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Consider linear problem over convex cone IC
inf {(c,x) : (ag,x) = 1,(a;,x) = 0,i€ [1:m]}
xeC

where {c,a;} UK C R?.

Note: Ax=b <= (zg=1) & [-b|A] [:Z?] = o,

so all linear constraints can be homogenized except one.

Dual problem: let £ = {aj,...,am}", so primal/dual pair is
p" = inf {{(c,x):(ag,x) =1} and sup{yp:c—ypape (LNK)*"}
xeLNK

where B* = {seRd : (s,x) >0, all XEB}.
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What is called conic dual ...

. IS motivated by LP as a model where K = IR%C_IZ_: use

(LN =LF+K*= LT+ KF =span(a;) + K*.

So conic dual is

m
d* :SUD{yO . C — Z Y E/C*}

i=0
and in the LP case (K* = Rfil_) dual constraint reads

m
> ya; <c, asusual
i=0

In LP (unless both infeasible) there is no duality gap, d* = p™;
strong duality: optimal values are attained for primal and dual.
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Linear optimization over matrix cones

Let IC be a convex cone of symmetric n Xx n matrices X = X7,

Consider conic linear optimization problem in matrices
p* = mm{<c,x> (A, X) =1, X € {Al,...,Am}imc} ,
where the coefficients C, A; are symmetric n X n matrices and

(C,X) = trace (C'X) is Frobenius inner product of matrices.

As before, conic dual is defined as

m
d*:sup{yO:S:CZyiAieK*}.
i=0

Of course, weak duality always holds: d* < p*.

However, when departing from LP, strong duality may fail.
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Familiar cases: LP, SDP, and beyond

Departing? Indeed, for

K =N, = {X =X'"nxn: XEO}... LP, barrier: — 3, ;109 X;;,
and for

K= ={X:XTn><n:X O} , barrier: =3,

In above cases, the dual cone of K* = K (self-duality),

and problems solvable in polynomial time to desired accuracy.
But in general K* = K and conic optimization is NP-hard.

Why bother?
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Copositive optimization (COP)
COP encodes many NP-hard problems [Diir'10, Burer'12, B.'12].
Choose instead X =(C, = conv {XXT x e R" x> o} :
the cone of completely positive matrices, with its dual cone
Ch = {S =S' is copositive; means: x| Sx >0 ifx> o};& Cn .
Well known relations:
Cn CPnNNy CPp+ Ny CCyy ... strict forn>5.
Primal/dual pair in (COP) with conic duality:
p* = inf{{C,X):{(Ag,X)=1,X€ LNCp},
d* = sup {yo :C - yyiA; € Cn*}
with £ = {Aq,. .. A} .
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Strong duality in COP

In convex nonlinear programs (SOCP, , COP),
we have classical duality results (Slater’'s condition):

Strict primal feasibility: {X € £: (Ag, X) =1}nint C, =0

implies zero duality gap and dual attainability, and
strict dual feasibility {yo :S=C—-3Y"yy;A; €int C;‘;} # ()
implies zero duality gap and primal attainability.

Otherwise, positive duality gap and all sorts of non-attainability
may happen in [Vandenberghe/Boyd '96, Helmberg '00].

Same is true for COP, too. Why 7 Problems with addition ...
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Minkowski summation

... looks innocent: take two closed convex sets 5 and C, consider
B+C={B+4+C:Be€B, }
. IS convex but need not be closed !!
Example.Bz{[é 8 :teR} and C =
[_Okg-l- =[_Ol 1_/2]%[_01 _01] as k — oo,

which is not in B +

Example will return in various attires [B./Schachinger/Uchida’'12]:
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Exclude doubly infeasible cases where both

d=—0c0 and p"=+c.

This may happen even in LPs !

Possible attainability/duality gap constellations for COP:
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An example adapted from SDP
Here it works:

Example 1: n =2, m = 1, <C,X> = 11, <A1,X> = T1o + 21
and by = 2. Then
1 —un1
d* = sup< 2y : cCs>=0
Lt 9] e
is attained for y7 = 0.

is primally feasible X with (C,X;) =+ \ 0 as k / oo, so that
p" = d*. But p* cannot be attained since x11 = 0 conflicts with
x1o =1 and X € Cr C
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Another example adapted from SDP

Example 2: Here n =3, m = 2, (C, X) = x33 whereas

AX:[x33+2$12] ,b:[1] )
T2 0

Then p* = iﬂf{$33 233+ 2x10 =1, 200 =0, X 663}: 1,

attained for an X* € C with all :I:jj — 0 except :1;§3 = 1.

The dual reads

0O -1 0
= sup —y1 —y2 O cC3,=0,
0 O 1-y1

attained for y* = o.

Theorem 1 above gives an instance 74(A,b,C) with the same
d* < p*, but where d* is not attained.
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e Tp(A,b,C) is feasible if and only if (A,b,C) is feasible;
e the primal and dual optimal values remain the same;

e d" is attained in one problem iff it is in the other:

e p" is never attained in Tp(A,b,C).
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Constructing more failures

Summarizing: if (A,b,C) is the instance of Example 2, then

e (A,b,C) has —oo < d* < p* < oo with both d* and p* attained,
e 74(A,b,C) has —oco < d* < p* < oo with d* not attained,

e To(A,b,C) has —oo < d" < p" < oo with p* not attained,

o Tp[T4(A,b,C)] and T4[Tp(A,b,C)] have —co < d* < p* < o

with neither p* nor d* attained.
So the center column of the table is filled !

It remains to deal with infeasibility of one of the problems ...
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both strictly f. —0® <\\§
p* attained, MSTQP, —& Ex.2 & Thm.l impossible <§§
d* not attained dual strictly f. el
p" not attained, Ex.1, ) Ex.2 & Thm.2
d* attained primal strictly f. —9 0O

neither attained

Ex.1 & Thm.l
_("\.

Ex.2 & Thms.1,2
00

infinite
—oo=d"<p" <o




Infinite duality gaps — infeasible primal

Example 3: Here n =3, m = 2, and C = O whereas

__ | 2w02 + 2223 _ |0
AX = [2%12—2:633 ’b_ 2 '
If X € C3, then o3 > 0 and x> > 0 imply o> = 0, hence x1o, = 0,
hence 33 = —1 < 0, which is absurd. Hence primal is infeasible,
p* = oo. Now look at dual with b'y = 2y». Since
- i —y2 0 ]
C—A'y=|-v2 —2y1 —n
0 —y1 2yp |
(look ), yo <0 for any y € R? with C — Ay € C4. Thus

y* = o is dually feasible, thus optimal, and 4" = 0 is attained.

Theorem 1 gives an instance 74(A,b,C) with 0 = d* < p* = oo,
but where d* is not attained.
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attained d"=p eR —oco<d" <p" <oo —co<d"<p =00
both attained StQP, —e Ex.2 impossible

both strictly f. —0® <\\§
p* attained, MSTQP, —& Ex.2 & Thm.l impossible <§§
d* not attained dual strictly f. el
p" not attained, Ex.1, ) Ex.2 & Thm.2 =%.3
d* attained primal strictly f. —@ 0 —® >

neither attained

Ex.1 & Thm.l
_("\.

Ex.2 & Thms.1,2
00

infinite
—oo=d"<p" <o




duality gap

Zero finite positive infinite

attained d"=p eR —oco<d" <p" <oo —co<d"<p =00
both attained StQP, —e Ex.2 impossible

both strictly f. —0e <\\§
p* attained, MSTQP, —& Ex.2 & Thm.l impossible <§§
d* not attained dual strictly f. el
p" not attained, Ex.1, ) Ex.2 & Thm.2 =%.3
d* attained primal strictly f. —@ 0 —® >

neither attained

Ex.1 & Thm.l
_('\.

Ex.2 & Thms.1,2

—O ¢

Ex.3 & Thm.l

_C_},

infinite
—oo=d"<p" <o




Infinite duality gaps — infeasible dual

Example 4: Keep A from Example 3, but change b = o now.
Then any feasible X satisfies x33 = 0. Also change c33 = —1 now
(rest zero). Then X* = O € C3 is optimal, so p* = 0 is attained.
However,

0 —1Yo 0
C-Aly=| -y —2y1 -1 € C3
0 - |
IS impossible, as still yo < 0, implying < —1 < 0, absurd.

Hence d* = —oo.

Theorem 2 gives an instance 7p(A,b,C) with —co = d* < p* =0,
but where p* is not attained.

Now all table entries filled !



duality gap

Zero finite positive infinite infinite

attained d"=p eR —oo<d" <p' <o —co<d"<p'=co | —co=d"<p"<o0
both attained StQP, —@ Ex.2 impossible impossible

both strictly f. —0e <\\§ Q&
p* attained, MSTQP, —& Ex.2 & Thm.l impossible <S\§ Ex.4 < @
d* not attained dual strictly f. el
p’ not attained, Ex1l, —© Ex.2 & Thm.2 | Ex.3 @ > Y
d* attained primal strictly f. —9 0
neither attained Ex.1 & Thm.l Ex.2 & Thms.1,2 | Ex.3 & Thm.l

—O —0 0 — >




duality gap

Zero finite positive infinite infinite

attained d"=p eR —oco<d" <p" <oo —co<d'<p'=00 | —co=d"<p" <o
both attained StQP, —@— | Ex.2 impossible impossible

both strictly f. —0e Q& Q&
p* attained, MSTQP, —& Ex.2 & Thm.l impossible Q& Ex.4 < @
d* not attained dual strictly f. el
p* not attained, Ex.1, @ | Ex2& Thm.2 Ex.3 impossible
d* attained primal strictly f. —9 0 —@ > Q&
neither attained Ex.1 & Thm.l Ex.2 & Thms.1,2 | Ex.3 & Thm.l Ex4 & Thm.2

—O— —0 0O — > <- ()




Restart: linear optimization over cones and duality

Consider linear problem over convex cone K

inf {{e,%) : (a0, x) =1, (a;,x) = 0,i€ [1:m])

where {c,a;} UK C R?.
Note: Ax=b <= (zg=1) & [-b|A] [f?] = o,
so all linear constraints can be homogenized except one.

Dual problem: let £ = {al,...,am}L, so primal/dual pair is

*— inf : =1 and s C — LNK)*Y.
p xelmlc{<c’x> (ap, x) } up {yo : ¢ —yopap € ( )"}
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Let’s be precise ...

Need to describe (L NK)* but we only know
(LNIK)" = closure(L" + ).
Duality gap generated by ignoring closure (forgetting limits) !!

Indeed have [B./Cheng/Dickinson/Lisser'17]:

Theorem (Slater is not needed):

Unless both problems are infeasible, there is zero duality gap,
a* — p>|<

where the (proper) dual is defined as in the start,

d* =sup{yp : ¢ —ypag € closure(L* + K*)}.
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Let’s be precise ...

Need to describe (L NK)* but we only know
(LNIK)" = closure(L" + ).
Duality gap generated by ignoring closure (forgetting limits) !!

Indeed have [B./Cheng/Dickinson/Lisser'17]:

Theorem (Slater is not needed):
Unless both problems are infeasible, there is zero duality gap,

a* — p>|<
where the (proper) dual is defined as in the start,
d* = sup{yp : ¢ —ypag € closure(L* + K*)}.

Caution: closure does not guarantee attainability.


Bomze
Hervorheben

Bomze
Hervorheben

Bomze
Hervorheben

Bomze
Hervorheben


Closure closes duality gap; does this help 7
Yes, e.g. if we have choices to describe primal feasibility X € F:

let £;, K; such that all £, " /C;, = F are all the same but cones for
dual L7 + K7 are different as 4 varies!
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Closure closes duality gap; does this help 7
Yes, e.g. if we have choices to describe primal feasibility X € F:

let £;, IC; such that all £, N /C; = JF are all the same but cones for
dual L7 + K7 are different as 4 varies!

Now, forgetting the closure, dual bounds can vary in quality, e.g.,
it L7 + K7 is closed (zero gap) but L35 + K% is not.

Even if none is closed: any dual-feasible solution gives a rigorous
bound; holds for popular relaxations too |

Quite abstract hope ? No, for MBQP-COP it works!
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Mixed-binary QPs and COP reformulation

Consider mixed-binary quadratic problem under linear constraints:
¢* = min {XTQX+2CTX :x € 2,2, €{0,1},j € B}
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Mixed-binary QPs and COP reformulation

Consider mixed-binary quadratic problem under linear constraints:
¢* = min {XTQX+2CTX :x € 2,2, €{0,1},j € B}

where Z = {x € R : Ax = b} with some xg € Z Nint R,

and B C [1:n] such that z; =0 for all j € B, z € {al,...,am}l.

Here AT =[ay,...,am] with a, € R” linearly independent.

Complete them to basis by orthogonal [a,,41,

_ {OCT

...,ap] and form

Q:cQ

and R = [ 1 0 0 ] ER(WJ‘F].)X(TL‘I'].—W)
X0 am+1 S %)

Ouff, enough preparations; but they pay in various ways !
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Burer’s result on COP for Mixed-Binary QPs

[Burer'09] established a first COP reformulation:
¢ =p5 = mi”{@ﬁ@ Yoo=1,Y€LonhB mCn+1}

with
el

£2 x X g
= {A1,..., Az}t

representing the linear constraints and

51={Y=[y0 x|

alx = b;yo , aiTXaz- = bgyo,ie [1 :m]}

x X
the binarity constraints.

L Xy = Jj,]EB}:{BJJEB}_L

Not relaxation p5 < ¢*, rather convex reformulation p5 = ¢* of
mixed-binary nonconvex QP!
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Reformulation by facial reduction

Subsequent work [Burer'10,Dickinson’13,Arima/Kim/Kojima’'14]
inspired several alternatives:

Idea: reduce order by congruence with matrix R:
replace L, with
L1 =RsS"T1I-mRT = {Y —RUR' :U=U" has order n+1 — m}

and consider

—

p1 = min{(Q,Y) Yoo=1,Ye€Li1nNB ﬂcn+1}-

Then have £ N =R R'=/on , SO p} = ps.
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Reformulation by facial reduction

Subsequent work [Burer'10,Dickinson’13,Arima/Kim/Kojima’'14]
inspired several alternatives:

Idea: reduce order by congruence with matrix R:
replace L, with
L1 =RsS"T1I-mRT = {Y —RUR' :U=U" has order n+1 — m}

and consider

pi = min{(Q,Y) " Yoo=1,Y e Li1NDB; ﬂCn_H}.

Then have £1 N =R R'=/on , SO p} = pk.

Note: £{ = {S=ST:RTSR = 0}.
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Reformulation by aggregation of linear constraints

Next idea: use only one homogeneous linear constraint:

-
__ — | Yo X
£3 N {Y— [ x X 1=1

™m
: > a) Xa; — 2ba) x 4+ bZyg = o}

= Azgg With Aagg = 2 T

1

m[ b?  —ba,

—b;a; a;a

with

p3=min{(Q,Y): Yoo =1,Y € L3NB1NCpy1}.



Reformulation by aggregation of linear constraints

Next idea: use only one homogeneous linear constraint:

T
__ — | Yo X
L5 = {Y_[X S

™m
: > a) Xa; — 2ba,) x + bPyg = o}

= Azgg With Aagg :7;1 T

1

m[ b?  —ba,

—b;a; a;a

with
pg = min {<@,Y> Yoo=1,Y € L3N By mcn—l—l}'

Then have L3N Py = Lo N P41, SO p% — pg.
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Reformulation by aggregation of linear constraints

Next idea: use only one homogeneous linear constraint:

L3 = {Y=[yo x|

™m
Do [ X a! Xa; — 2b;a) x + b?yg = o}

=1

_ m b2 —b.al
— Aé‘gg with Aagg = ,L-g]_ [ B g Z_F

1

b;a; a;a
with
p«i;) = min{(@,Y> Yoo=1,Y € L3N By mcn—l—l}'

Then have L3N Py = Lo N P41, SO p% — pg.

Note: ,Cé = RAagg.
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Reformulation by aggregation of linear constraints

Next idea: use only one homogeneous linear constraint:

L3 = {Y=[yo x|

™m
Do X a! Xa; — 2b;a) x + b?yg = o}

=1

_ m b2 —b:al
— Aé‘gg with Aagg = igl [ B g Z_F

1

b;a; a;a
with
pfo) = min{(@,Y> Yoo=1,Y € L3N By mcn—l—l}'

Then have L3N Py = Lo N P41, SO p% — p;.

Note: £3 = RAagq. Have identical £; N C, 1 across i€ [1:3].
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Reformulation by aggregation of binarity constraints

Repeat last method for B: replace 31 with

B> {Yzlyo x|

x X

jEB

T

Bagg With Bagg = % ’ s
jEB —ej 2ejej

Then have 55> ﬂNn+1 NLy = B4 ﬂNn+1 N L4



Reformulation by aggregation of binarity constraints

Repeat last method for B: replace 31 with

.
By = {Yy=1]Y * |. Z(X--—:c-)zO}
=% % B
BL _  with B v | © —ej
agg jEB —ej 26]'8;-'—

Then have BoNN,4+1NLy =By NN, 41 NLy, and so

Theorem [B./Cheng/Dickinson/Lisser’17]:
For all {(i,j),(r,s)} C {1,2,3} x {1,2}, we have

L;NB;N NNp41 =LrNBsN NNp41



Reformulation by aggregation of binarity constraints

Repeat last method for B: replace 31 with

{Y:[yo T

B2 x X

-2 (X — ) = }

jeEB

Then have BoNN,41 N Ly =B1NN,41NLy, and so

Theorem [B./Cheng/Dickinson/Lisser’17]:

For all {(i,j),(r,s)} C {1,2,3} x {1,2}, we have
/:Z'ﬂBjﬂ ﬂ./\/n+1:£rﬂ53ﬂ ﬂNn+1

and therefore p; = p5; = p3 regardless which B; is used.



Reformulation by aggregation of binarity constraints

Repeat last method for B: replace 31 with
T

| Yo X
Bé‘gg with Bagg = Z

jEB —ej 2ejej
Then have BoNN,4+1 N Ly =B1NN,41NLy, and so

B>

-2 (X — ) = }

jeEB

Theorem [B./Cheng/Dickinson/Lisser’'17]:
For all {(i,5),(r,s)} C {1,2,3} x {1,2}, we have
L;iNB;N NNpt1 = LrNBsN N Np+41
and therefore p; = p5 = p3 regardless which B; is used.
The same is true for the DNN approximation (7, NN, pro C,).
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A hierarchy of dual COPs

Primal values are identical, so we can choose the duals; of course,
all df = p’ = ¢* but these are hard to get. The conic duals may
have a gap d;‘ < g%, likewise the DNN duals. Which is best?

Theorem [monotonicity of the duals]:
The duality gap p; — d; is increasing with i € {1,2,3}.
The same is true for the duals of the DNN approximation.
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Tightest duals for COPs and DNN

Theorem [Binarity aggregation in tightest duals]:
For tightest dual 1 = 1, d’{ is independent of choice of Bj.

Combination L1 N B> has additional benefit of least number of
dual variables and primal constraints.

Tightest DNN dual:
sup {u ' [ ~u —c!
w,t,Z . C Q

requires SDP of order n 4+ 1 —m and O(n?) linear constraints.

— 7 +tBagg € Nn_|_1, R'ZR S }

If Z is compact, then Slater holds, under suitable conditions also
for unbounded Z.
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Application: purely binary QPs

More precisely, multi-dimensional knapsack problems:

max {XTQX ; aiTX < b;,i € [1 :m]}
xe{0,1}"

with a; € IR@_}_. Notoriously hard problems !

Instances from Beasley OR-library with random Q:



Table 1: Numerical result for the multidimensional knapsack problem using CP reformulations

Prime problem

Orig prob No merging Merging linear Merging binary Merging Both Reduced no merging Reduced merging
(n,m) Opt val Opt val CPU Opt val CPU Opt val CPU Opt val CPU Opt val CPU Opt val CPU
(10,10) 13840 14876 0.9 —(-Inf) 1.3 14877 0.8 16156* 1.3 14852 0.5 14852 0.2
(20,10) 46922 48451 10.1 48792* 20.8 48453 10.9 50572* 28.0 48435 1.4 48435 1.4
(30,5) 48110 50890 54 51186* 120 50890 59 56723% 135 50854 10 50854 10
(40,5) 105154 110296 333 110809*(150) 721 110298 351 132268* (150) 767 110222 70 110222 68
(50,5) 206590 213470 2741 215141%* 3413 213475 2477 228663* 2682 213330 558 213330 502
(60,5) 176100 181041 5425 —(150) 8779 181043 5386 - (150) 8894 180953 769 180953 748
(70,5) 318644 - - - - - - - 322884 2484 322884 2431
(80,5) — 341745 5248 341745 5395

“

means the problem can not be solved w1th1n three hours Whlle “*” means the problem is not solved
accurately. “150” means the algorithm reaches the maximum number of iterations set by Sedumi.
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