

Different duals in conic optimization: closure can tighten the duality gap

Immanuel Bomze, University of Vienna

joint work with:

J. Cheng, P. Dickinson, A. Lisser,

J. Liu, W. Schachinger, G. Uchida

COA Workshop

Edinburgh, 8 June 2018

1. Duality principles

- 1. Duality principles
- 2. Conic complications

- 1. Duality principles
- 2. Conic complications
- 3. This nasty Minkowski sum !

- 1. Duality principles
- 2. Conic complications
- 3. This nasty Minkowski sum !
- 4. A hierarchy of duals; tightening the gap

- 1. Duality principles
- 2. Conic complications
- 3. This nasty Minkowski sum !
- 4. A hierarchy of duals; tightening the gap
- 5. Empirical evidence on multi-dim.knapsack problems

Consider linear problem over convex cone \mathcal{K}

 $\label{eq:constraint} \inf_{\mathbf{x}\in\mathcal{K}}\left\{ \langle \mathbf{c},\mathbf{x}\rangle:\langle \mathbf{a}_0,\mathbf{x}\rangle = \mathbf{1}, \langle \mathbf{a}_i,\mathbf{x}\rangle = \mathbf{0}, i \in [1\!:\!m] \right\}$ where $\{\mathbf{c},\mathbf{a}_i\} \cup \mathcal{K} \subset \mathbb{R}^d$.

Consider linear problem over convex cone \mathcal{K}

 $\inf_{\mathbf{x}\in\mathcal{K}} \{ \langle \mathbf{c}, \mathbf{x} \rangle : \langle \mathbf{a}_0, \mathbf{x} \rangle = \mathbf{1}, \langle \mathbf{a}_i, \mathbf{x} \rangle = \mathbf{0}, i \in [\mathbf{1}:m] \}$ where $\{\mathbf{c}, \mathbf{a}_i\} \cup \mathcal{K} \subset \mathbb{R}^d$. Note: $\mathbf{A}\mathbf{x} = \mathbf{b} \iff (x_0 = \mathbf{1}) \& [-\mathbf{b} | \mathbf{A}] \begin{bmatrix} x_0 \\ \mathbf{x} \end{bmatrix} = \mathbf{o},$ so all linear constraints can be homogenized except one.

Consider linear problem over convex cone \mathcal{K}

 $\inf_{\mathbf{x}\in\mathcal{K}} \{\langle \mathbf{c},\mathbf{x} \rangle : \langle \mathbf{a}_0,\mathbf{x} \rangle = 1, \langle \mathbf{a}_i,\mathbf{x} \rangle = 0, i \in [1:m] \}$ where $\{\mathbf{c},\mathbf{a}_i\} \cup \mathcal{K} \subset \mathbb{R}^d$. Note: $\mathbf{A}\mathbf{x} = \mathbf{b} \iff (x_0 = 1) \& [-\mathbf{b} \mid \mathbf{A}] \begin{bmatrix} x_0 \\ \mathbf{x} \end{bmatrix} = \mathbf{o},$ so all linear constraints can be homogenized except one. Dual problem: let $\mathcal{L} = \{\mathbf{a}_1, \dots, \mathbf{a}_m\}^{\perp}$, so primal/dual pair is $p^* = \inf_{\mathbf{x}\in\mathcal{L}\cap\mathcal{K}} \{\langle \mathbf{c},\mathbf{x} \rangle : \langle \mathbf{a}_0,\mathbf{x} \rangle = 1\}$ and $\sup \{y_0 : \mathbf{c} - y_0 \mathbf{a}_0 \in (\mathcal{L}\cap\mathcal{K})^*\}$

Consider linear problem over convex cone \mathcal{K}

 $\inf_{\mathbf{x}\in\mathcal{K}} \{\langle \mathbf{c},\mathbf{x} \rangle : \langle \mathbf{a}_0,\mathbf{x} \rangle = 1, \langle \mathbf{a}_i,\mathbf{x} \rangle = 0, i \in [1:m] \}$ where $\{\mathbf{c},\mathbf{a}_i\} \cup \mathcal{K} \subset \mathbb{R}^d$. Note: $\mathbf{A}\mathbf{x} = \mathbf{b} \iff (x_0 = 1) \& [-\mathbf{b} | \mathbf{A}] \begin{bmatrix} x_0 \\ \mathbf{x} \end{bmatrix} = \mathbf{o},$ so all linear constraints can be homogenized except one. Dual problem: let $\mathcal{L} = \{\mathbf{a}_1, \dots, \mathbf{a}_m\}^{\perp}$, so primal/dual pair is $p^* = \inf_{\mathbf{x}\in\mathcal{L}\cap\mathcal{K}} \{\langle \mathbf{c},\mathbf{x} \rangle : \langle \mathbf{a}_0,\mathbf{x} \rangle = 1\} \quad \text{and} \quad \sup \{y_0 : \mathbf{c} - y_0 \mathbf{a}_0 \in (\mathcal{L} \cap \mathcal{K})^*\}$ where $\mathcal{B}^* = \{\mathbf{s}\in\mathbb{R}^d : \langle \mathbf{s},\mathbf{x} \rangle \ge 0, \text{ all } \mathbf{x}\in\mathcal{B}\}.$

... is motivated by LP as a model where $\mathcal{K} = \mathbb{R}^d_+$: use

$$(\mathcal{L} \cap \mathcal{K})^* = \mathcal{L}^* + \mathcal{K}^* = \mathcal{L}^{\perp} + \mathcal{K}^* = \operatorname{span}(\mathbf{a}_i) + \mathcal{K}^*.$$

... is motivated by LP as a model where $\mathcal{K} = \mathbb{R}^d_+$: use

$$(\mathcal{L} \cap \mathcal{K})^* = \mathcal{L}^* + \mathcal{K}^* = \mathcal{L}^{\perp} + \mathcal{K}^* = \operatorname{span}(\mathbf{a}_i) + \mathcal{K}^*$$

So conic dual is

$$d^* = \sup\left\{y_0 : \mathbf{c} - \sum_{i=0}^m y_i \mathbf{a}_i \in \mathcal{K}^*\right\}$$

... is motivated by LP as a model where $\mathcal{K} = \mathbb{R}^d_+$: use

$$(\mathcal{L} \cap \mathcal{K})^* = \mathcal{L}^* + \mathcal{K}^* = \mathcal{L}^{\perp} + \mathcal{K}^* = \operatorname{span}(\mathbf{a}_i) + \mathcal{K}^*$$

So conic dual is

$$d^* = \sup\left\{y_0 : \mathbf{c} - \sum_{i=0}^m y_i \mathbf{a}_i \in \mathcal{K}^*\right\}$$

and in the LP case ($\mathcal{K}^* = \mathbb{R}^d_+$) dual constraint reads

$$\sum_{i=0}^{m} y_i \mathbf{a}_i \le \mathbf{c}, \quad \text{as usual.}$$

... is motivated by LP as a model where $\mathcal{K} = \mathbb{R}^d_+$: use

$$(\mathcal{L} \cap \mathcal{K})^* = \mathcal{L}^* + \mathcal{K}^* = \mathcal{L}^{\perp} + \mathcal{K}^* = \operatorname{span}(\mathbf{a}_i) + \mathcal{K}^*$$

So conic dual is

$$d^* = \sup\left\{y_0 : \mathbf{c} - \sum_{i=0}^m y_i \mathbf{a}_i \in \mathcal{K}^*\right\}$$

and in the LP case ($\mathcal{K}^* = \mathbb{R}^d_+$) dual constraint reads

$$\sum_{i=0}^{m} y_i \mathbf{a}_i \le \mathbf{c} \,, \quad \text{as usual.}$$

In LP (unless both infeasible) there is no duality gap, $d^* = p^*$;

... is motivated by LP as a model where $\mathcal{K} = \mathbb{R}^d_+$: use

$$(\mathcal{L} \cap \mathcal{K})^* = \mathcal{L}^* + \mathcal{K}^* = \mathcal{L}^{\perp} + \mathcal{K}^* = \operatorname{span}(\mathbf{a}_i) + \mathcal{K}^*$$

So conic dual is

$$d^* = \sup\left\{y_0 : \mathbf{c} - \sum_{i=0}^m y_i \mathbf{a}_i \in \mathcal{K}^*\right\}$$

and in the LP case ($\mathcal{K}^* = \mathbb{R}^d_+$) dual constraint reads

$$\sum_{i=0}^{m} y_i \mathbf{a}_i \le \mathbf{c}, \quad \text{as usual.}$$

In LP (unless both infeasible) there is no duality gap, $d^* = p^*$; strong duality: optimal values are attained for primal and dual.

Let \mathcal{K} be a convex cone of symmetric $n \times n$ matrices $\mathbf{X} = \mathbf{X}^{\top}$. Consider conic linear optimization problem in matrices

 $p^* = \min \left\{ \langle \mathbf{C}, \mathbf{X} \rangle : \langle \mathbf{A}_0, \mathbf{X} \rangle = \mathbf{1}, \ \mathbf{X} \in \{\mathbf{A}_1, \dots, \mathbf{A}_m\}^{\perp} \cap \mathcal{K} \right\},$

Let \mathcal{K} be a convex cone of symmetric $n \times n$ matrices $\mathbf{X} = \mathbf{X}^{\top}$. Consider conic linear optimization problem in matrices

$$p^* = \min \left\{ \langle \mathbf{C}, \mathbf{X} \rangle : \langle \mathbf{A}_0, \mathbf{X} \rangle = 1, \ \mathbf{X} \in \{\mathbf{A}_1, \dots, \mathbf{A}_m\}^{\perp} \cap \mathcal{K} \right\},$$

where the coefficients C, A_i are symmetric $n \times n$ matrices and $\langle C, X \rangle =$ trace ($C^{\top}X$) is Frobenius inner product of matrices.

Let \mathcal{K} be a convex cone of symmetric $n \times n$ matrices $\mathbf{X} = \mathbf{X}^{\top}$. Consider conic linear optimization problem in matrices

$$p^* = \min \left\{ \langle \mathbf{C}, \mathbf{X} \rangle : \langle \mathbf{A}_0, \mathbf{X} \rangle = 1, \ \mathbf{X} \in \{\mathbf{A}_1, \dots, \mathbf{A}_m\}^{\perp} \cap \mathcal{K} \right\},$$

where the coefficients C, A_i are symmetric $n \times n$ matrices and $\langle C, X \rangle =$ trace ($C^{\top}X$) is Frobenius inner product of matrices.

As before, conic dual is defined as

$$d^* = \sup \left\{ y_0 : \mathbf{S} = \mathbf{C} - \sum_{i=0}^m y_i \mathbf{A}_i \in \mathcal{K}^* \right\}.$$

Let \mathcal{K} be a convex cone of symmetric $n \times n$ matrices $\mathbf{X} = \mathbf{X}^{\top}$. Consider conic linear optimization problem in matrices

$$p^* = \min \left\{ \langle \mathbf{C}, \mathbf{X} \rangle : \langle \mathbf{A}_0, \mathbf{X} \rangle = 1, \ \mathbf{X} \in \{\mathbf{A}_1, \dots, \mathbf{A}_m\}^{\perp} \cap \mathcal{K} \right\},$$

where the coefficients C, A_i are symmetric $n \times n$ matrices and $\langle C, X \rangle =$ trace ($C^{\top}X$) is Frobenius inner product of matrices.

As before, conic dual is defined as

$$d^* = \sup \left\{ y_0 : \mathbf{S} = \mathbf{C} - \sum_{i=0}^m y_i \mathbf{A}_i \in \mathcal{K}^* \right\}.$$

Of course, weak duality always holds: $d^* \leq p^*$.

Let \mathcal{K} be a convex cone of symmetric $n \times n$ matrices $\mathbf{X} = \mathbf{X}^{\top}$. Consider conic linear optimization problem in matrices

$$p^* = \min \left\{ \langle \mathbf{C}, \mathbf{X} \rangle : \langle \mathbf{A}_0, \mathbf{X} \rangle = 1, \ \mathbf{X} \in \{\mathbf{A}_1, \dots, \mathbf{A}_m\}^{\perp} \cap \mathcal{K} \right\},$$

where the coefficients C, A_i are symmetric $n \times n$ matrices and $\langle C, X \rangle =$ trace ($C^{\top}X$) is Frobenius inner product of matrices.

As before, conic dual is defined as

$$d^* = \sup \left\{ y_0 : \mathbf{S} = \mathbf{C} - \sum_{i=0}^m y_i \mathbf{A}_i \in \mathcal{K}^* \right\}.$$

Of course, weak duality always holds: $d^* \leq p^*$.

However, when departing from LP, strong duality may fail.

Departing? Indeed, for

$$\mathcal{K} = \mathcal{N}_n = \left\{ \mathbf{X} = \mathbf{X}^\top n \times n : \mathbf{X} \ge \mathbf{O} \right\} \dots \ \mathsf{LP}, \ \mathsf{barrier}: -\sum_{i,j} \log X_{ij},$$

Departing? Indeed, for

$$\mathcal{K} = \mathcal{N}_n = \left\{ \mathbf{X} = \mathbf{X}^\top n \times n : \mathbf{X} \ge \mathbf{O} \right\} \dots \ \mathsf{LP}, \ \mathsf{barrier}: - \sum_{i,j} \log X_{ij},$$

and for

$$\mathcal{K} = \mathcal{P}_n = \left\{ \mathbf{X} = \mathbf{X}^\top n \times n : \mathbf{X} \succeq \mathbf{O} \right\} \dots \mathsf{SDP}, \text{ barrier:} - \sum_i \log \lambda_i(\mathbf{X})$$

Departing? Indeed, for

 $\mathcal{K} = \mathcal{N}_n = \left\{ \mathbf{X} = \mathbf{X}^\top n \times n : \mathbf{X} \ge \mathbf{O} \right\} \dots \text{ LP, barrier:} - \sum_{i,j} \log X_{ij},$ and for

 $\mathcal{K} = \mathcal{P}_n = \left\{ \mathbf{X} = \mathbf{X}^\top n \times n : \mathbf{X} \succeq \mathbf{O} \right\} \dots \text{SDP, barrier:} - \sum_i \log \lambda_i(\mathbf{X}).$ In above cases, the dual cone of $\mathcal{K}^* = \mathcal{K}$ (self-duality),

and problems solvable in polynomial time to desired accuracy.

Departing? Indeed, for

 $\mathcal{K} = \mathcal{N}_n = \left\{ \mathbf{X} = \mathbf{X}^\top n \times n : \mathbf{X} \ge \mathbf{O} \right\} \dots \text{ LP, barrier:} - \sum_{i,j} \log X_{ij},$ and for

 $\mathcal{K} = \mathcal{P}_n = \left\{ \mathbf{X} = \mathbf{X}^\top n \times n : \mathbf{X} \succeq \mathbf{O} \right\} \dots \text{SDP}, \text{ barrier: } -\sum_i \log \lambda_i(\mathbf{X}).$ In above cases, the dual cone of $\mathcal{K}^* = \mathcal{K}$ (self-duality), and problems solvable in polynomial time to desired accuracy.

But in general $\mathcal{K}^* \neq \mathcal{K}$ and conic optimization is NP-hard.

Departing? Indeed, for

 $\mathcal{K} = \mathcal{N}_n = \left\{ \mathbf{X} = \mathbf{X}^\top n \times n : \mathbf{X} \ge \mathbf{O} \right\} \dots \text{ LP, barrier:} - \sum_{i,j} \log X_{ij},$ and for

 $\mathcal{K} = \mathcal{P}_n = \left\{ \mathbf{X} = \mathbf{X}^\top n \times n : \mathbf{X} \succeq \mathbf{O} \right\} \dots \text{SDP}, \text{ barrier: } -\sum_i \log \lambda_i(\mathbf{X}).$ In above cases, the dual cone of $\mathcal{K}^* = \mathcal{K}$ (self-duality), and problems solvable in polynomial time to desired accuracy.

But in general $\mathcal{K}^* \neq \mathcal{K}$ and conic optimization is NP-hard.

Why bother?

COP encodes many NP-hard problems [Dür'10, Burer'12, B.'12].

Choose instead
$$\mathcal{K} = \mathcal{C}_n = \text{ conv } \left\{ \mathbf{x} \mathbf{x}^\top : \mathbf{x} \in \mathbb{R}^n, \mathbf{x} \ge \mathbf{o} \right\},$$

the cone of completely positive matrices,

COP encodes many NP-hard problems [Dür'10, Burer'12, B.'12]. Choose instead $\mathcal{K} = \mathcal{C}_n = \text{ conv } \{\mathbf{x}\mathbf{x}^\top : \mathbf{x} \in \mathbb{R}^n, \mathbf{x} \ge \mathbf{o}\},\$ the cone of completely positive matrices, with its dual cone $\mathcal{C}_n^* = \{\mathbf{S} = \mathbf{S}^\top \text{ is copositive; means: } \mathbf{x}^\top \mathbf{S}\mathbf{x} \ge \mathbf{0} \text{ if } \mathbf{x} \ge \mathbf{o}\}\$

COP encodes many NP-hard problems [Dür'10, Burer'12, B.'12]. Choose instead $\mathcal{K} = \mathcal{C}_n = \text{ conv } \{\mathbf{x}\mathbf{x}^\top : \mathbf{x} \in \mathbb{R}^n, \mathbf{x} \ge \mathbf{o}\},\$ the cone of completely positive matrices, with its dual cone $\mathcal{C}_n^* = \{\mathbf{S} = \mathbf{S}^\top \text{ is copositive; means: } \mathbf{x}^\top \mathbf{S}\mathbf{x} \ge \mathbf{0} \text{ if } \mathbf{x} \ge \mathbf{o}\} \neq \mathcal{C}_n.$

Nonnegative cone $\ensuremath{\mathcal{N}}$

Nonnegative cone $\ensuremath{\mathcal{N}}$

Copositive cone ******

Copositive cone ******

Nonnegative cone ${\mathcal N}$

Completely positive cone \thickapprox

COP encodes many NP-hard problems [Dür'10, Burer'12, B.'12].

Choose instead $\mathcal{K} = \mathcal{C}_n = \text{ conv } \left\{ \mathbf{x} \mathbf{x}^\top : \mathbf{x} \in \mathbb{R}^n, \mathbf{x} \ge \mathbf{o} \right\},$

the cone of completely positive matrices, with its dual cone

 $C_n^* = \{ \mathbf{S} = \mathbf{S}^\top \text{ is copositive; means: } \mathbf{x}^\top \mathbf{S} \mathbf{x} \ge 0 \text{ if } \mathbf{x} \ge \mathbf{o} \} \neq C_n.$ Well known relations:

 $\mathcal{C}_n \subset \mathcal{P}_n \cap \mathcal{N}_n$
COP encodes many NP-hard problems [Dür'10, Burer'12, B.'12].

Choose instead $\mathcal{K} = \mathcal{C}_n = \operatorname{conv} \left\{ \mathbf{x}\mathbf{x}^\top : \mathbf{x} \in \mathbb{R}^n, \mathbf{x} \ge \mathbf{o} \right\}$, the cone of completely positive matrices, with its dual cone $\mathcal{C}_n^* = \left\{ \mathbf{S} = \mathbf{S}^\top \text{ is copositive; means: } \mathbf{x}^\top \mathbf{S}\mathbf{x} \ge \mathbf{0} \text{ if } \mathbf{x} \ge \mathbf{o} \right\} \neq \mathcal{C}_n$. Well known relations:

 $\mathcal{C}_n \subset \mathcal{P}_n \cap \mathcal{N}_n \subset \mathcal{P}_n + \mathcal{N}_n$

COP encodes many NP-hard problems [Dür'10, Burer'12, B.'12].

Choose instead $\mathcal{K} = \mathcal{C}_n = \operatorname{conv} \left\{ \mathbf{x}\mathbf{x}^\top : \mathbf{x} \in \mathbb{R}^n, \mathbf{x} \ge \mathbf{o} \right\}$, the cone of completely positive matrices, with its dual cone $\mathcal{C}_n^* = \left\{ \mathbf{S} = \mathbf{S}^\top \text{ is copositive; means: } \mathbf{x}^\top \mathbf{S}\mathbf{x} \ge \mathbf{0} \text{ if } \mathbf{x} \ge \mathbf{o} \right\} \neq \mathcal{C}_n$. Well known relations:

 $\mathcal{C}_n \subset \mathcal{P}_n \cap \mathcal{N}_n \subset \mathcal{P}_n + \mathcal{N}_n \subset \mathcal{C}_n^*$

COP encodes many NP-hard problems [Dür'10, Burer'12, B.'12].

Choose instead $\mathcal{K} = \mathcal{C}_n = \operatorname{conv} \left\{ \mathbf{x}\mathbf{x}^\top : \mathbf{x} \in \mathbb{R}^n, \mathbf{x} \ge \mathbf{o} \right\}$, the cone of completely positive matrices, with its dual cone $\mathcal{C}_n^* = \left\{ \mathbf{S} = \mathbf{S}^\top \text{ is copositive; means: } \mathbf{x}^\top \mathbf{S}\mathbf{x} \ge \mathbf{0} \text{ if } \mathbf{x} \ge \mathbf{o} \right\} \neq \mathcal{C}_n$. Well known relations:

 $\mathcal{C}_n \subset \mathcal{P}_n \cap \mathcal{N}_n \subset \mathcal{P}_n + \mathcal{N}_n \subset \mathcal{C}_n^* \dots$ strict for $n \geq 5$.

COP encodes many NP-hard problems [Dür'10, Burer'12, B.'12].

Choose instead $\mathcal{K} = \mathcal{C}_n = \operatorname{conv} \left\{ \mathbf{x}\mathbf{x}^\top : \mathbf{x} \in \mathbb{R}^n, \mathbf{x} \ge \mathbf{o} \right\}$, the cone of completely positive matrices, with its dual cone $\mathcal{C}_n^* = \left\{ \mathbf{S} = \mathbf{S}^\top \text{ is copositive; means: } \mathbf{x}^\top \mathbf{S}\mathbf{x} \ge \mathbf{0} \text{ if } \mathbf{x} \ge \mathbf{o} \right\} \neq \mathcal{C}_n$. Well known relations:

 $C_n \subset \mathcal{P}_n \cap \mathcal{N}_n \subset \mathcal{P}_n + \mathcal{N}_n \subset C_n^* \dots$ strict for $n \geq 5$. Primal/dual pair in (COP) with conic duality:

$$p^* = \inf \{ \langle \mathbf{C}, \mathbf{X} \rangle : \langle \mathbf{A}_0, \mathbf{X} \rangle = 1, \mathbf{X} \in \mathcal{L} \cap \mathcal{C}_n \},$$
$$d^* = \sup \{ y_0 : \mathbf{C} - \sum_{i=0}^m y_i \mathbf{A}_i \in \mathcal{C}_n^* \}$$

with $\mathcal{L} = \{\mathbf{A}_1, \dots, \mathbf{A}_m\}^{\perp}$.

In convex nonlinear programs (SOCP, SDP, COP), we have classical duality results (Slater's condition):

In convex nonlinear programs (SOCP, SDP, COP), we have classical duality results (Slater's condition):

Strict primal feasibility: $\{X \in \mathcal{L} : \langle A_0, X \rangle = 1\} \cap \text{int } \mathcal{C}_n \neq \emptyset$

implies zero duality gap and dual attainability

In convex nonlinear programs (SOCP, SDP, COP), we have classical duality results (Slater's condition): Strict primal feasibility: $\{X \in \mathcal{L} : \langle A_0, X \rangle = 1\} \cap \text{int } \mathcal{C}_n \neq \emptyset$ implies zero duality gap and dual attainability, and strict dual feasibility $\{y_0 : S = C - \sum_{i=0}^m y_i A_i \in \text{int } \mathcal{C}_n^*\} \neq \emptyset$ implies zero duality gap and primal attainability.

In convex nonlinear programs (SOCP, SDP, COP), we have classical duality results (Slater's condition):

Strict primal feasibility: $\{X \in \mathcal{L} : \langle A_0, X \rangle = 1\} \cap \text{int } \mathcal{C}_n \neq \emptyset$ implies zero duality gap and dual attainability, and

strict dual feasibility $\{y_0 : \mathbf{S} = \mathbf{C} - \sum_{i=0}^m y_i \mathbf{A}_i \in \text{int } \mathcal{C}_n^*\} \neq \emptyset$ implies zero duality gap and primal attainability.

Otherwise, positive duality gap and all sorts of non-attainability may happen in SDP [Vandenberghe/Boyd '96, Helmberg '00].

In convex nonlinear programs (SOCP, SDP, COP), we have classical duality results (Slater's condition):

Strict primal feasibility: $\{X \in \mathcal{L} : \langle A_0, X \rangle = 1\} \cap \text{int } \mathcal{C}_n \neq \emptyset$ implies zero duality gap and dual attainability, and

strict dual feasibility $\{y_0 : \mathbf{S} = \mathbf{C} - \sum_{i=0}^m y_i \mathbf{A}_i \in \text{int } \mathcal{C}_n^*\} \neq \emptyset$ implies zero duality gap and primal attainability.

Otherwise, positive duality gap and all sorts of non-attainability may happen in SDP [Vandenberghe/Boyd '96, Helmberg '00].

Same is true for COP, too.

In convex nonlinear programs (SOCP, SDP, COP), we have classical duality results (Slater's condition):

Strict primal feasibility: $\{X \in \mathcal{L} : \langle A_0, X \rangle = 1\} \cap \text{int } C_n \neq \emptyset$ implies zero duality gap and dual attainability, and

strict dual feasibility $\{y_0 : \mathbf{S} = \mathbf{C} - \sum_{i=0}^m y_i \mathbf{A}_i \in \text{int } \mathcal{C}_n^*\} \neq \emptyset$ implies zero duality gap and primal attainability.

Otherwise, positive duality gap and all sorts of non-attainability may happen in SDP [Vandenberghe/Boyd '96, Helmberg '00].

Same is true for COP, too. Why ? Problems with addition ...

... looks innocent: take two closed convex sets \mathcal{B} and \mathcal{C} , consider

 $\mathcal{B} + \mathcal{C} = \{\mathbf{B} + \mathbf{C} : \mathbf{B} \in \mathcal{B}, \mathbf{C} \in \mathcal{C}\}$

... looks innocent: take two closed convex sets \mathcal{B} and \mathcal{C} , consider

 $\mathcal{B} + \mathcal{C} = \{\mathbf{B} + \mathbf{C} : \mathbf{B} \in \mathcal{B}, \mathbf{C} \in \mathcal{C}\}$

... is convex but need not be closed !!

... looks innocent: take two closed convex sets \mathcal{B} and \mathcal{C} , consider

 $\mathcal{B} + \mathcal{C} = \{\mathbf{B} + \mathbf{C} : \mathbf{B} \in \mathcal{B}, \mathbf{C} \in \mathcal{C}\}$

... is convex but need not be closed !!

Example.
$$\mathcal{B} = \left\{ \begin{bmatrix} t & 0 \\ 0 & 0 \end{bmatrix} : t \in \mathbb{R} \right\}$$
 and $\mathcal{C} = \mathcal{P}_2$.
$$\begin{bmatrix} -k & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} k & -1 \\ -1 & 1/k \end{bmatrix}$$

... looks innocent: take two closed convex sets \mathcal{B} and \mathcal{C} , consider

 $\mathcal{B} + \mathcal{C} = \{\mathbf{B} + \mathbf{C} : \mathbf{B} \in \mathcal{B}, \mathbf{C} \in \mathcal{C}\}$

... is convex but need not be closed !!

Example. $\mathcal{B} = \left\{ \begin{bmatrix} t & 0 \\ 0 & 0 \end{bmatrix} : t \in \mathbb{R} \right\}$ and $\mathcal{C} = \mathcal{P}_2$. $\begin{bmatrix} -k & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} k & -1 \\ -1 & 1/k \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ -1 & 1/k \end{bmatrix}$

... looks innocent: take two closed convex sets \mathcal{B} and \mathcal{C} , consider

 $\mathcal{B} + \mathcal{C} = \{\mathbf{B} + \mathbf{C} : \mathbf{B} \in \mathcal{B}, \mathbf{C} \in \mathcal{C}\}$

... is convex but need not be closed !!

Example.
$$\mathcal{B} = \left\{ \begin{bmatrix} t & 0 \\ 0 & 0 \end{bmatrix} : t \in \mathbb{R} \right\}$$
 and $\mathcal{C} = \mathcal{P}_2$.
$$\begin{bmatrix} -k & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} k & -1 \\ -1 & 1/k \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ -1 & 1/k \end{bmatrix} \rightarrow \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \text{ as } k \rightarrow \infty,$$

... looks innocent: take two closed convex sets \mathcal{B} and \mathcal{C} , consider

 $\mathcal{B} + \mathcal{C} = \{\mathbf{B} + \mathbf{C} : \mathbf{B} \in \mathcal{B}, \mathbf{C} \in \mathcal{C}\}$

... is convex but need not be closed !!

Example.
$$\mathcal{B} = \left\{ \begin{bmatrix} t & 0 \\ 0 & 0 \end{bmatrix} : t \in \mathbb{R} \right\}$$
 and $\mathcal{C} = \mathcal{P}_2$.
$$\begin{bmatrix} -k & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} k & -1 \\ -1 & 1/k \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ -1 & 1/k \end{bmatrix} \rightarrow \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \text{ as } k \rightarrow \infty,$$
which is **not** in $\mathcal{B} + \mathcal{C}$.

... looks innocent: take two closed convex sets \mathcal{B} and \mathcal{C} , consider

 $\mathcal{B} + \mathcal{C} = \{\mathbf{B} + \mathbf{C} : \mathbf{B} \in \mathcal{B}, \mathbf{C} \in \mathcal{C}\}$

... is convex but need not be closed !!

Example.
$$\mathcal{B} = \left\{ \begin{bmatrix} t & 0 \\ 0 & 0 \end{bmatrix} : t \in \mathbb{R} \right\}$$
 and $\mathcal{C} = \mathcal{P}_2$.
$$\begin{bmatrix} -k & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} k & -1 \\ -1 & 1/k \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ -1 & 1/k \end{bmatrix} \rightarrow \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \text{ as } k \rightarrow \infty,$$

which is not in $\mathcal{B} + \mathcal{C}$.

Example will return in various attires [B./Schachinger/Uchida'12]:

Exclude doubly infeasible cases where both

$$d^*=-\infty$$
 and $p^*=+\infty$.

Exclude doubly infeasible cases where both

$$d^* = -\infty$$
 and $p^* = +\infty$.

This may happen even in LPs !

Exclude doubly infeasible cases where both

$$d^* = -\infty$$
 and $p^* = +\infty$.

This may happen even in LPs !

Possible attainability/duality gap constellations for COP:

Exclude doubly infeasible cases where both

$$d^*=-\infty$$
 and $p^*=+\infty$

This may happen even in LPs !

Possible attainability/duality gap constellations for COP:

An example adapted from SDP

Here it works:

Example 1: n = 2, m = 1, $\langle C, X \rangle = x_{11}$, $\langle A_1, X \rangle = x_{12} + x_{21}$ and $b_1 = 2$. Then

$$\boldsymbol{d^*} = \sup \left\{ 2y_1 : \left[\begin{array}{cc} 1 & -y_1 \\ -y_1 & 0 \end{array} \right] \in \mathcal{C}_2^* \right\} = 0$$

is attained for $y_1^* = 0$.

$$\begin{bmatrix} \frac{1}{k} & 1\\ 1 & k \end{bmatrix} \in \mathcal{C}_2$$

is primally feasible X_k with $\langle C, X_k \rangle = \frac{1}{k} \searrow 0$ as $k \nearrow \infty$, so that $p^* = d^*$. But p^* cannot be attained since $x_{11} = 0$ conflicts with $x_{12} = 1$ and $X \in \mathcal{C}_2 \subset \mathcal{P}_2$.

duality gap attained	$\begin{array}{c} zero \\ \mathbf{d}^* = p^* \in \mathbb{R} \end{array}$	finite positive $-\infty < d^* < p^* < \infty$	$ \begin{array}{ l } \text{infinite} \\ -\infty < d^* < p^* = \infty \end{array} $	infinite $-\infty = d^* < p^* < \infty$
both attained	StQP,			
	both strictly f.			
p^* attained,	MStQP, —()—			
d* not attained	dual strictly f.			
p^* not attained,	Ex.1, <u> </u>			
d* attained	primal strictly f.			
neither attained	————	$-0 \bigcirc$	>	←… ○

Theorem 1. Given a COP instance $(\mathbf{A}, \mathbf{b}, C)$ in $\mathcal{C}_n/\mathcal{C}_n^*$, denote by $\mathcal{T}_d(\mathbf{A}, \mathbf{b}, C)$ the following new COP instance in $\mathcal{C}_{n+2}/\mathcal{C}_{n+2}^*$:

$$\bar{C} = \begin{bmatrix} C & o & o \\ o^{\top} & 0 & -1 \\ o^{\top} & -1 & 0 \end{bmatrix} \text{ and } \bar{A}_i = \begin{bmatrix} A_i & o & o \\ o^{\top} & 0 & 0 \\ o^{\top} & 0 & 0 \end{bmatrix}, \ 1 \le i \le m,$$
$$\bar{A}_{m+1} = \begin{bmatrix} O & o & o \\ o^{\top} & 1 & 0 \\ o^{\top} & 0 & 0 \end{bmatrix}, \ \bar{A}_{m+2} = \begin{bmatrix} O & o & o \\ o^{\top} & 0 & 0 \\ o^{\top} & 0 & 1 \end{bmatrix} \text{ and } \bar{b} = \begin{bmatrix} b \\ 1 \\ 0 \end{bmatrix}.$$

Then

• $\mathcal{T}_{d}(\mathbf{A}, \mathbf{b}, C)$ is feasible if and only if $(\mathbf{A}, \mathbf{b}, C)$ is feasible;

Theorem 1. Given a COP instance $(\mathbf{A}, \mathbf{b}, C)$ in $\mathcal{C}_n/\mathcal{C}_n^*$, denote by $\mathcal{T}_d(\mathbf{A}, \mathbf{b}, C)$ the following new COP instance in $\mathcal{C}_{n+2}/\mathcal{C}_{n+2}^*$:

$$\bar{C} = \begin{bmatrix} C & \mathbf{o} & \mathbf{o} \\ \mathbf{o}^{\top} & 0 & -1 \\ \mathbf{o}^{\top} & -1 & 0 \end{bmatrix} \quad \text{and} \quad \bar{A}_i = \begin{bmatrix} A_i & \mathbf{o} & \mathbf{o} \\ \mathbf{o}^{\top} & 0 & 0 \\ \mathbf{o}^{\top} & 0 & 0 \end{bmatrix}, \ 1 \le i \le m,$$
$$\bar{A}_{m+1} = \begin{bmatrix} O & \mathbf{o} & \mathbf{o} \\ \mathbf{o}^{\top} & 1 & 0 \\ \mathbf{o}^{\top} & 0 & 0 \end{bmatrix}, \ \bar{A}_{m+2} = \begin{bmatrix} O & \mathbf{o} & \mathbf{o} \\ \mathbf{o}^{\top} & 0 & 0 \\ \mathbf{o}^{\top} & 0 & 1 \end{bmatrix} \text{ and } \bar{\mathbf{b}} = \begin{bmatrix} \mathbf{b} \\ 1 \\ 0 \end{bmatrix}.$$

Then

- $\mathcal{T}_{d}(\mathbf{A}, \mathbf{b}, C)$ is feasible if and only if $(\mathbf{A}, \mathbf{b}, C)$ is feasible;
- the primal and dual optimal values remain the same;

Theorem 1. Given a COP instance $(\mathbf{A}, \mathbf{b}, C)$ in $\mathcal{C}_n/\mathcal{C}_n^*$, denote by $\mathcal{T}_d(\mathbf{A}, \mathbf{b}, C)$ the following new COP instance in $\mathcal{C}_{n+2}/\mathcal{C}_{n+2}^*$:

$$\bar{C} = \begin{bmatrix} C & \mathbf{o} & \mathbf{o} \\ \mathbf{o}^{\top} & \mathbf{0} & -1 \\ \mathbf{o}^{\top} & -1 & \mathbf{0} \end{bmatrix} \quad \text{and} \quad \bar{A}_i = \begin{bmatrix} A_i & \mathbf{o} & \mathbf{o} \\ \mathbf{o}^{\top} & \mathbf{0} & \mathbf{0} \\ \mathbf{o}^{\top} & \mathbf{0} & \mathbf{0} \end{bmatrix}, \ 1 \le i \le m,$$
$$\bar{A}_{m+1} = \begin{bmatrix} O & \mathbf{o} & \mathbf{o} \\ \mathbf{o}^{\top} & 1 & \mathbf{0} \\ \mathbf{o}^{\top} & \mathbf{0} & \mathbf{0} \end{bmatrix}, \ \bar{A}_{m+2} = \begin{bmatrix} O & \mathbf{o} & \mathbf{o} \\ \mathbf{o}^{\top} & \mathbf{0} & \mathbf{0} \\ \mathbf{o}^{\top} & \mathbf{0} & 1 \end{bmatrix} \text{ and } \bar{\mathbf{b}} = \begin{bmatrix} \mathbf{b} \\ 1 \\ \mathbf{0} \end{bmatrix}.$$

Then

- $\mathcal{T}_{d}(\mathbf{A}, \mathbf{b}, C)$ is feasible if and only if $(\mathbf{A}, \mathbf{b}, C)$ is feasible;
- the primal and dual optimal values remain the same;
- p^* is attained in one problem iff it is in the other;

Theorem 1. Given a COP instance $(\mathbf{A}, \mathbf{b}, C)$ in $\mathcal{C}_n/\mathcal{C}_n^*$, denote by $\mathcal{T}_d(\mathbf{A}, \mathbf{b}, C)$ the following new COP instance in $\mathcal{C}_{n+2}/\mathcal{C}_{n+2}^*$:

$$\bar{C} = \begin{bmatrix} C & \mathbf{o} & \mathbf{o} \\ \mathbf{o}^{\top} & \mathbf{0} & -1 \\ \mathbf{o}^{\top} & -1 & \mathbf{0} \end{bmatrix} \quad \text{and} \quad \bar{A}_i = \begin{bmatrix} A_i & \mathbf{o} & \mathbf{o} \\ \mathbf{o}^{\top} & \mathbf{0} & \mathbf{0} \\ \mathbf{o}^{\top} & \mathbf{0} & \mathbf{0} \end{bmatrix}, \ 1 \le i \le m,$$
$$\bar{A}_{m+1} = \begin{bmatrix} O & \mathbf{o} & \mathbf{o} \\ \mathbf{o}^{\top} & 1 & \mathbf{0} \\ \mathbf{o}^{\top} & \mathbf{0} & \mathbf{0} \end{bmatrix}, \ \bar{A}_{m+2} = \begin{bmatrix} O & \mathbf{o} & \mathbf{o} \\ \mathbf{o}^{\top} & \mathbf{0} & \mathbf{0} \\ \mathbf{o}^{\top} & \mathbf{0} & 1 \end{bmatrix} \text{ and } \bar{\mathbf{b}} = \begin{bmatrix} \mathbf{b} \\ 1 \\ \mathbf{0} \end{bmatrix}.$$

Then

- $\mathcal{T}_{d}(\mathbf{A}, \mathbf{b}, C)$ is feasible if and only if $(\mathbf{A}, \mathbf{b}, C)$ is feasible;
- the primal and dual optimal values remain the same;
- p^* is attained in one problem iff it is in the other;
- d^* is never attained in $\mathcal{T}_{d}(\mathbf{A}, \mathbf{b}, C)$.

duality gap attained	zero $d^*=p^*\in\mathbb{R}$	finite positive $-\infty\!<\!d^*\!<\!p^*\!<\!\infty$	infinite $-\infty < d^* < p^* = \infty$	infinite $-\infty = d^* < p^* < \infty$
both attained	StQP,			
	both strictly f.			
p^* attained,	MStQP, —()—			
d* not attained	dual strictly f.			
p^* not attained,	Ex.1, <u> </u>			
d* attained	primal strictly f.			
neither attained	Ex.1 & Thm.1		— — — —	←
	— —	\sim		

Another example adapted from SDP

Example 2: Here n = 3, m = 2, $\langle C, X \rangle = x_{33}$ whereas

$$\mathbf{A}X = \begin{bmatrix} x_{33} + 2x_{12} \\ x_{22} \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$

Then $p^* = \inf \{x_{33} : x_{33} + 2x_{12} = 1, x_{22} = 0, X \in C_3\} = 1$, attained for an $X^* \in C$ with all $x_{ij}^* = 0$ except $x_{33}^* = 1$.

The dual reads

$$d^* = \sup \left\{ y_1 : \begin{bmatrix} 0 & -y_1 & 0 \\ -y_1 & -y_2 & 0 \\ 0 & 0 & 1-y_1 \end{bmatrix} \in \mathcal{C}_3^* \right\} = 0,$$

attained for $y^* = o$.

Theorem 1 above gives an instance $\mathcal{T}_{d}(\mathbf{A}, \mathbf{b}, C)$ with the same $d^* < p^*$, but where d^* is not attained.

duality gap	zero $d^*=p^*\in \mathbb{R}$	finite positive $-\infty < d^* < p^* < \infty$	infinite $-\infty < d^* < p^* = \infty$	infinite $-\infty = d^* < p^* < \infty$
both attained	StQP,	Ex.2	00 (<i>u</i> (<i>p</i> = 00	
	both strictly f.			
p^* attained,	MStQP, – 🛈 –			_
d* not attained	dual strictly f.			
p^* not attained,	Ex.1, <u> </u>		_ >	
d* attained	primal strictly f.			
neither attained	Ex.1 & Thm.1		`````````````````````````````	
	— <u> </u>	\bigcirc		

duality gap attained	zero $d^*=p^*\in\mathbb{R}$	finite positive $-\infty\!<\!d^*\!<\!p^*\!<\!\infty$	infinite $-\infty < d^* < p^* = \infty$	infinite $-\infty = d^* < p^* < \infty$
both attained	StQP,	Ex.2		
	both strictly f.	_		
p^* attained,	MStQP, — () —	Ex.2 & Thm.1		
d* not attained	dual strictly f.	-0 -		
p^* not attained,	Ex.1, <u>–</u> ()–			
d* attained	primal strictly f.			
neither attained	Ex.1 & Thm.1			
	— <u> </u>	\bigcirc		

Theorem 2. Given a COP instance $(\mathbf{A}, \mathbf{b}, C)$ in $\mathcal{C}_n/\mathcal{C}_n^*$, denote by $\mathcal{T}_p(\mathbf{A}, \mathbf{b}, C)$ the following new COP instance in $\mathcal{C}_{n+2}/\mathcal{C}_{n+2}^*$:

$$\bar{C} = \begin{bmatrix} C & \mathbf{o} & \mathbf{o} \\ \mathbf{o}^\top & \mathbf{1} & \mathbf{0} \\ \mathbf{o}^\top & \mathbf{0} & \mathbf{0} \end{bmatrix} \quad \text{and} \quad \bar{A}_{m+1} = \begin{bmatrix} O & \mathbf{o} & \mathbf{o} \\ \mathbf{o}^\top & \mathbf{0} & \mathbf{1} \\ \mathbf{o}^\top & \mathbf{1} & \mathbf{0} \end{bmatrix},$$

all \bar{A}_i , $1 \le i \le m$, are A_i augmented by zeroes as in Thm. 1, and $\bar{b} = \begin{bmatrix} b \\ 2 \end{bmatrix} \in \mathbb{R}^{m+1}$. Then

- $\mathcal{T}_{p}(\mathbf{A}, \mathbf{b}, C)$ is feasible if and only if $(\mathbf{A}, \mathbf{b}, C)$ is feasible;
- the primal and dual optimal values remain the same;

Theorem 2. Given a COP instance $(\mathbf{A}, \mathbf{b}, C)$ in $\mathcal{C}_n/\mathcal{C}_n^*$, denote by $\mathcal{T}_p(\mathbf{A}, \mathbf{b}, C)$ the following new COP instance in $\mathcal{C}_{n+2}/\mathcal{C}_{n+2}^*$:

$$\bar{C} = \begin{bmatrix} C & \mathbf{o} & \mathbf{o} \\ \mathbf{o}^\top & \mathbf{1} & \mathbf{0} \\ \mathbf{o}^\top & \mathbf{0} & \mathbf{0} \end{bmatrix} \quad \text{and} \quad \bar{A}_{m+1} = \begin{bmatrix} O & \mathbf{o} & \mathbf{o} \\ \mathbf{o}^\top & \mathbf{0} & \mathbf{1} \\ \mathbf{o}^\top & \mathbf{1} & \mathbf{0} \end{bmatrix},$$

all \bar{A}_i , $1 \le i \le m$, are A_i augmented by zeroes as in Thm. 1, and $\bar{b} = \begin{bmatrix} b \\ 2 \end{bmatrix} \in \mathbb{R}^{m+1}$. Then

- $\mathcal{T}_{p}(\mathbf{A}, \mathbf{b}, C)$ is feasible if and only if $(\mathbf{A}, \mathbf{b}, C)$ is feasible;
- the primal and dual optimal values remain the same;
- d^* is attained in one problem iff it is in the other;

Theorem 2. Given a COP instance $(\mathbf{A}, \mathbf{b}, C)$ in $\mathcal{C}_n/\mathcal{C}_n^*$, denote by $\mathcal{T}_p(\mathbf{A}, \mathbf{b}, C)$ the following new COP instance in $\mathcal{C}_{n+2}/\mathcal{C}_{n+2}^*$:

$$\bar{C} = \begin{bmatrix} C & \mathbf{o} & \mathbf{o} \\ \mathbf{o}^\top & \mathbf{1} & \mathbf{0} \\ \mathbf{o}^\top & \mathbf{0} & \mathbf{0} \end{bmatrix} \quad \text{and} \quad \bar{A}_{m+1} = \begin{bmatrix} O & \mathbf{o} & \mathbf{o} \\ \mathbf{o}^\top & \mathbf{0} & \mathbf{1} \\ \mathbf{o}^\top & \mathbf{1} & \mathbf{0} \end{bmatrix},$$

all \bar{A}_i , $1 \le i \le m$, are A_i augmented by zeroes as in Thm. 1, and $\bar{b} = \begin{bmatrix} b \\ 2 \end{bmatrix} \in \mathbb{R}^{m+1}$. Then

- $\mathcal{T}_{p}(\mathbf{A}, \mathbf{b}, C)$ is feasible if and only if $(\mathbf{A}, \mathbf{b}, C)$ is feasible;
- the primal and dual optimal values remain the same;
- d^* is attained in one problem iff it is in the other;
- p^* is never attained in $\mathcal{T}_p(\mathbf{A}, \mathbf{b}, C)$.
| duality gap
attained | zero $d^*=p^*\in\mathbb{R}$ | finite positive $-\infty{<}d^*{<}p^*{<}\infty$ | infinite $-\infty < d^* < p^* = \infty$ | infinite $-\infty = d^* < p^* < \infty$ |
|-------------------------|-----------------------------|--|---|---|
| both attained | StQP, | Ex.2 | | |
| | both strictly f. | | | |
| p^* attained, | MStQP, | Ex.2 & Thm.1 | | |
| d* not attained | dual strictly f. | -0 - | | |
| p^* not attained, | Ex.1, <u>–</u> ()– | Ex.2 & Thm.2 | | |
| d^* attained | primal strictly f. | -0 | | |
| neither attained | Ex.1 & Thm.1 | | | |
| | — <u> </u> | | | |

duality gap	zero $d^*=p^*\in\mathbb{R}$	finite positive $-\infty{<}d^*{<}p^*{<}\infty$	infinite $-\infty < d^* < p^* = \infty$	infinite $-\infty = d^* < p^* < \infty$
both attained	StQP,	Ex.2		
10 10 4 JIET X X KONTER DELEVE SER N	both strictly f.			
p^* attained,	MStQP,	Ex.2 & Thm.1		
d* not attained	dual strictly f.	-0 -		
p^* not attained,	Ex.1, <u> </u>	Ex.2 & Thm.2		
d* attained	primal strictly f.			
neither attained	Ex.1 & Thm.1	Ex.2 & Thms.1,2		
	— <u>()</u> —	— <u> </u>		

Constructing more failures

Summarizing: if (A, b, C) is the instance of Example 2, then

- (A, b, C) has $-\infty < d^* < p^* < \infty$ with both d^* and p^* attained,
- $\mathcal{T}_{d}(\mathbf{A}, \mathbf{b}, C)$ has $-\infty < \mathbf{d}^{*} < p^{*} < \infty$ with \mathbf{d}^{*} not attained,
- $\mathcal{T}_p(\mathbf{A}, \mathbf{b}, C)$ has $-\infty < \mathbf{d}^* < p^* < \infty$ with p^* not attained,
- $\mathcal{T}_p[\mathcal{T}_d(\mathbf{A}, \mathbf{b}, C)]$ and $\mathcal{T}_d[\mathcal{T}_p(\mathbf{A}, \mathbf{b}, C)]$ have $-\infty < d^* < p^* < \infty$ with neither p^* nor d^* attained.

So the center column of the table is filled !

It remains to deal with infeasibility of one of the problems ...

duality gap	zero	finite positive	infinite	infinite
attained	$d^*=p^*\in\mathbb{R}$	$-\infty\!<\!d^*\!<\!p^*\!<\!\infty$	$-\infty < d^* < p^* = \infty$	$-\infty = d^* < p^* < \infty$
both attained	StQP,	Ex.2	impossible _{<}	
	both strictly f.		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
p^* attained,	MStQP, –()–	Ex.2 & Thm.1	impossible 🔨	
d* not attained	dual strictly f.	-0 -	2	
p^* not attained,	Ex.1, <u> </u>	Ex.2 & Thm.2		
d* attained	primal strictly f.			
neither attained	Ex.1 & Thm.1	Ex.2 & Thms.1,2		
	— <u>—</u> —			

Infinite duality gaps – infeasible primal

Example 3: Here n = 3, m = 2, and C = O whereas

$$\mathbf{A}X = \begin{bmatrix} 2x_{22} + 2x_{23} \\ 2x_{12} - 2x_{33} \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$$

If $X \in C_3$, then $x_{23} \ge 0$ and $x_{22} \ge 0$ imply $x_{22} = 0$, hence $x_{12} = 0$, hence $x_{33} = -1 < 0$, which is absurd. Hence primal is infeasible, $p^* = \infty$. Now look at dual with $\mathbf{b}^\top \mathbf{y} = 2y_2$. Since

$$C - \mathbf{A}^{\top} \mathbf{y} = \begin{bmatrix} \mathbf{0} & -y_2 & \mathbf{0} \\ -y_2 & -2y_1 & -y_1 \\ \mathbf{0} & -y_1 & 2y_2 \end{bmatrix}$$

(look top-left!), $y_2 \leq 0$ for any $\mathbf{y} \in \mathbb{R}^2$ with $C - \mathbf{A}^\top \mathbf{y} \in \mathcal{C}_3^*$. Thus $\mathbf{y}^* = \mathbf{o}$ is dually feasible, thus optimal, and $d^* = 0$ is attained.

Theorem 1 gives an instance $\mathcal{T}_{d}(\mathbf{A}, \mathbf{b}, C)$ with $0 = d^* < p^* = \infty$, but where d^* is not attained.

duality gap	zero	finite positive	infinite	infinite
attained	$d^* = p^* \in \mathbb{R}$	$-\infty\!<\!d^*\!<\!p^*\!<\!\infty$	$-\infty < d^* < p^* = \infty$	$-\infty = d^* < p^* < \infty$
both attained	StQP, 🗕 🌓	Ex.2	impossible 🧙	
	both strictly f.	• •	× 1	
p^* attained,	MStQP, 🗕 🕕	Ex.2 & Thm.1	impossible <	4
d* not attained	dual strictly f.	-0 •		
p^* not attained,	Ex.1, <u> </u>	Ex.2 & Thm.2	Ex.3	
d* attained	primal strictly f.			
neither attained	Ex.1 & Thm.1	Ex.2 & Thms.1,2		
	— (—	<u> </u>		

duality gap	zero	finite positive	infinite	infinite
attained	$d^* = p^* \in \mathbb{R}$	$-\infty\!<\!d^*\!<\!p^*\!<\!\infty$	$-\infty < d^* < p^* = \infty$	$-\infty = d^* < p^* < \infty$
both attained	StQP, 🗕 🛑	Ex.2	impossible 🧙	
	both strictly f.	• • •	Z	
p^* attained,	MStQP, 🗕 🕕	Ex.2 & Thm.1	impossible <	4
d* not attained	dual strictly f.	-0 -	~	
p^* not attained,	Ex.1, <u> </u>	Ex.2 & Thm.2	Ex.3	
d* attained	primal strictly f.			
neither attained	Ex.1 & Thm.1	Ex.2 & Thms.1,2	Ex.3 & Thm.1	←… ()—
	— O —	<u> </u>	—O ···>	

Infinite duality gaps – infeasible dual

Example 4: Keep A from Example 3, but change $\mathbf{b} = \mathbf{o}$ now. Then any feasible X satisfies $x_{33} = 0$. Also change $c_{33} = -1$ now (rest zero). Then $X^* = O \in C_3$ is optimal, so $p^* = 0$ is attained. However,

$$C - \mathbf{A}^{\top} \mathbf{y} = \begin{bmatrix} 0 & -y_2 & 0 \\ -y_2 & -2y_1 & -y_1 \\ 0 & -y_1 & -1 + 2y_2 \end{bmatrix} \in \mathcal{C}_3^*$$

is impossible, as still $y_2 \leq 0$, implying $-1 + 2y_2 \leq -1 < 0$, absurd. Hence $d^* = -\infty$.

Theorem 2 gives an instance $\mathcal{T}_p(\mathbf{A}, \mathbf{b}, C)$ with $-\infty = d^* < p^* = 0$, but where p^* is not attained.

Now all table entries filled !

		1		
duality gap	zero	finite positive	infinite	infinite
attained	$d^*=p^*\in\mathbb{R}$	$-\infty\!<\!d^*\!<\!p^*\!<\!\infty$	$-\infty < d^* < p^* = \infty$	$-\infty = d^* < p^* < \infty$
both attained	StQP, 🗕 🛑	Ex.2	impossible 🧙	impossible 🧙
	both strictly f.	•••	Z	×
p^* attained,	MStQP, – () –	Ex.2 & Thm.1	impossible 🔨	Ex.4 🔶 🔶
d* not attained	dual strictly f.	-0 -		
p^* not attained,	Ex.1, <u> </u>	Ex.2 & Thm.2	Ex.3	
d* attained	primal strictly f.			
neither attained	Ex.1 & Thm.1	Ex.2 & Thms.1,2	Ex.3 & Thm.1	←… ()—
	— <u>()</u> —	<u> </u>	— O — >	

S. State Sta				
duality gap	zero	finite positive	infinite	infinite
attained	$d^*=p^*\in\mathbb{R}$	$-\infty\!<\!d^*\!<\!p^*\!<\!\infty$	$-\infty < d^* < p^* = \infty$	$-\infty = d^* < p^* < \infty$
both attained	StQP, 🗕 🛑	Ex.2	impossible 🧙	impossible 🧙
	both strictly f.	••	Z	×
p^* attained,	MStQP, – () –	Ex.2 & Thm.1	impossible 🔨	Ex.4 _🗲
d* not attained	dual strictly f.	-0 •	~ ~ ~	
p^* not attained,	Ex.1, <u> </u>	Ex.2 & Thm.2	Ex.3 🗕 🔶	impossible _{<}
d* attained	primal strictly f.	-0		×
neither attained	Ex.1 & Thm.1	Ex.2 & Thms.1,2	Ex.3 & Thm.1	Ex.4 & Thm.2
	— (—	<u> </u>	——————————————————————————————————————	←)—

Restart: linear optimization over cones and duality

Consider linear problem over convex cone \mathcal{K}

$$\inf_{\mathbf{x}\in\mathcal{K}} \{\langle \mathbf{c},\mathbf{x} \rangle : \langle \mathbf{a}_0,\mathbf{x} \rangle = 1, \langle \mathbf{a}_i,\mathbf{x} \rangle = 0, i \in [1:m] \}$$

where $\{\mathbf{c},\mathbf{a}_i\} \cup \mathcal{K} \subset \mathbb{R}^d$.
Note: $\mathbf{A}\mathbf{x} = \mathbf{b} \iff (x_0 = 1) \& [-\mathbf{b} | \mathbf{A}] \begin{bmatrix} x_0 \\ \mathbf{x} \end{bmatrix} = \mathbf{o},$
so all linear constraints can be homogenized except one.
Dual problem: let $\mathcal{L} = \{\mathbf{a}_1, \dots, \mathbf{a}_m\}^{\perp}$, so primal/dual pair is
 $p^* = \inf_{\mathbf{x}\in\mathcal{L}\cap\mathcal{K}} \{\langle \mathbf{c},\mathbf{x} \rangle : \langle \mathbf{a}_0,\mathbf{x} \rangle = 1\}$ and $\sup \{y_0 : \mathbf{c} - y_0 \mathbf{a}_0 \in (\mathcal{L}\cap\mathcal{K})^*\}$

Need to describe $(\mathcal{L} \cap \mathcal{K})^*$ but we only know $(\mathcal{L} \cap \mathcal{K})^* = \text{closure}(\mathcal{L}^* + \mathcal{K}^*).$

Need to describe $(\mathcal{L} \cap \mathcal{K})^*$ but we only know

 $(\mathcal{L} \cap \mathcal{K})^* = \operatorname{closure}(\mathcal{L}^* + \mathcal{K}^*).$

Duality gap generated by ignoring closure (forgetting limits) !!

Need to describe $(\mathcal{L} \cap \mathcal{K})^*$ but we only know

 $(\mathcal{L} \cap \mathcal{K})^* = \text{closure}(\mathcal{L}^* + \mathcal{K}^*).$

Duality gap generated by ignoring closure (forgetting limits) !!

Indeed have [B./Cheng/Dickinson/Lisser'17]:

Theorem (Slater is **not** needed):

Unless both problems are infeasible, there is zero duality gap,

 $\overline{d}^* = p^* \,,$

Need to describe $(\mathcal{L} \cap \mathcal{K})^*$ but we only know

 $(\mathcal{L} \cap \mathcal{K})^* = \text{closure}(\mathcal{L}^* + \mathcal{K}^*).$

Duality gap generated by ignoring closure (forgetting limits) !!

Indeed have [B./Cheng/Dickinson/Lisser'17]:

Theorem (Slater is not needed):

Unless both problems are infeasible, there is zero duality gap,

 $\overline{d}^* = p^* \,,$

where the (proper) dual is defined as in the start,

 $\overline{d}^* = \sup \left\{ y_0 : \mathbf{c} - y_0 \mathbf{a}_0 \in \operatorname{closure}(\mathcal{L}^* + \mathcal{K}^*) \right\}.$

Need to describe $(\mathcal{L} \cap \mathcal{K})^*$ but we only know

 $(\mathcal{L} \cap \mathcal{K})^* = \text{closure}(\mathcal{L}^* + \mathcal{K}^*).$

Duality gap generated by ignoring closure (forgetting limits) !!

Indeed have [B./Cheng/Dickinson/Lisser'17]:

Theorem (Slater is not needed):

Unless both problems are infeasible, there is zero duality gap,

 $\overline{d}^* = p^* \,,$

where the (proper) dual is defined as in the start,

 $\overline{d}^* = \sup \left\{ y_0 : \mathbf{c} - y_0 \mathbf{a}_0 \in \operatorname{closure}(\mathcal{L}^* + \mathcal{K}^*) \right\}.$

Caution: closure does not guarantee attainability.

Yes, e.g. if we have choices to describe primal feasibility $X \in \mathcal{F}$:

let \mathcal{L}_i , \mathcal{K}_i such that all $\mathcal{L}_i \cap \mathcal{K}_i = \mathcal{F}$ are all the same but cones for dual $\mathcal{L}_i^* + \mathcal{K}_i^*$ are different as *i* varies!

Yes, e.g. if we have choices to describe primal feasibility $X \in \mathcal{F}$:

let \mathcal{L}_i , \mathcal{K}_i such that all $\mathcal{L}_i \cap \mathcal{K}_i = \mathcal{F}$ are all the same but cones for dual $\mathcal{L}_i^* + \mathcal{K}_i^*$ are different as *i* varies!

Now, forgetting the closure, dual bounds can vary in quality, e.g., if $\mathcal{L}_1^* + \mathcal{K}_1^*$ is closed (zero gap) but $\mathcal{L}_2^* + \mathcal{K}_2^*$ is not.

Yes, e.g. if we have choices to describe primal feasibility $X \in \mathcal{F}$:

let \mathcal{L}_i , \mathcal{K}_i such that all $\mathcal{L}_i \cap \mathcal{K}_i = \mathcal{F}$ are all the same but cones for dual $\mathcal{L}_i^* + \mathcal{K}_i^*$ are different as *i* varies!

Now, forgetting the closure, dual bounds can vary in quality, e.g., if $\mathcal{L}_1^* + \mathcal{K}_1^*$ is closed (zero gap) but $\mathcal{L}_2^* + \mathcal{K}_2^*$ is not.

Even if none is closed: any dual-feasible solution gives a rigorous bound;

Yes, e.g. if we have choices to describe primal feasibility $X \in \mathcal{F}$:

let \mathcal{L}_i , \mathcal{K}_i such that all $\mathcal{L}_i \cap \mathcal{K}_i = \mathcal{F}$ are all the same but cones for dual $\mathcal{L}_i^* + \mathcal{K}_i^*$ are different as *i* varies!

Now, forgetting the closure, dual bounds can vary in quality, e.g., if $\mathcal{L}_1^* + \mathcal{K}_1^*$ is closed (zero gap) but $\mathcal{L}_2^* + \mathcal{K}_2^*$ is not.

Even if none is closed: any dual-feasible solution gives a rigorous bound; holds for popular relaxations too !

Yes, e.g. if we have choices to describe primal feasibility $X \in \mathcal{F}$:

let \mathcal{L}_i , \mathcal{K}_i such that all $\mathcal{L}_i \cap \mathcal{K}_i = \mathcal{F}$ are all the same but cones for dual $\mathcal{L}_i^* + \mathcal{K}_i^*$ are different as *i* varies!

Now, forgetting the closure, dual bounds can vary in quality, e.g., if $\mathcal{L}_1^* + \mathcal{K}_1^*$ is closed (zero gap) but $\mathcal{L}_2^* + \mathcal{K}_2^*$ is not.

Even if none is closed: any dual-feasible solution gives a rigorous bound; holds for popular relaxations too !

Quite abstract hope ?

Yes, e.g. if we have choices to describe primal feasibility $X \in \mathcal{F}$:

let \mathcal{L}_i , \mathcal{K}_i such that all $\mathcal{L}_i \cap \mathcal{K}_i = \mathcal{F}$ are all the same but cones for dual $\mathcal{L}_i^* + \mathcal{K}_i^*$ are different as *i* varies!

Now, forgetting the closure, dual bounds can vary in quality, e.g., if $\mathcal{L}_1^* + \mathcal{K}_1^*$ is closed (zero gap) but $\mathcal{L}_2^* + \mathcal{K}_2^*$ is not.

Even if none is closed: any dual-feasible solution gives a rigorous bound; holds for popular relaxations too !

Quite abstract hope ? No, for MBQP-COP (it works!)

Consider mixed-binary quadratic problem under linear constraints:

$$q^* = \min \left\{ \mathbf{x}^\top \mathbf{Q} \mathbf{x} + 2\mathbf{c}^\top \mathbf{x} : \mathbf{x} \in \mathcal{Z}, x_j \in \{0, 1\}, j \in B \right\}$$

where $\mathcal{Z} = \left\{ \mathbf{x} \in \mathbb{R}^n_+ : \mathbf{A} \mathbf{x} = \mathbf{b} \right\}$

Consider mixed-binary quadratic problem under linear constraints:

$$q^* = \min \left\{ \mathbf{x}^\top \mathbf{Q} \mathbf{x} + 2\mathbf{c}^\top \mathbf{x} : \mathbf{x} \in \mathcal{Z}, x_j \in \{0, 1\}, j \in B \right\}$$

where $\mathcal{Z} = \left\{ \mathbf{x} \in \mathbb{R}^n_+ : \mathbf{A} \mathbf{x} = \mathbf{b} \right\}$ with some $\mathbf{x}_0 \in \mathcal{Z} \cap \operatorname{int} \mathbb{R}^n_+$
and $B \subseteq [1:n]$ such that $z_j = 0$ for all $j \in B$, $\mathbf{z} \in \{\mathbf{a}_1, \dots, \mathbf{a}_m\}^\perp$.
Here $\mathbf{A}^\top = [\mathbf{a}_1, \dots, \mathbf{a}_m]$ with $\mathbf{a}_i \in \mathbb{R}^n$ linearly independent.

Consider mixed-binary quadratic problem under linear constraints:

 $q^* = \min \left\{ \mathbf{x}^\top \mathbf{Q} \mathbf{x} + 2\mathbf{c}^\top \mathbf{x} : \mathbf{x} \in \mathcal{Z}, x_j \in \{0, 1\}, j \in B \right\}$ where $\mathcal{Z} = \left\{ \mathbf{x} \in \mathbb{R}^n_+ : \mathbf{A} \mathbf{x} = \mathbf{b} \right\}$ with some $\mathbf{x}_0 \in \mathcal{Z} \cap \operatorname{int} \mathbb{R}^n_+$ and $B \subseteq [1:n]$ such that $z_j = 0$ for all $j \in B$, $\mathbf{z} \in \{\mathbf{a}_1, \dots, \mathbf{a}_m\}^\perp$. Here $\mathbf{A}^\top = [\mathbf{a}_1, \dots, \mathbf{a}_m]$ with $\mathbf{a}_i \in \mathbb{R}^n$ linearly independent. Complete them to basis by orthogonal $[\mathbf{a}_{m+1}, \dots, \mathbf{a}_n]$

Consider mixed-binary quadratic problem under linear constraints:

 $q^* = \min \left\{ \mathbf{x}^\top \mathbf{Q} \mathbf{x} + 2\mathbf{c}^\top \mathbf{x} : \mathbf{x} \in \mathcal{Z}, x_j \in \{0, 1\}, j \in B \right\}$ where $\mathcal{Z} = \left\{ \mathbf{x} \in \mathbb{R}^n_+ : \mathbf{A}\mathbf{x} = \mathbf{b} \right\}$ with some $\mathbf{x}_0 \in \mathcal{Z} \cap \operatorname{int} \mathbb{R}^n_+$ and $B \subseteq [1:n]$ such that $z_j = 0$ for all $j \in B$, $\mathbf{z} \in \{\mathbf{a}_1, \dots, \mathbf{a}_m\}^\perp$. Here $\mathbf{A}^\top = [\mathbf{a}_1, \dots, \mathbf{a}_m]$ with $\mathbf{a}_i \in \mathbb{R}^n$ linearly independent. Complete them to basis by orthogonal $[\mathbf{a}_{m+1}, \dots, \mathbf{a}_n]$ and form

 $\widehat{\mathbf{Q}} = \begin{bmatrix} \mathbf{0} & \mathbf{c}^{\top} \\ \mathbf{c} & \mathbf{Q} \end{bmatrix}$

Consider mixed-binary quadratic problem under linear constraints:

 $q^* = \min \left\{ \mathbf{x}^\top \mathbf{Q} \mathbf{x} + 2\mathbf{c}^\top \mathbf{x} : \mathbf{x} \in \mathcal{Z}, x_j \in \{0, 1\}, j \in B \right\}$ where $\mathcal{Z} = \left\{ \mathbf{x} \in \mathbb{R}^n_+ : \mathbf{A} \mathbf{x} = \mathbf{b} \right\}$ with some $\mathbf{x}_0 \in \mathcal{Z} \cap \operatorname{int} \mathbb{R}^n_+$ and $B \subseteq [1:n]$ such that $z_j = 0$ for all $j \in B$, $\mathbf{z} \in \{\mathbf{a}_1, \dots, \mathbf{a}_m\}^{\perp}$. Here $\mathbf{A}^\top = [\mathbf{a}_1, \dots, \mathbf{a}_m]$ with $\mathbf{a}_i \in \mathbb{R}^n$ linearly independent. Complete them to basis by orthogonal $[\mathbf{a}_{m+1}, \dots, \mathbf{a}_n]$ and form

$$\widehat{\mathbf{Q}} = \begin{bmatrix} \mathbf{0} & \mathbf{c}^{\top} \\ \mathbf{c} & \mathbf{Q} \end{bmatrix} \text{ and } \mathbf{R} = \begin{bmatrix} \mathbf{1} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{x}_{0} & \mathbf{a}_{m+1} & \cdots & \mathbf{a}_{n} \end{bmatrix} \in \mathbb{R}^{(n+1) \times (n+1-m)}$$

Consider mixed-binary quadratic problem under linear constraints:

 $q^* = \min \left\{ \mathbf{x}^\top \mathbf{Q} \mathbf{x} + 2\mathbf{c}^\top \mathbf{x} : \mathbf{x} \in \mathcal{Z}, x_j \in \{0, 1\}, j \in B \right\}$ where $\mathcal{Z} = \left\{ \mathbf{x} \in \mathbb{R}^n_+ : \mathbf{A} \mathbf{x} = \mathbf{b} \right\}$ with some $\mathbf{x}_0 \in \mathcal{Z} \cap \operatorname{int} \mathbb{R}^n_+$ and $B \subseteq [1:n]$ such that $z_j = 0$ for all $j \in B$, $\mathbf{z} \in \{\mathbf{a}_1, \dots, \mathbf{a}_m\}^{\perp}$. Here $\mathbf{A}^\top = [\mathbf{a}_1, \dots, \mathbf{a}_m]$ with $\mathbf{a}_i \in \mathbb{R}^n$ linearly independent. Complete them to basis by orthogonal $[\mathbf{a}_{m+1}, \dots, \mathbf{a}_n]$ and form

$$\widehat{\mathbf{Q}} = \begin{bmatrix} \mathbf{0} & \mathbf{c}^{\top} \\ \mathbf{c} & \mathbf{Q} \end{bmatrix} \text{ and } \mathbf{R} = \begin{bmatrix} \mathbf{1} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{x}_{0} & \mathbf{a}_{m+1} & \cdots & \mathbf{a}_{n} \end{bmatrix} \in \mathbb{R}^{(n+1) \times (n+1-m)}$$

Ouff, enough preparations; but they pay in various ways !

[Burer'09] established a first COP reformulation:

$$q^* = p_2^* = \min\left\{ \langle \mathbf{Q}, \mathbf{Y} \rangle : Y_{00} = 1, \, \mathbf{Y} \in \mathcal{L}_2 \cap \mathcal{B}_1 \cap \mathcal{C}_{n+1} \right\}$$

[Burer'09] established a first COP reformulation:

$$q^* = p_2^* = \min\left\{ \langle \widehat{\mathbf{Q}}, \mathbf{Y} \rangle : Y_{00} = 1, \, \mathbf{Y} \in \mathcal{L}_2 \cap \mathcal{B}_1 \cap \mathcal{C}_{n+1} \right\}$$

with

$$\mathcal{L}_{2} = \left\{ \mathbf{Y} = \begin{bmatrix} y_{0} & \mathbf{x}^{\top} \\ \mathbf{x} & \mathbf{X} \end{bmatrix} : \mathbf{a}_{i}^{\top} \mathbf{x} = b_{i} y_{0}, \ \mathbf{a}_{i}^{\top} \mathbf{X} \mathbf{a}_{i} = b_{i}^{2} y_{0}, i \in [1:m] \right\}$$
$$= \left\{ \mathbf{A}_{1}, \dots, \mathbf{A}_{2m} \right\}^{\perp}$$

representing the linear constraints

[Burer'09] established a first COP reformulation:

$$q^* = p_2^* = \min\left\{ \langle \widehat{\mathbf{Q}}, \mathbf{Y} \rangle : Y_{00} = 1, \, \mathbf{Y} \in \mathcal{L}_2 \cap \mathcal{B}_1 \cap \mathcal{C}_{n+1} \right\}$$

with

$$\mathcal{L}_{2} = \left\{ \mathbf{Y} = \begin{bmatrix} y_{0} & \mathbf{x}^{\top} \\ \mathbf{x} & \mathbf{X} \end{bmatrix} : \mathbf{a}_{i}^{\top} \mathbf{x} = b_{i} y_{0}, \ \mathbf{a}_{i}^{\top} \mathbf{X} \mathbf{a}_{i} = b_{i}^{2} y_{0}, i \in [1:m] \right\}$$
$$= \left\{ \mathbf{A}_{1}, \dots, \mathbf{A}_{2m} \right\}^{\perp}$$

representing the linear constraints and

$$\mathcal{B}_{1} = \left\{ \mathbf{Y} = \begin{bmatrix} y_{0} & \mathbf{x}^{\top} \\ \mathbf{x} & \mathbf{X} \end{bmatrix} : x_{j} = X_{jj}, \, j \in B \right\} = \left\{ \mathbf{B}_{j} : j \in B \right\}^{\perp}$$

the binarity constraints.

[Burer'09] established a first COP reformulation:

$$q^* = p_2^* = \min\left\{ \langle \widehat{\mathbf{Q}}, \mathbf{Y} \rangle : Y_{00} = 1, \, \mathbf{Y} \in \mathcal{L}_2 \cap \mathcal{B}_1 \cap \mathcal{C}_{n+1} \right\}$$

with

$$\mathcal{L}_{2} = \left\{ \mathbf{Y} = \begin{bmatrix} y_{0} & \mathbf{x}^{\top} \\ \mathbf{x} & \mathbf{X} \end{bmatrix} : \mathbf{a}_{i}^{\top} \mathbf{x} = b_{i} y_{0}, \ \mathbf{a}_{i}^{\top} \mathbf{X} \mathbf{a}_{i} = b_{i}^{2} y_{0}, i \in [1:m] \right\}$$
$$= \left\{ \mathbf{A}_{1}, \dots, \mathbf{A}_{2m} \right\}^{\perp}$$

representing the linear constraints and

$$\mathcal{B}_{1} = \left\{ \mathbf{Y} = \begin{bmatrix} y_{0} & \mathbf{x}^{\top} \\ \mathbf{x} & \mathbf{X} \end{bmatrix} : x_{j} = X_{jj}, \, j \in B \right\} = \left\{ \mathbf{B}_{j} : j \in B \right\}^{\perp}$$

the binarity constraints.

Not relaxation $p_2^* \leq q^*$,

[Burer'09] established a first COP reformulation:

$$q^* = p_2^* = \min\left\{ \langle \widehat{\mathbf{Q}}, \mathbf{Y} \rangle : Y_{00} = 1, \, \mathbf{Y} \in \mathcal{L}_2 \cap \mathcal{B}_1 \cap \mathcal{C}_{n+1} \right\}$$

with

$$\mathcal{L}_{2} = \left\{ \mathbf{Y} = \begin{bmatrix} y_{0} & \mathbf{x}^{\top} \\ \mathbf{x} & \mathbf{X} \end{bmatrix} : \mathbf{a}_{i}^{\top} \mathbf{x} = b_{i} y_{0}, \ \mathbf{a}_{i}^{\top} \mathbf{X} \mathbf{a}_{i} = b_{i}^{2} y_{0}, i \in [1:m] \right\}$$
$$= \left\{ \mathbf{A}_{1}, \dots, \mathbf{A}_{2m} \right\}^{\perp}$$

representing the linear constraints and

$$\mathcal{B}_{1} = \left\{ \mathbf{Y} = \begin{bmatrix} y_{0} & \mathbf{x}^{\top} \\ \mathbf{x} & \mathbf{X} \end{bmatrix} : x_{j} = X_{jj}, \, j \in B \right\} = \left\{ \mathbf{B}_{j} : j \in B \right\}^{\perp}$$

the binarity constraints.

Not relaxation $p_2^* \le q^*$, rather **convex** reformulation $p_2^* = q^*$ of mixed-binary **nonconvex** QP!

Reformulation by facial reduction

Subsequent work [Burer'10,Dickinson'13,Arima/Kim/Kojima'14] inspired several alternatives:

Reformulation by facial reduction

Subsequent work [Burer'10,Dickinson'13,Arima/Kim/Kojima'14] inspired several alternatives:

Idea: reduce order by congruence with matrix ${f R}$:

replace \mathcal{L}_2 with $\mathcal{L}_1 = \mathbf{R}\mathcal{S}^{n+1-m}\mathbf{R}^{\top} = \left\{\mathbf{Y} = \mathbf{R}\mathbf{U}\mathbf{R}^{\top} : \mathbf{U} = \mathbf{U}^{\top} \text{ has order } n+1-m\right\}$

Reformulation by facial reduction

Subsequent work [Burer'10,Dickinson'13,Arima/Kim/Kojima'14] inspired several alternatives:

Idea: reduce order by congruence with matrix ${f R}$:

replace \mathcal{L}_2 with

$$\mathcal{L}_1 = \mathbf{R}\mathcal{S}^{n+1-m}\mathbf{R}^\top = \left\{\mathbf{Y} = \mathbf{R}\mathbf{U}\mathbf{R}^\top : \mathbf{U} = \mathbf{U}^\top \text{ has order } n+1-m\right\}$$

and consider

$$p_1^* = \min\left\{ \langle \mathbf{Q}, \mathbf{Y} \rangle : Y_{00} = 1, \, \mathbf{Y} \in \mathcal{L}_1 \cap \mathcal{B}_1 \cap \mathcal{C}_{n+1} \right\}.$$
Reformulation by facial reduction

Subsequent work [Burer'10,Dickinson'13,Arima/Kim/Kojima'14] inspired several alternatives:

Idea: reduce order by congruence with matrix **R**: replace \mathcal{L}_2 with $\mathcal{L}_1 = \mathbf{R} S^{n+1-m} \mathbf{R}^\top = \left\{ \mathbf{Y} = \mathbf{R} \mathbf{U} \mathbf{R}^\top : \mathbf{U} = \mathbf{U}^\top \text{ has order } n+1-m \right\}$ and consider

$$p_1^* = \min\left\{\langle \widehat{\mathbf{Q}}, \mathbf{Y} \rangle : Y_{00} = 1, \, \mathbf{Y} \in \mathcal{L}_1 \cap \mathcal{B}_1 \cap \mathcal{C}_{n+1} \right\}.$$

Then have $\mathcal{L}_1 \cap \mathcal{P}_{n+1} = \mathbf{R}\mathcal{P}_{n+1-m}\mathbf{R}^\top = \mathcal{L}_2 \cap \mathcal{P}_{n+1}$

Reformulation by facial reduction

Subsequent work [Burer'10,Dickinson'13,Arima/Kim/Kojima'14] inspired several alternatives:

Idea: reduce order by congruence with matrix **R**: replace \mathcal{L}_2 with $\mathcal{L}_1 = \mathbf{R} S^{n+1-m} \mathbf{R}^\top = \{ \mathbf{Y} = \mathbf{R} \mathbf{U} \mathbf{R}^\top : \mathbf{U} = \mathbf{U}^\top \text{ has order } n+1-m \}$ and consider

$$p_1^* = \min\left\{\langle \widehat{\mathbf{Q}}, \mathbf{Y} \rangle : Y_{00} = 1, \, \mathbf{Y} \in \mathcal{L}_1 \cap \mathcal{B}_1 \cap \mathcal{C}_{n+1} \right\}.$$

Then have $\mathcal{L}_1 \cap \mathcal{P}_{n+1} = \mathbf{R}\mathcal{P}_{n+1-m}\mathbf{R}^\top = \mathcal{L}_2 \cap \mathcal{P}_{n+1}$, so $p_1^* = p_2^*$.

Reformulation by facial reduction

Subsequent work [Burer'10,Dickinson'13,Arima/Kim/Kojima'14] inspired several alternatives:

Idea: reduce order by congruence with matrix **R**: replace \mathcal{L}_2 with $\mathcal{L}_1 = \mathbf{R} S^{n+1-m} \mathbf{R}^\top = \{ \mathbf{Y} = \mathbf{R} \mathbf{U} \mathbf{R}^\top : \mathbf{U} = \mathbf{U}^\top \text{ has order } n+1-m \}$ and consider

$$p_1^* = \min\left\{\langle \widehat{\mathbf{Q}}, \mathbf{Y} \rangle : Y_{00} = 1, \, \mathbf{Y} \in \mathcal{L}_1 \cap \mathcal{B}_1 \cap \mathcal{C}_{n+1} \right\}.$$

Then have $\mathcal{L}_1 \cap \mathcal{P}_{n+1} = \mathbf{R}\mathcal{P}_{n+1-m}\mathbf{R}^\top = \mathcal{L}_2 \cap \mathcal{P}_{n+1}$, so $p_1^* = p_2^*$.

Note: $\mathcal{L}_1^{\perp} = \{ \mathbf{S} = \mathbf{S}^{\top} : \mathbf{R}^{\top} \mathbf{S} \mathbf{R} = \mathbf{O} \}.$

Next idea: use only **one** homogeneous linear constraint:

Next idea: use only **one** homogeneous linear constraint:

$$\mathcal{L}_{3} = \left\{ \mathbf{Y} = \begin{bmatrix} y_{0} & \mathbf{x}^{\top} \\ \mathbf{x} & \mathbf{X} \end{bmatrix} : \sum_{i=1}^{m} \mathbf{a}_{i}^{\top} \mathbf{X} \mathbf{a}_{i} - 2b_{i} \mathbf{a}_{i}^{\top} \mathbf{x} + b_{i}^{2} y_{0} = 0 \right\}$$
$$= \mathbf{A}_{\text{agg}}^{\perp} \quad \text{with } \mathbf{A}_{\text{agg}} = \sum_{i=1}^{m} \begin{bmatrix} b_{i}^{2} & -b_{i} \mathbf{a}_{i}^{\top} \\ -b_{i} \mathbf{a}_{i} & \mathbf{a}_{i} \mathbf{a}_{i}^{\top} \end{bmatrix}$$

Next idea: use only **one** homogeneous linear constraint:

$$\mathcal{L}_{3} = \left\{ \mathbf{Y} = \begin{bmatrix} y_{0} & \mathbf{x}^{\top} \\ \mathbf{x} & \mathbf{X} \end{bmatrix} : \sum_{i=1}^{m} \mathbf{a}_{i}^{\top} \mathbf{X} \mathbf{a}_{i} - 2b_{i} \mathbf{a}_{i}^{\top} \mathbf{x} + b_{i}^{2} y_{0} = 0 \right\}$$
$$= \mathbf{A}_{\text{agg}}^{\perp} \text{ with } \mathbf{A}_{\text{agg}} = \sum_{i=1}^{m} \begin{bmatrix} b_{i}^{2} & -b_{i} \mathbf{a}_{i}^{\top} \\ -b_{i} \mathbf{a}_{i} & \mathbf{a}_{i} \mathbf{a}_{i}^{\top} \end{bmatrix}$$

with

$$p_3^* = \min\left\{ \langle \mathbf{Q}, \mathbf{Y} \rangle : Y_{00} = 1, \mathbf{Y} \in \mathcal{L}_3 \cap \mathcal{B}_1 \cap \mathcal{C}_{n+1} \right\}.$$

Next idea: use only **one** homogeneous linear constraint:

$$\mathcal{L}_{3} = \left\{ \mathbf{Y} = \begin{bmatrix} y_{0} & \mathbf{x}^{\top} \\ \mathbf{x} & \mathbf{X} \end{bmatrix} : \sum_{i=1}^{m} \mathbf{a}_{i}^{\top} \mathbf{X} \mathbf{a}_{i} - 2b_{i} \mathbf{a}_{i}^{\top} \mathbf{x} + b_{i}^{2} y_{0} = 0 \right\}$$
$$= \mathbf{A}_{\text{agg}}^{\perp} \text{ with } \mathbf{A}_{\text{agg}} = \sum_{i=1}^{m} \begin{bmatrix} b_{i}^{2} & -b_{i} \mathbf{a}_{i}^{\top} \\ -b_{i} \mathbf{a}_{i} & \mathbf{a}_{i} \mathbf{a}_{i}^{\top} \end{bmatrix}$$

with

$$p_3^* = \min\left\{ \langle \widehat{\mathbf{Q}}, \mathbf{Y} \rangle : Y_{00} = 1, \, \mathbf{Y} \in \mathcal{L}_3 \cap \mathcal{B}_1 \cap \mathcal{C}_{n+1} \right\}.$$

Then have $\mathcal{L}_3 \cap \mathcal{P}_{n+1} = \mathcal{L}_2 \cap \mathcal{P}_{n+1}$, so $p_3^* = p_2^*$.

Next idea: use only **one** homogeneous linear constraint:

$$\mathcal{L}_{3} = \left\{ \mathbf{Y} = \begin{bmatrix} y_{0} & \mathbf{x}^{\top} \\ \mathbf{x} & \mathbf{X} \end{bmatrix} : \sum_{i=1}^{m} \mathbf{a}_{i}^{\top} \mathbf{X} \mathbf{a}_{i} - 2b_{i} \mathbf{a}_{i}^{\top} \mathbf{x} + b_{i}^{2} y_{0} = 0 \right\}$$
$$= \mathbf{A}_{\text{agg}}^{\perp} \text{ with } \mathbf{A}_{\text{agg}} = \sum_{i=1}^{m} \begin{bmatrix} b_{i}^{2} & -b_{i} \mathbf{a}_{i}^{\top} \\ -b_{i} \mathbf{a}_{i} & \mathbf{a}_{i} \mathbf{a}_{i}^{\top} \end{bmatrix}$$

with

$$p_3^* = \min\left\{ \langle \widehat{\mathbf{Q}}, \mathbf{Y} \rangle : Y_{00} = 1, \, \mathbf{Y} \in \mathcal{L}_3 \cap \mathcal{B}_1 \cap \mathcal{C}_{n+1} \right\}.$$

Then have $\mathcal{L}_3 \cap \mathcal{P}_{n+1} = \mathcal{L}_2 \cap \mathcal{P}_{n+1}$, so $p_3^* = p_2^*$.

Note: $\mathcal{L}_3^{\perp} = \mathbb{R}\mathbf{A}_{agg}$.

Next idea: use only one homogeneous linear constraint:

$$\mathcal{L}_{3} = \left\{ \mathbf{Y} = \begin{bmatrix} y_{0} & \mathbf{x}^{\top} \\ \mathbf{x} & \mathbf{X} \end{bmatrix} : \sum_{i=1}^{m} \mathbf{a}_{i}^{\top} \mathbf{X} \mathbf{a}_{i} - 2b_{i} \mathbf{a}_{i}^{\top} \mathbf{x} + b_{i}^{2} y_{0} = 0 \right\}$$
$$= \mathbf{A}_{\text{agg}}^{\perp} \quad \text{with } \mathbf{A}_{\text{agg}} = \sum_{i=1}^{m} \begin{bmatrix} b_{i}^{2} & -b_{i} \mathbf{a}_{i}^{\top} \\ -b_{i} \mathbf{a}_{i} & \mathbf{a}_{i} \mathbf{a}_{i}^{\top} \end{bmatrix}$$

with

$$p_3^* = \min\left\{ \langle \widehat{\mathbf{Q}}, \mathbf{Y} \rangle : Y_{00} = 1, \, \mathbf{Y} \in \mathcal{L}_3 \cap \mathcal{B}_1 \cap \mathcal{C}_{n+1} \right\}.$$

Then have $\mathcal{L}_3 \cap \mathcal{P}_{n+1} = \mathcal{L}_2 \cap \mathcal{P}_{n+1}$, so $p_3^* = p_2^*$.

Note: $\mathcal{L}_{3}^{\perp} = \mathbb{R}A_{agg}$. Have identical $\mathcal{L}_{i} \cap \mathcal{C}_{n+1}$ across $i \in [1:3]$.

Repeat last method for B: replace \mathcal{B}_1 with

$$\mathcal{B}_2 = \left\{ \mathbf{Y} = \begin{bmatrix} y_0 & \mathbf{x}^\top \\ \mathbf{x} & \mathbf{X} \end{bmatrix} : \sum_{j \in B} (X_{jj} - x_j) = \mathbf{0} \right\}$$

Repeat last method for B: replace \mathcal{B}_1 with

$$\mathcal{B}_{2} = \left\{ \mathbf{Y} = \begin{bmatrix} y_{0} & \mathbf{x}^{\top} \\ \mathbf{x} & \mathbf{X} \end{bmatrix} : \sum_{j \in B} (X_{jj} - x_{j}) = 0 \right\}$$
$$= \mathbf{B}_{\text{agg}}^{\perp} \text{ with } \mathbf{B}_{\text{agg}} = \sum_{j \in B} \begin{bmatrix} \mathbf{0} & -\mathbf{e}_{j}^{\top} \\ -\mathbf{e}_{j} & 2\mathbf{e}_{j}\mathbf{e}_{j}^{\top} \end{bmatrix}.$$

Repeat last method for B: replace \mathcal{B}_1 with

$$\mathcal{B}_{2} = \left\{ \mathbf{Y} = \begin{bmatrix} y_{0} & \mathbf{x}^{\top} \\ \mathbf{x} & \mathbf{X} \end{bmatrix} : \sum_{j \in B} (X_{jj} - x_{j}) = 0 \right\}$$
$$= \mathbf{B}_{\text{agg}}^{\perp} \text{ with } \mathbf{B}_{\text{agg}} = \sum_{j \in B} \begin{bmatrix} \mathbf{0} & -\mathbf{e}_{j}^{\top} \\ -\mathbf{e}_{j} & 2\mathbf{e}_{j}\mathbf{e}_{j}^{\top} \end{bmatrix}$$

٠

Then have $\mathcal{B}_2 \cap \mathcal{N}_{n+1} \cap \mathcal{L}_1 = \mathcal{B}_1 \cap \mathcal{N}_{n+1} \cap \mathcal{L}_1$

Repeat last method for B: replace \mathcal{B}_1 with

$$\mathcal{B}_{2} = \left\{ \mathbf{Y} = \begin{bmatrix} y_{0} & \mathbf{x}^{\top} \\ \mathbf{x} & \mathbf{X} \end{bmatrix} : \sum_{j \in B} (X_{jj} - x_{j}) = 0 \right\}$$
$$= \mathbf{B}_{\text{agg}}^{\perp} \text{ with } \mathbf{B}_{\text{agg}} = \sum_{j \in B} \begin{bmatrix} \mathbf{0} & -\mathbf{e}_{j}^{\top} \\ -\mathbf{e}_{j} & 2\mathbf{e}_{j}\mathbf{e}_{j}^{\top} \end{bmatrix}$$

Then have $\mathcal{B}_2 \cap \mathcal{N}_{n+1} \cap \mathcal{L}_1 = \mathcal{B}_1 \cap \mathcal{N}_{n+1} \cap \mathcal{L}_1$, and so

Theorem [B./Cheng/Dickinson/Lisser'17]: For all $\{(i, j), (r, s)\} \subset \{1, 2, 3\} \times \{1, 2\}$, we have $\mathcal{L}_i \cap \mathcal{B}_j \cap \mathcal{P}_{n+1} \cap \mathcal{N}_{n+1} = \mathcal{L}_r \cap \mathcal{B}_s \cap \mathcal{P}_{n+1} \cap \mathcal{N}_{n+1}$

Repeat last method for B: replace \mathcal{B}_1 with

$$\mathcal{B}_{2} = \left\{ \mathbf{Y} = \begin{bmatrix} y_{0} & \mathbf{x}^{\top} \\ \mathbf{x} & \mathbf{X} \end{bmatrix} : \sum_{j \in B} (X_{jj} - x_{j}) = 0 \right\}$$
$$= \mathbf{B}_{\text{agg}}^{\perp} \text{ with } \mathbf{B}_{\text{agg}} = \sum_{j \in B} \begin{bmatrix} \mathbf{0} & -\mathbf{e}_{j}^{\top} \\ -\mathbf{e}_{j} & 2\mathbf{e}_{j}\mathbf{e}_{j}^{\top} \end{bmatrix}$$

Then have $\mathcal{B}_2 \cap \mathcal{N}_{n+1} \cap \mathcal{L}_1 = \mathcal{B}_1 \cap \mathcal{N}_{n+1} \cap \mathcal{L}_1$, and so

Theorem [B./Cheng/Dickinson/Lisser'17]: For all $\{(i,j), (r,s)\} \subset \{1,2,3\} \times \{1,2\}$, we have

 $\mathcal{L}_i \cap \mathcal{B}_j \cap \mathcal{P}_{n+1} \cap \mathcal{N}_{n+1} = \mathcal{L}_r \cap \mathcal{B}_s \cap \mathcal{P}_{n+1} \cap \mathcal{N}_{n+1}$ and therefore $p_1^* = p_2^* = p_3^*$ regardless which \mathcal{B}_j is used.

Repeat last method for B: replace \mathcal{B}_1 with

$$\mathcal{B}_{2} = \left\{ \mathbf{Y} = \begin{bmatrix} y_{0} & \mathbf{x}^{\top} \\ \mathbf{x} & \mathbf{X} \end{bmatrix} : \sum_{j \in B} (X_{jj} - x_{j}) = 0 \right\}$$
$$= \mathbf{B}_{\text{agg}}^{\perp} \text{ with } \mathbf{B}_{\text{agg}} = \sum_{j \in B} \begin{bmatrix} \mathbf{0} & -\mathbf{e}_{j}^{\top} \\ -\mathbf{e}_{j} & 2\mathbf{e}_{j}\mathbf{e}_{j}^{\top} \end{bmatrix}$$

Then have $\mathcal{B}_2 \cap \mathcal{N}_{n+1} \cap \mathcal{L}_1 = \mathcal{B}_1 \cap \mathcal{N}_{n+1} \cap \mathcal{L}_1$, and so

Theorem [B./Cheng/Dickinson/Lisser'17]: For all $\{(i,j), (r,s)\} \subset \{1,2,3\} \times \{1,2\}$, we have

 $\mathcal{L}_i \cap \mathcal{B}_j \cap \mathcal{P}_{n+1} \cap \mathcal{N}_{n+1} = \mathcal{L}_r \cap \mathcal{B}_s \cap \mathcal{P}_{n+1} \cap \mathcal{N}_{n+1}$ and therefore $p_1^* = p_2^* = p_3^*$ regardless which \mathcal{B}_j is used. The same is true for the DNN approximation ($\mathcal{P}_d \cap \mathcal{N}_d$ pro \mathcal{C}_d).

Primal values are identical, so we can choose the duals

Primal values are identical, so we can choose the duals; of course, all $\overline{d}_i^* = p_i^* = q^*$ but these are hard to get.

Primal values are identical, so we can choose the duals; of course, all $\overline{d}_i^* = p_i^* = q^*$ but these are hard to get. The conic duals may have a gap $d_i^* < q^*$, likewise the DNN duals.

Primal values are identical, so we can choose the duals; of course, all $\overline{d}_i^* = p_i^* = q^*$ but these are hard to get. The conic duals may have a gap $d_i^* < q^*$, likewise the DNN duals. Which is best?

Primal values are identical, so we can choose the duals; of course, all $\overline{d}_i^* = p_i^* = q^*$ but these are hard to get. The conic duals may have a gap $d_i^* < q^*$, likewise the DNN duals. Which is best?

Theorem [monotonicity of the duals]:

The duality gap $p_i^* - d_i^*$ is increasing with $i \in \{1, 2, 3\}$.

Primal values are identical, so we can choose the duals; of course, all $\overline{d}_i^* = p_i^* = q^*$ but these are hard to get. The conic duals may have a gap $d_i^* < q^*$, likewise the DNN duals. Which is best?

Theorem [monotonicity of the duals]:

The duality gap $p_i^* - d_i^*$ is increasing with $i \in \{1, 2, 3\}$. The same is true for the duals of the DNN approximation.

Theorem [Binarity aggregation in tightest duals]:

For tightest dual i = 1, d_1^* is independent of choice of \mathcal{B}_j .

Theorem [Binarity aggregation in tightest duals]:

For tightest dual i = 1, d_1^* is independent of choice of \mathcal{B}_j . Combination $\mathcal{L}_1 \cap \mathcal{B}_2$ has additional benefit of least number of dual variables and primal constraints.

Theorem [Binarity aggregation in tightest duals]:

For tightest dual i = 1, d_1^* is independent of choice of \mathcal{B}_j . Combination $\mathcal{L}_1 \cap \mathcal{B}_2$ has additional benefit of least number of dual variables and primal constraints.

Tightest DNN dual:

$$\sup_{u,t,\mathbf{Z}} \left\{ u : \begin{bmatrix} -u & -\mathbf{c}^\top \\ \mathbf{c} & \mathbf{Q} \end{bmatrix} - \mathbf{Z} + t \mathbf{B}_{\mathsf{agg}} \in \mathcal{N}_{n+1}, \mathbf{R}^\top \mathbf{Z} \mathbf{R} \in \mathcal{P}_{n+1-m} \right\}$$

Theorem [Binarity aggregation in tightest duals]:

For tightest dual i = 1, d_1^* is independent of choice of \mathcal{B}_j . Combination $\mathcal{L}_1 \cap \mathcal{B}_2$ has additional benefit of least number of dual variables and primal constraints.

Tightest DNN dual:

$$\sup_{u,t,\mathbf{Z}} \left\{ u : \begin{bmatrix} -u & -\mathbf{c}^{\top} \\ \mathbf{c} & \mathbf{Q} \end{bmatrix} - \mathbf{Z} + t\mathbf{B}_{agg} \in \mathcal{N}_{n+1}, \mathbf{R}^{\top}\mathbf{Z}\mathbf{R} \in \mathcal{P}_{n+1-m} \right\}$$

requires SDP of order n + 1 - m and $\mathcal{O}(n^2)$ linear constraints.

Theorem [Binarity aggregation in tightest duals]:

For tightest dual i = 1, d_1^* is independent of choice of \mathcal{B}_j . Combination $\mathcal{L}_1 \cap \mathcal{B}_2$ has additional benefit of least number of dual variables and primal constraints.

Tightest DNN dual:

$$\sup_{u,t,\mathbf{Z}} \left\{ u : \begin{bmatrix} -u & -\mathbf{c}^{\top} \\ \mathbf{c} & \mathbf{Q} \end{bmatrix} - \mathbf{Z} + t\mathbf{B}_{\mathsf{agg}} \in \mathcal{N}_{n+1}, \mathbf{R}^{\top}\mathbf{Z}\mathbf{R} \in \mathcal{P}_{n+1-m} \right\}$$

requires SDP of order n + 1 - m and $\mathcal{O}(n^2)$ linear constraints.

If \mathcal{Z} is compact, then Slater holds, under suitable conditions also for unbounded \mathcal{Z} .

Application: purely binary QPs

More precisely, multi-dimensional knapsack problems:

$$\max_{\mathbf{x} \in \{0,1\}^n} \left\{ \mathbf{x}^\top \mathbf{Q} \mathbf{x} : \mathbf{a}_i^\top \mathbf{x} \le b_i, i \in [1:m] \right\}$$

with $\mathbf{a}_i \in \mathbb{R}^n_+$. Notoriously hard problems !

Application: purely binary QPs

More precisely, multi-dimensional knapsack problems:

$$\max_{\mathbf{x} \in \{0,1\}^n} \left\{ \mathbf{x}^\top \mathbf{Q} \mathbf{x} : \mathbf{a}_i^\top \mathbf{x} \le b_i, i \in [1:m] \right\}$$

with $\mathbf{a}_i \in \mathbb{R}^n_+$. Notoriously hard problems !

Instances from Beasley OR-library with random \mathbf{Q} :

Table 1: Numerical result for the multidimensional knapsack problem using CP reformulations

Prime problem														
Orig prob		No merging		Merging linear		Merging binary		Merging Both		Reduced no merging		Reduced merging		
(n,m)	Opt val	Opt val	CPU	Opt val	CPU	Opt val	CPU	Opt val	CPU	Opt val	CPU	Opt val	CPU	
(10, 10)	13840	14876	0.9	-(-Inf)	1.3	14877	0.8	16156*	1.3	14852	0.5	14852	0.2	
(20, 10)	46922	48451	10.1	48792^{*}	20.8	48453	10.9	50572*	28.0	48435	1.4	48435	1.4	
(30,5)	48110	50890	54	51186*	120	50890	59	56723*	135	50854	10	50854	10	
(40,5)	105154	110296	333	$110809^{*}(150)$	721	110298	351	132268* (150)	767	110222	70	110222	68	
(50,5)	206590	213470	2741	215141*	3413	213475	2477	228663*	2682	213330	558	213330	502	
(60,5)	176100	181041	5425	-(150)	8779	181043	5386	-(150)	8894	180953	769	180953	748	
(70,5)	318644	-	-	-	-	-	-	-	-	322884	2484	322884	2431	
(80,5)	-	-	_	-	-	-	_	-	_	341745	5248	341745	5395	
"-" me	"-" means the problem can not be solved within three hours while "*" means the problem is not solved													
accurat	accurately. "150" means the algorithm reaches the maximum number of iterations set by Sedumi.													

Selected references in chronological order

[Vandenberghe/Boyd '96] Semidefinite programming. SIAM Review **38**, 49–95.

- [Helmberg '00] Semidefinite programming for combinatorial optimization. *ZIB-Report 00–34*.
- [Burer '09] On the copositive representation of binary and continuous nonconvex quadratic programs, *Math. Programming* **120**, 479–495.
- [Dür '10] Copositive programming a survey. In: M.Diehl et al (eds.), Recent Advances in Optimization and its Applications in Engineering, pp. 3–20. Springer, Berlin.
- [Burer '10] Optimizing a polyhedral-semidefinite relaxation of completely positive programs, *Math. Progr. Comput.* **2**, 1–19.
- [B.'12] Copositive optimization recent developments and applications. Europ. J. Oper. Research 216, 509–520.

Selected references in chronological order, continued

- [B./Schachinger/Uchida '12] Think co(mpletely)positive ! matrix properties, examples and a clustered bibliography on copositive optimization. J.Global Optim. 52, 423–445.
- [Dickinson '13] The copositive cone, the completely positive cone and their generalisations. *Ph.D thesis, University of Groningen.*
- [Arima/Kim/Kojima '14] Simplified copositive and Lagrangian relaxations for linearly constrained quadratic optimization problems in continuous and binary variables, *Pac. J. Optim.* **10**, 437-451.
- [B./Cheng/Dickinson/Lisser '17] A fresh CP look at mixed-binary QPs: new formulations and relaxations, *Math. Progr.* **166**, 159-184.
- [B./Cheng/Dickinson/Lisser/Liu '18] Notoriously hard (mixed-)binary QPs: empirical evidence on new CP approaches, submitted.