 2, m = 1, 〈C,X〉 = x11, 〈A1, X〉 = x12 + x21
and b1 = 2. Then

d∗ = sup

{
2y1 :

[
1 −y1

−y1 0

]
∈ C∗2

}
= 0

is attained for y∗1 = 0.  1
k 1

1 k

 ∈ C2

is primally feasible Xk with 〈C,Xk〉 = 1
k ↘ 0 as k ↗ ∞, so that

p∗ = d∗. But p∗ cannot be attained since x11 = 0 conflicts with
x12 = 1 and X ∈ C2 ⊂ P2.















Another example adapted from SDP

Example 2: Here n = 3, m = 2, 〈C,X〉 = x33 whereas

AX =

[
x33 + 2x12

x22

]
, b =

[
1
0

]
.

Then p∗ = inf {x33 : x33 + 2x12 = 1 , x22 = 0 , X ∈ C3} = 1,

attained for an X∗ ∈ C with all x∗ij = 0 except x∗33 = 1.

The dual reads

d∗ = sup

y1 :

 0 −y1 0
−y1 −y2 0

0 0 1− y1

 ∈ C∗3
 = 0 ,

attained for y∗ = o.

Theorem 1 above gives an instance Td(A,b, C) with the same
d∗ < p∗, but where d∗ is not attained.

















Constructing more failures

Summarizing: if (A,b, C) is the instance of Example 2, then

• (A,b, C) has −∞ < d∗ < p∗ <∞ with both d∗ and p∗ attained,

• Td(A,b, C) has −∞ < d∗ < p∗ <∞ with d∗ not attained,

• Tp(A,b, C) has −∞ < d∗ < p∗ <∞ with p∗ not attained,

• Tp[Td(A,b, C)] and Td[Tp(A,b, C)] have −∞ < d∗ < p∗ <∞

with neither p∗ nor d∗ attained.

So the center column of the table is filled !

It remains to deal with infeasibility of one of the problems ...





Infinite duality gaps – infeasible primal

Example 3: Here n = 3, m = 2, and C = O whereas

AX =

[
2x22 + 2x23
2x12 − 2x33

]
, b =

[
0
2

]
.

If X ∈ C3, then x23 ≥ 0 and x22 ≥ 0 imply x22 = 0, hence x12 = 0,
hence x33 = −1 < 0, which is absurd. Hence primal is infeasible,
p∗ =∞. Now look at dual with b>y = 2y2. Since

C −A>y =

 0 −y2 0
−y2 −2y1 −y1

0 −y1 2y2


(look top-left!), y2 ≤ 0 for any y ∈ R2 with C −A>y ∈ C∗3. Thus
y∗ = o is dually feasible, thus optimal, and d∗ = 0 is attained.

Theorem 1 gives an instance Td(A,b, C) with 0 = d∗ < p∗ = ∞,
but where d∗ is not attained.







Infinite duality gaps – infeasible dual

Example 4: Keep A from Example 3, but change b = o now.
Then any feasible X satisfies x33 = 0. Also change c33 = −1 now
(rest zero). Then X∗ = O ∈ C3 is optimal, so p∗ = 0 is attained.
However,

C −A>y =

 0 −y2 0
−y2 −2y1 −y1

0 −y1 −1 + 2y2

 ∈ C∗3
is impossible, as still y2 ≤ 0, implying −1 + 2y2 ≤ −1 < 0, absurd.
Hence d∗ = −∞.

Theorem 2 gives an instance Tp(A,b, C) with −∞ = d∗ < p∗ = 0,
but where p∗ is not attained.

Now all table entries filled !







Restart: linear optimization over cones and duality

Consider linear problem over convex cone K

inf
x∈K
{〈c,x〉 : 〈a0,x〉 = 1, 〈ai,x〉 = 0, i∈ [1:m]}

where {c, ai} ∪ K ⊂ Rd.

Note: Ax = b ⇐⇒ (x0 = 1) & [−b |A]

[
x0
x

]
= o,

so all linear constraints can be homogenized except one.

Dual problem: let L = {a1, . . . , am}⊥, so primal/dual pair is

p∗ = inf
x∈L∩K

{〈c,x〉 : 〈a0,x〉 = 1} and sup {y0 : c− y0a0 ∈ (L ∩ K)∗} .



Let’s be precise ...

Need to describe (L ∩ K)∗ but we only know

(L ∩ K)∗ = closure(L∗+K∗) .



Let’s be precise ...

Need to describe (L ∩ K)∗ but we only know

(L ∩ K)∗ = closure(L∗+K∗) .
Duality gap generated by ignoring closure (forgetting limits) !!

Bomze
Hervorheben



Let’s be precise ...

Need to describe (L ∩ K)∗ but we only know

(L ∩ K)∗ = closure(L∗+K∗) .
Duality gap generated by ignoring closure (forgetting limits) !!

Indeed have [B./Cheng/Dickinson/Lisser’17]:

Theorem (Slater is not needed):
Unless both problems are infeasible, there is zero duality gap,

d∗ = p∗ ,

Bomze
Hervorheben

Bomze
Hervorheben



Let’s be precise ...

Need to describe (L ∩ K)∗ but we only know

(L ∩ K)∗ = closure(L∗+K∗) .
Duality gap generated by ignoring closure (forgetting limits) !!

Indeed have [B./Cheng/Dickinson/Lisser’17]:

Theorem (Slater is not needed):
Unless both problems are infeasible, there is zero duality gap,

d∗ = p∗ ,

where the (proper) dual is defined as in the start,

d∗ = sup {y0 : c− y0a0 ∈ closure(L∗+K∗)} .

Bomze
Hervorheben

Bomze
Hervorheben

Bomze
Hervorheben



Let’s be precise ...

Need to describe (L ∩ K)∗ but we only know

(L ∩ K)∗ = closure(L∗+K∗) .
Duality gap generated by ignoring closure (forgetting limits) !!

Indeed have [B./Cheng/Dickinson/Lisser’17]:

Theorem (Slater is not needed):
Unless both problems are infeasible, there is zero duality gap,

d∗ = p∗ ,

where the (proper) dual is defined as in the start,

d∗ = sup {y0 : c− y0a0 ∈ closure(L∗+K∗)} .
Caution: closure does not guarantee attainability.

Bomze
Hervorheben

Bomze
Hervorheben

Bomze
Hervorheben

Bomze
Hervorheben



Closure closes duality gap; does this help ?

Yes, e.g. if we have choices to describe primal feasibility X ∈ F:

let Li, Ki such that all Li ∩ Ki = F are all the same but cones for

dual L∗i +K∗i are different as i varies!



Closure closes duality gap; does this help ?

Yes, e.g. if we have choices to describe primal feasibility X ∈ F:

let Li, Ki such that all Li ∩ Ki = F are all the same but cones for

dual L∗i +K∗i are different as i varies!

Now, forgetting the closure, dual bounds can vary in quality, e.g.,

if L∗1 +K∗1 is closed (zero gap) but L∗2 +K∗2 is not.



Closure closes duality gap; does this help ?

Yes, e.g. if we have choices to describe primal feasibility X ∈ F:

let Li, Ki such that all Li ∩ Ki = F are all the same but cones for

dual L∗i +K∗i are different as i varies!

Now, forgetting the closure, dual bounds can vary in quality, e.g.,

if L∗1 +K∗1 is closed (zero gap) but L∗2 +K∗2 is not.

Even if none is closed: any dual-feasible solution gives a rigorous

bound;



Closure closes duality gap; does this help ?

Yes, e.g. if we have choices to describe primal feasibility X ∈ F:

let Li, Ki such that all Li ∩ Ki = F are all the same but cones for

dual L∗i +K∗i are different as i varies!

Now, forgetting the closure, dual bounds can vary in quality, e.g.,

if L∗1 +K∗1 is closed (zero gap) but L∗2 +K∗2 is not.

Even if none is closed: any dual-feasible solution gives a rigorous

bound; holds for popular relaxations too !



Closure closes duality gap; does this help ?

Yes, e.g. if we have choices to describe primal feasibility X ∈ F:

let Li, Ki such that all Li ∩ Ki = F are all the same but cones for

dual L∗i +K∗i are different as i varies!

Now, forgetting the closure, dual bounds can vary in quality, e.g.,

if L∗1 +K∗1 is closed (zero gap) but L∗2 +K∗2 is not.

Even if none is closed: any dual-feasible solution gives a rigorous

bound; holds for popular relaxations too !

Quite abstract hope ?



Closure closes duality gap; does this help ?

Yes, e.g. if we have choices to describe primal feasibility X ∈ F:

let Li, Ki such that all Li ∩ Ki = F are all the same but cones for

dual L∗i +K∗i are different as i varies!

Now, forgetting the closure, dual bounds can vary in quality, e.g.,

if L∗1 +K∗1 is closed (zero gap) but L∗2 +K∗2 is not.

Even if none is closed: any dual-feasible solution gives a rigorous

bound; holds for popular relaxations too !

Quite abstract hope ? No, for MBQP-COP it works!

Bomze
Hervorheben



Mixed-binary QPs and COP reformulation

Consider mixed-binary quadratic problem under linear constraints:

q∗ = min
{
x>Qx + 2c>x : x ∈ Z, xj ∈ {0,1} , j ∈ B

}
where Z =

{
x ∈ Rn+ : Ax = b

}



Mixed-binary QPs and COP reformulation

Consider mixed-binary quadratic problem under linear constraints:

q∗ = min
{
x>Qx + 2c>x : x ∈ Z, xj ∈ {0,1} , j ∈ B

}
where Z =

{
x ∈ Rn+ : Ax = b

}
with some x0 ∈ Z ∩ int Rn+

and B ⊆ [1:n] such that zj = 0 for all j ∈ B, z ∈ {a1, . . . , am}⊥.

Here A> = [a1, . . . , am] with ai ∈ Rn linearly independent.



Mixed-binary QPs and COP reformulation

Consider mixed-binary quadratic problem under linear constraints:

q∗ = min
{
x>Qx + 2c>x : x ∈ Z, xj ∈ {0,1} , j ∈ B

}
where Z =

{
x ∈ Rn+ : Ax = b

}
with some x0 ∈ Z ∩ int Rn+

and B ⊆ [1:n] such that zj = 0 for all j ∈ B, z ∈ {a1, . . . , am}⊥.

Here A> = [a1, . . . , am] with ai ∈ Rn linearly independent.

Complete them to basis by orthogonal [am+1, . . . , an]



Mixed-binary QPs and COP reformulation

Consider mixed-binary quadratic problem under linear constraints:

q∗ = min
{
x>Qx + 2c>x : x ∈ Z, xj ∈ {0,1} , j ∈ B

}
where Z =

{
x ∈ Rn+ : Ax = b

}
with some x0 ∈ Z ∩ int Rn+

and B ⊆ [1:n] such that zj = 0 for all j ∈ B, z ∈ {a1, . . . , am}⊥.

Here A> = [a1, . . . , am] with ai ∈ Rn linearly independent.

Complete them to basis by orthogonal [am+1, . . . , an] and form

Q̂ =

[
0 c>

c Q

]



Mixed-binary QPs and COP reformulation

Consider mixed-binary quadratic problem under linear constraints:

q∗ = min
{
x>Qx + 2c>x : x ∈ Z, xj ∈ {0,1} , j ∈ B

}
where Z =

{
x ∈ Rn+ : Ax = b

}
with some x0 ∈ Z ∩ int Rn+

and B ⊆ [1:n] such that zj = 0 for all j ∈ B, z ∈ {a1, . . . , am}⊥.

Here A> = [a1, . . . , am] with ai ∈ Rn linearly independent.

Complete them to basis by orthogonal [am+1, . . . , an] and form

Q̂ =

[
0 c>

c Q

]
and R =

[
1 0 · · · 0
x0 am+1 · · · an

]
∈ R(n+1)×(n+1−m).



Mixed-binary QPs and COP reformulation

Consider mixed-binary quadratic problem under linear constraints:

q∗ = min
{
x>Qx + 2c>x : x ∈ Z, xj ∈ {0,1} , j ∈ B

}
where Z =

{
x ∈ Rn+ : Ax = b

}
with some x0 ∈ Z ∩ int Rn+

and B ⊆ [1:n] such that zj = 0 for all j ∈ B, z ∈ {a1, . . . , am}⊥.

Here A> = [a1, . . . , am] with ai ∈ Rn linearly independent.

Complete them to basis by orthogonal [am+1, . . . , an] and form

Q̂ =

[
0 c>

c Q

]
and R =

[
1 0 · · · 0
x0 am+1 · · · an

]
∈ R(n+1)×(n+1−m).

Ouff, enough preparations; but they pay in various ways !



Burer’s result on COP for Mixed-Binary QPs

[Burer’09] established a first COP reformulation:

q∗ = p∗2 = min
{
〈Q,Y〉 : Y00 = 1 , Y ∈ L2 ∩ B1 ∩ Cn+1

}



Burer’s result on COP for Mixed-Binary QPs

[Burer’09] established a first COP reformulation:

q∗ = p∗2 = min
{
〈Q̂,Y〉 : Y00 = 1 , Y ∈ L2 ∩ B1 ∩ Cn+1

}
with

L2 =

{
Y =

[
y0 x>

x X

]
: a>i x = biy0 , a

>
i Xai = b2i y0 , i∈ [1:m]

}
= {A1, . . . ,A2m}⊥

representing the linear constraints



Burer’s result on COP for Mixed-Binary QPs

[Burer’09] established a first COP reformulation:

q∗ = p∗2 = min
{
〈Q̂,Y〉 : Y00 = 1 , Y ∈ L2 ∩ B1 ∩ Cn+1

}
with

L2 =

{
Y =

[
y0 x>

x X

]
: a>i x = biy0 , a

>
i Xai = b2i y0 , i∈ [1:m]

}
= {A1, . . . ,A2m}⊥

representing the linear constraints and

B1 =

{
Y =

[
y0 x>

x X

]
: xj = Xjj , j ∈ B

}
=

{
Bj : j ∈ B

}⊥
the binarity constraints.



Burer’s result on COP for Mixed-Binary QPs

[Burer’09] established a first COP reformulation:

q∗ = p∗2 = min
{
〈Q̂,Y〉 : Y00 = 1 , Y ∈ L2 ∩ B1 ∩ Cn+1

}
with

L2 =

{
Y =

[
y0 x>

x X

]
: a>i x = biy0 , a

>
i Xai = b2i y0 , i∈ [1:m]

}
= {A1, . . . ,A2m}⊥

representing the linear constraints and

B1 =

{
Y =

[
y0 x>

x X

]
: xj = Xjj , j ∈ B

}
=

{
Bj : j ∈ B

}⊥
the binarity constraints.

Not relaxation p∗2 ≤ q∗,



Burer’s result on COP for Mixed-Binary QPs

[Burer’09] established a first COP reformulation:

q∗ = p∗2 = min
{
〈Q̂,Y〉 : Y00 = 1 , Y ∈ L2 ∩ B1 ∩ Cn+1

}
with

L2 =

{
Y =

[
y0 x>

x X

]
: a>i x = biy0 , a

>
i Xai = b2i y0 , i∈ [1:m]

}
= {A1, . . . ,A2m}⊥

representing the linear constraints and

B1 =

{
Y =

[
y0 x>

x X

]
: xj = Xjj , j ∈ B

}
=

{
Bj : j ∈ B

}⊥
the binarity constraints.

Not relaxation p∗2 ≤ q∗, rather convex reformulation p∗2 = q∗ of
mixed-binary nonconvex QP!

Bomze
Hervorheben

Bomze
Hervorheben

Bomze
Hervorheben



Reformulation by facial reduction

Subsequent work [Burer’10,Dickinson’13,Arima/Kim/Kojima’14]
inspired several alternatives:



Reformulation by facial reduction

Subsequent work [Burer’10,Dickinson’13,Arima/Kim/Kojima’14]
inspired several alternatives:

Idea: reduce order by congruence with matrix R:

replace L2 with

L1 = RSn+1−mR> =
{
Y = RUR> : U = U> has order n+ 1−m

}



Reformulation by facial reduction

Subsequent work [Burer’10,Dickinson’13,Arima/Kim/Kojima’14]
inspired several alternatives:

Idea: reduce order by congruence with matrix R:

replace L2 with

L1 = RSn+1−mR> =
{
Y = RUR> : U = U> has order n+ 1−m

}
and consider

p∗1 = min
{
〈Q,Y〉 : Y00 = 1 , Y ∈ L1 ∩ B1 ∩ Cn+1

}
.



Reformulation by facial reduction

Subsequent work [Burer’10,Dickinson’13,Arima/Kim/Kojima’14]
inspired several alternatives:

Idea: reduce order by congruence with matrix R:

replace L2 with

L1 = RSn+1−mR> =
{
Y = RUR> : U = U> has order n+ 1−m

}
and consider

p∗1 = min
{
〈Q̂,Y〉 : Y00 = 1 , Y ∈ L1 ∩ B1 ∩ Cn+1

}
.

Then have L1 ∩ Pn+1 = RPn+1−mR> = L2 ∩ Pn+1



Reformulation by facial reduction

Subsequent work [Burer’10,Dickinson’13,Arima/Kim/Kojima’14]
inspired several alternatives:

Idea: reduce order by congruence with matrix R:

replace L2 with

L1 = RSn+1−mR> =
{
Y = RUR> : U = U> has order n+ 1−m

}
and consider

p∗1 = min
{
〈Q̂,Y〉 : Y00 = 1 , Y ∈ L1 ∩ B1 ∩ Cn+1

}
.

Then have L1 ∩ Pn+1 = RPn+1−mR> = L2 ∩ Pn+1, so p∗1 = p∗2.

Bomze
Hervorheben



Reformulation by facial reduction

Subsequent work [Burer’10,Dickinson’13,Arima/Kim/Kojima’14]
inspired several alternatives:

Idea: reduce order by congruence with matrix R:

replace L2 with

L1 = RSn+1−mR> =
{
Y = RUR> : U = U> has order n+ 1−m

}
and consider

p∗1 = min
{
〈Q̂,Y〉 : Y00 = 1 , Y ∈ L1 ∩ B1 ∩ Cn+1

}
.

Then have L1 ∩ Pn+1 = RPn+1−mR> = L2 ∩ Pn+1, so p∗1 = p∗2.

Note: L⊥1 =
{
S = S> : R>SR = O

}
.

Bomze
Hervorheben



Reformulation by aggregation of linear constraints

Next idea: use only one homogeneous linear constraint:



Reformulation by aggregation of linear constraints

Next idea: use only one homogeneous linear constraint:

L3 =

{
Y =

[
y0 x>

x X

]
:
m∑
i=1

a>i Xai − 2bia
>
i x + b2i y0 = 0

}

= A⊥agg with Aagg =
m∑
i=1

[
b2i −bia>i
−biai aia

>
i

]



Reformulation by aggregation of linear constraints

Next idea: use only one homogeneous linear constraint:

L3 =

{
Y =

[
y0 x>

x X

]
:
m∑
i=1

a>i Xai − 2bia
>
i x + b2i y0 = 0

}

= A⊥agg with Aagg =
m∑
i=1

[
b2i −bia>i
−biai aia

>
i

]
with

p∗3 = min
{
〈Q,Y〉 : Y00 = 1 , Y ∈ L3 ∩ B1 ∩ Cn+1

}
.



Reformulation by aggregation of linear constraints

Next idea: use only one homogeneous linear constraint:

L3 =

{
Y =

[
y0 x>

x X

]
:
m∑
i=1

a>i Xai − 2bia
>
i x + b2i y0 = 0

}

= A⊥agg with Aagg =
m∑
i=1

[
b2i −bia>i
−biai aia

>
i

]
with

p∗3 = min
{
〈Q̂,Y〉 : Y00 = 1 , Y ∈ L3 ∩ B1 ∩ Cn+1

}
.

Then have L3 ∩ Pn+1 = L2 ∩ Pn+1, so p∗3 = p∗2.

Bomze
Hervorheben



Reformulation by aggregation of linear constraints

Next idea: use only one homogeneous linear constraint:

L3 =

{
Y =

[
y0 x>

x X

]
:
m∑
i=1

a>i Xai − 2bia
>
i x + b2i y0 = 0

}

= A⊥agg with Aagg =
m∑
i=1

[
b2i −bia>i
−biai aia

>
i

]
with

p∗3 = min
{
〈Q̂,Y〉 : Y00 = 1 , Y ∈ L3 ∩ B1 ∩ Cn+1

}
.

Then have L3 ∩ Pn+1 = L2 ∩ Pn+1, so p∗3 = p∗2.

Note: L⊥3 = RAagg.

Bomze
Hervorheben



Reformulation by aggregation of linear constraints

Next idea: use only one homogeneous linear constraint:

L3 =

{
Y =

[
y0 x>

x X

]
:
m∑
i=1

a>i Xai − 2bia
>
i x + b2i y0 = 0

}

= A⊥agg with Aagg =
m∑
i=1

[
b2i −bia>i
−biai aia

>
i

]
with

p∗3 = min
{
〈Q̂,Y〉 : Y00 = 1 , Y ∈ L3 ∩ B1 ∩ Cn+1

}
.

Then have L3 ∩ Pn+1 = L2 ∩ Pn+1, so p∗3 = p∗2.

Note: L⊥3 = RAagg. Have identical Li ∩ Cn+1 across i∈ [1:3].

Bomze
Hervorheben



Reformulation by aggregation of binarity constraints

Repeat last method for B: replace B1 with

B2 =

{
Y =

[
y0 x>

x X

]
:

∑
j B

(Xjj − xj) = 0

}



Reformulation by aggregation of binarity constraints

Repeat last method for B: replace B1 with

B2 =

{
Y =

[
y0 x>

x X

]
:

∑
j∈B

(Xjj − xj) = 0

}

= B⊥agg with Bagg =
∑
j∈B

 0 −e>j
−ej 2eje

>
j

 .



Reformulation by aggregation of binarity constraints

Repeat last method for B: replace B1 with

B2 =

{
Y =

[
y0 x>

x X

]
:

∑
j∈B

(Xjj − xj) = 0

}

= B⊥agg with Bagg =
∑
j∈B

 0 −e>j
−ej 2eje

>
j

 .

Then have B2 ∩Nn+1 ∩ L1 = B1 ∩Nn+1 ∩ L1



Reformulation by aggregation of binarity constraints

Repeat last method for B: replace B1 with

B2 =

{
Y =

[
y0 x>

x X

]
:

∑
j∈B

(Xjj − xj) = 0

}

= B⊥agg with Bagg =
∑
j∈B

 0 −e>j
−ej 2eje

>
j

 .

Then have B2 ∩Nn+1 ∩ L1 = B1 ∩Nn+1 ∩ L1, and so

Theorem [B./Cheng/Dickinson/Lisser’17]:

For all {(i, j), (r, s)} ⊂ {1,2,3} × {1,2}, we have

Li ∩ Bj ∩ Pn+1 ∩Nn+1 = Lr ∩ Bs ∩ Pn+1 ∩Nn+1



Reformulation by aggregation of binarity constraints

Repeat last method for B: replace B1 with

B2 =

{
Y =

[
y0 x>

x X

]
:

∑
j∈B

(Xjj − xj) = 0

}

= B⊥agg with Bagg =
∑
j∈B

 0 −e>j
−ej 2eje

>
j

 .

Then have B2 ∩Nn+1 ∩ L1 = B1 ∩Nn+1 ∩ L1, and so

Theorem [B./Cheng/Dickinson/Lisser’17]:

For all {(i, j), (r, s)} ⊂ {1,2,3} × {1,2}, we have

Li ∩ Bj ∩ Pn+1 ∩Nn+1 = Lr ∩ Bs ∩ Pn+1 ∩Nn+1

and therefore p∗1 = p∗2 = p∗3 regardless which Bj is used.



Reformulation by aggregation of binarity constraints

Repeat last method for B: replace B1 with

B2 =

{
Y =

[
y0 x>

x X

]
:

∑
j∈B

(Xjj − xj) = 0

}

= B⊥agg with Bagg =
∑
j∈B

 0 −e>j
−ej 2eje

>
j

 .

Then have B2 ∩Nn+1 ∩ L1 = B1 ∩Nn+1 ∩ L1, and so

Theorem [B./Cheng/Dickinson/Lisser’17]:

For all {(i, j), (r, s)} ⊂ {1,2,3} × {1,2}, we have

Li ∩ Bj ∩ Pn+1 ∩Nn+1 = Lr ∩ Bs ∩ Pn+1 ∩Nn+1

and therefore p∗1 = p∗2 = p∗3 regardless which Bj is used.

The same is true for the DNN approximation (Pd ∩Nd pro Cd).

Bomze
Hervorheben



A hierarchy of dual COPs

Primal values are identical, so we can choose the duals



A hierarchy of dual COPs

Primal values are identical, so we can choose the duals; of course,

all d∗i = p∗i = q∗ but these are hard to get.



A hierarchy of dual COPs

Primal values are identical, so we can choose the duals; of course,

all d∗i = p∗i = q∗ but these are hard to get. The conic duals may

have a gap d∗i < q∗, likewise the DNN duals.



A hierarchy of dual COPs

Primal values are identical, so we can choose the duals; of course,

all d∗i = p∗i = q∗ but these are hard to get. The conic duals may

have a gap d∗i < q∗, likewise the DNN duals. Which is best?



A hierarchy of dual COPs

Primal values are identical, so we can choose the duals; of course,

all d∗i = p∗i = q∗ but these are hard to get. The conic duals may

have a gap d∗i < q∗, likewise the DNN duals. Which is best?

Theorem [monotonicity of the duals]:

The duality gap p∗i − d
∗
i is increasing with i ∈ {1,2,3}.



A hierarchy of dual COPs

Primal values are identical, so we can choose the duals; of course,

all d∗i = p∗i = q∗ but these are hard to get. The conic duals may

have a gap d∗i < q∗, likewise the DNN duals. Which is best?

Theorem [monotonicity of the duals]:

The duality gap p∗i − d
∗
i is increasing with i ∈ {1,2,3}.

The same is true for the duals of the DNN approximation.



Tightest duals for COPs and DNN

Theorem [Binarity aggregation in tightest duals]:

For tightest dual i = 1, d∗1 is independent of choice of Bj.



Tightest duals for COPs and DNN

Theorem [Binarity aggregation in tightest duals]:

For tightest dual i = 1, d∗1 is independent of choice of Bj.
Combination L1 ∩ B2 has additional benefit of least number of

dual variables and primal constraints.



Tightest duals for COPs and DNN

Theorem [Binarity aggregation in tightest duals]:

For tightest dual i = 1, d∗1 is independent of choice of Bj.
Combination L1 ∩ B2 has additional benefit of least number of

dual variables and primal constraints.

Tightest DNN dual:

sup
u,t,Z

{
u :

[
−u −c>
c Q

]
− Z + tBagg ∈ Nn+1,R

>ZR ∈ Pn+1−m

}



Tightest duals for COPs and DNN

Theorem [Binarity aggregation in tightest duals]:

For tightest dual i = 1, d∗1 is independent of choice of Bj.
Combination L1 ∩ B2 has additional benefit of least number of

dual variables and primal constraints.

Tightest DNN dual:

sup
u,t,Z

{
u :

[
−u −c>
c Q

]
− Z + tBagg ∈ Nn+1,R

>ZR ∈ Pn+1−m

}

requires SDP of order n+ 1−m and O(n2) linear constraints.



Tightest duals for COPs and DNN

Theorem [Binarity aggregation in tightest duals]:

For tightest dual i = 1, d∗1 is independent of choice of Bj.
Combination L1 ∩ B2 has additional benefit of least number of

dual variables and primal constraints.

Tightest DNN dual:

sup
u,t,Z

{
u :

[
−u −c>
c Q

]
− Z + tBagg ∈ Nn+1,R

>ZR ∈ Pn+1−m

}

requires SDP of order n+ 1−m and O(n2) linear constraints.

If Z is compact, then Slater holds, under suitable conditions also

for unbounded Z.



Application: purely binary QPs

More precisely, multi-dimensional knapsack problems:

max
x∈{0,1}n

{
x>Qx : ai

>x ≤ bi, i∈ [1:m]
}

with ai ∈ Rn+. Notoriously hard problems !



Application: purely binary QPs

More precisely, multi-dimensional knapsack problems:

max
x∈{0,1}n

{
x>Qx : ai

>x ≤ bi, i∈ [1:m]
}

with ai ∈ Rn+. Notoriously hard problems !

Instances from Beasley OR-library with random Q:



Notoriously hard (mixed-)binary QPs: empirical evidence on new CP approaches 15

Table 1: Numerical result for the multidimensional knapsack problem using CP reformulations

Prime problem

Orig prob No merging Merging linear Merging binary Merging Both Reduced no merging Reduced merging

(n,m) Opt val Opt val CPU Opt val CPU Opt val CPU Opt val CPU Opt val CPU Opt val CPU

(10,10) 13840 14876 0.9 –(-Inf) 1.3 14877 0.8 16156* 1.3 14852 0.5 14852 0.2
(20,10) 46922 48451 10.1 48792* 20.8 48453 10.9 50572* 28.0 48435 1.4 48435 1.4
(30,5) 48110 50890 54 51186* 120 50890 59 56723* 135 50854 10 50854 10
(40,5) 105154 110296 333 110809*(150) 721 110298 351 132268* (150) 767 110222 70 110222 68
(50,5) 206590 213470 2741 215141* 3413 213475 2477 228663* 2682 213330 558 213330 502
(60,5) 176100 181041 5425 –(150) 8779 181043 5386 – (150) 8894 180953 769 180953 748
(70,5) 318644 – – – – – – – – 322884 2484 322884 2431
(80,5) – – – – – – – – – 341745 5248 341745 5395

“–” means the problem can not be solved within three hours while “*” means the problem is not solved
accurately. “150” means the algorithm reaches the maximum number of iterations set by Sedumi.

Table 2: Numerical result for the penalization method

λ=100 λ=1000 λ=100000

Orig prob No merging Merging No Merging Merging No merging Merging

(n,m) Opt val Opt val CPU Opt val CPU Opt val CPU Opt val CPU Opt val CPU Opt val CPU

(10,10) 13840 15471 1.2 17618 1.0 -inf 1.3 17635* 0.8 15358* 1.0 18746* 0.9
(20,10) 46922 48818* 23 57333 14 48800* 22 55930 14 48745* 17 56325* 14
(30,5) 48110 51176 125 57567 80 51176* 123 54596 86 51114 88 52441 68
(40,5) 105154 110813* 734 131571 531 110717 740 126463 522 110521* 739 163701 413
(50,5) 206590 215141 2594 228641 2245 215127* 2573 227731* 1904 214798* 1566 246691 1572
(60,5) 176100 – – 225519* 9880 – – 2222196* 9596 180953 769 147063* 8390

“–” means the problem is unbounded while “*” means the problem is not solved accurately.

slightly more efficient than the variant without merging in terms of CPU time whilst both relaxations have the
same objective values. The comparison between the three first relaxations and the reduced one shows that the
objective values of these three relaxations are similar; the average gap is less than 1.5%. The worst performance
is given by the variant where both linear and binary constraints are merged as the average gap is 10.38%. All our
instances are solved using interior point methods implemented in Sedumi. One of the reasons of the degraded
performances of the variant with both merging might be found in the behaviour of interior point methods. It
is well known that merging the constraints provides better performances when the gradient based methods are
used [16].

Table 2 shows our numerical results for solving the same instances as in Table 1 by the penalization method
where the parameter λ takes three values 100, 1000, and 100000. Similarly to the previous results, non merging
variants outperform merging ones. Due to inherent numerical instability problems of the penalized methods, the
solutions provided by Sedumi are inaccurate which makes any rigorous comparisons difficult. However, for the
instances solved to optimality without numerical perturbations, we notice that the CPU time decreases when
λ increases for non merging reformulations.

4.2 Quadratic assignment problems

We next consider a general quadratic assignment problem as follows:

min 〈X,AXB>〉
s. t. e>Xei = e>i Xe = 1 for i∈ [1 :n]

Xij ∈ {0, 1} for i∈ [1 :n], j∈ [1 :n] ,
(P)

where A,B ∈ Rn×n are given.
We performed our tests on 5 different instance sizes: n = {6, 8, 10, 11, 12} while A and B are taken from

QAPLIB [11]. The numerical results of six different relaxations as well as their corresponding dual problems
are reported in Table 3. The optimal value was determined by CPLEX [15], and used to calculate the gap. The
following columns show optimal values of the respective relaxation as well as their corresponding CPU time.

Table 3 compares our different relaxations on relatively small instances of QAP problems with up to 12
variables. Larger instances cannot be solved by Sedumi due to both numerical instability and the high compu-
tation time. Unlike the multidimensional knapsack problems, our reformulations and their respective relaxations
close the gap for all the instances except the variant where both linear and binary constraints are merged. We
solve both the dual and the primal formulations for all the variants in order to check the numerical stability
of our different relaxations. We notice that the dual, lived up to its reputation, show a better stability than



Selected references in chronological order

[Vandenberghe/Boyd ’96] Semidefinite programming.
SIAM Review 38, 49–95.

[Helmberg ’00] Semidefinite programming for combinatorial optimization.
ZIB-Report 00–34.

[Burer ’09] On the copositive representation of binary and continuous non-
convex quadratic programs, Math. Programming 120, 479–495.

[Dür ’10] Copositive programming – a survey. In: M.Diehl et al (eds.),
Recent Advances in Optimization and its Applications in Engineering,
pp. 3–20. Springer, Berlin.

[Burer ’10] Optimizing a polyhedral-semidefinite relaxation of completely
positive programs, Math. Progr. Comput. 2, 1–19.

[B.’12] Copositive optimization – recent developments and applications.
Europ. J. Oper. Research 216, 509–520.



Selected references in chronological order, continued

[B./Schachinger/Uchida ’12] Think co(mpletely )positive ! – matrix proper-
ties, examples and a clustered bibliography on copositive optimization.
J.Global Optim. 52, 423–445.

[Dickinson ’13] The copositive cone, the completely positive cone and their
generalisations. Ph.D thesis, University of Groningen.

[Arima/Kim/Kojima ’14] Simplified copositive and Lagrangian relaxations
for linearly constrained quadratic optimization problems in continuous
and binary variables, Pac. J. Optim. 10, 437-451.

[B./Cheng/Dickinson/Lisser ’17] A fresh CP look at mixed-binary QPs: new
formulations and relaxations, Math. Progr. 166, 159-184.

[B./Cheng/Dickinson/Lisser/Liu ’18] Notoriously hard (mixed-)binary QPs:
empirical evidence on new CP approaches, submitted.


	Foliennummer 1
	Foliennummer 2
	Foliennummer 3
	Foliennummer 4
	Foliennummer 5
	Foliennummer 6
	Foliennummer 7
	Foliennummer 8
	Foliennummer 9
	Foliennummer 10
	Foliennummer 11
	Foliennummer 12
	Foliennummer 13
	Foliennummer 14
	Foliennummer 15
	Foliennummer 16
	Foliennummer 17
	Foliennummer 18
	Foliennummer 19
	Foliennummer 20
	Foliennummer 21
	Foliennummer 22
	Foliennummer 23
	Foliennummer 24
	Foliennummer 25
	Foliennummer 26
	Foliennummer 27
	Foliennummer 28
	Foliennummer 29
	Foliennummer 30
	Foliennummer 31
	Foliennummer 32
	Foliennummer 33
	Foliennummer 34
	europt2012_ppt_9.pdf
	Foliennummer 9

	nochmal.pdf
	Foliennummer 10




