A quadratic penalty algorithm for linear programming and its application to linearizations of quadratic assignment problems

Julian Hall Ivet Galabova

School of Mathematics University of Edinburgh

Computational Optimization in Action

8 June 2018

Solving LP problems: Crash start

minimize
$$f = \boldsymbol{c}^T \boldsymbol{x}$$
 subject to $A \boldsymbol{x} \leq \boldsymbol{b}$ $\boldsymbol{x} \geq \boldsymbol{0}$

Choosing the initial basis

- "Slack" basis is simple choice x₀
- Standard crash aims for feasible vertex x_F
- "Idiot" crash aims for near-optimal point \bar{x}^*

Solving LP problems: Crash start

minimize
$$f = \boldsymbol{c}^T \boldsymbol{x}$$
 subject to $A \boldsymbol{x} \leq \boldsymbol{b}$ $\boldsymbol{x} \geq \boldsymbol{0}$

Choosing the initial basis

- "Slack" basis is simple choice x₀
- Standard crash aims for feasible vertex x_F
- "Idiot" crash aims for near-optimal point $ar{x}^*$
- Idiot crash exists as code in clp
 - What is it?
 - (Why) does it work?
 - How good is it?

Solving LP problems: Crash start

minimize
$$f = \boldsymbol{c}^T \boldsymbol{x}$$
 subject to $A \boldsymbol{x} \leq \boldsymbol{b}$ $\boldsymbol{x} \geq \boldsymbol{0}$

Choosing the initial basis

- "Slack" basis is simple choice x₀
- Standard crash aims for feasible vertex x_F
- "Idiot" crash aims for near-optimal point $ar{x}^*$
- Idiot crash exists as code in clp
 - What is it?
 - (Why) does it work?
 - How good is it?
- Google wanted to know!

- **Definition:** Forrest (2002)
 - Source code of clp

- **Definition:** Forrest (2002)
 - Source code of clp
- Dissemination: Forrest (2014)
 - "I gave a bad talk on it years ago"
 - "You minimize mu*objective + sum of squared primal infeasibilities"
 - "This is done column by column... you just solve a quadratic to get new value"
 - "Periodically you reduce mu"

- **Definition:** Forrest (2002)
 - Source code of clp
- Dissemination: Forrest (2014)
 - "I gave a bad talk on it years ago"
 - "You minimize mu*objective + sum of squared primal infeasibilities"
 - "This is done column by column... you just solve a quadratic to get new value"
 - "Periodically you reduce mu"
- Analysis: Forrest (2014)
 - "For many problems you finish with a small sum of infeasibilities and an objective a bit higher than the optimal one"

minimize f(x) subject to r(x) = 0

Quadratic penalty method

- Minimize $\phi(\mathbf{x},\mu) = f(\mathbf{x}) + \frac{1}{2\mu} \mathbf{r}(\mathbf{x})^T \mathbf{r}(\mathbf{x})$
- Decreasing sequence $\{\mu^k\}$
- ${old x}^k o {old x}^*$ as $k o \infty$
- Subproblems increasingly ill-conditioned as μ^k decreases

minimize f(x) subject to r(x) = 0

Quadratic penalty method

- Minimize $\phi(\mathbf{x},\mu) = f(\mathbf{x}) + \frac{1}{2\mu} \mathbf{r}(\mathbf{x})^T \mathbf{r}(\mathbf{x})$
- Decreasing sequence $\{\mu^k\}$
- ${old x}^k o {old x}^*$ as $k o \infty$
- Subproblems increasingly ill-conditioned as μ^k decreases

Augmented Lagrangian method

Minimize

$$\phi(\mathbf{x},\mu) = f(\mathbf{x}) + \boldsymbol{\lambda}^{\mathsf{T}} \mathbf{r}(\mathbf{x}) + \frac{1}{2\mu} \mathbf{r}(\mathbf{x})^{\mathsf{T}} \mathbf{r}(\mathbf{x})$$

- Decreasing sequence $\{\mu^k\}$ • $\lambda_i^{k+1} = \lambda_i^k + \mu^k \mathbf{r}(\mathbf{x}^k)$
- $\mathbf{x}^k o \mathbf{x}^*$ and $\mathbf{\lambda}^k o \mathbf{\lambda}^*$ rapidly so ill-conditioning not an issue

minimize f(x) subject to r(x) = 0

Quadratic penalty method

- Minimize $\phi(\mathbf{x},\mu) = f(\mathbf{x}) + \frac{1}{2\mu} \mathbf{r}(\mathbf{x})^T \mathbf{r}(\mathbf{x})$
- Decreasing sequence $\{\mu^k\}$
- $\pmb{x}^k
 ightarrow \pmb{x}^*$ as $k
 ightarrow \infty$
- Subproblems increasingly ill-conditioned as μ^k decreases

Beale (1985)

- Quadratic form minimization as LP crash
- Implemented in SCICONIC

Augmented Lagrangian method

Minimize

$$\phi(\mathbf{x},\mu) = f(\mathbf{x}) + \boldsymbol{\lambda}^{\mathsf{T}} \mathbf{r}(\mathbf{x}) + \frac{1}{2\mu} \mathbf{r}(\mathbf{x})^{\mathsf{T}} \mathbf{r}(\mathbf{x})$$

- Decreasing sequence $\{\mu^k\}$ • $\lambda_i^{k+1} = \lambda_i^k + \mu^k \mathbf{r}(\mathbf{x}^k)$
- $\mathbf{x}^k o \mathbf{x}^*$ and $\mathbf{\lambda}^k o \mathbf{\lambda}^*$ rapidly so ill-conditioning not an issue

minimize f(x) subject to r(x) = 0

Quadratic penalty method

- Minimize $\phi(\mathbf{x},\mu) = f(\mathbf{x}) + \frac{1}{2\mu} \mathbf{r}(\mathbf{x})^T \mathbf{r}(\mathbf{x})$
- Decreasing sequence $\{\mu^k\}$
- ${old x}^k o {old x}^*$ as $k o \infty$
- Subproblems increasingly ill-conditioned as μ^k decreases

Beale (1985)

- Quadratic form minimization as LP crash
- Implemented in SCICONIC

Augmented Lagrangian method

Minimize

$$\phi(\mathbf{x},\mu) = f(\mathbf{x}) + \boldsymbol{\lambda}^{\mathsf{T}} \mathbf{r}(\mathbf{x}) + \frac{1}{2\mu} \mathbf{r}(\mathbf{x})^{\mathsf{T}} \mathbf{r}(\mathbf{x})$$

- Decreasing sequence $\{\mu^k\}$ • $\lambda_i^{k+1} = \lambda_i^k + \mu^k \mathbf{r}(\mathbf{x}^k)$
- $\mathbf{x}^k o \mathbf{x}^*$ and $\mathbf{\lambda}^k o \mathbf{\lambda}^*$ rapidly so ill-conditioning not an issue

Idiot algorithm

- Starts like augmented Lagrangian
- Finishes like quadratic penalty method

minimize
$$f = \boldsymbol{c}^T \boldsymbol{x}$$
 subject to $A\boldsymbol{x} = \boldsymbol{b}$ $\boldsymbol{x} \ge \boldsymbol{0}$

The Idiot algorithm: r(x) = Ax - b

Initialize
$$\mathbf{x}^0 \ge \mathbf{0}$$
, μ^1 , $\lambda^1 = \mathbf{0}$
For $k = 1, 2, 3, ...K$
 $\mathbf{x}^k = \arg\min_{\mathbf{x} \ge \mathbf{0}} h(\mathbf{x}) = \mathbf{c}^T \mathbf{x} + {\lambda^k}^T \mathbf{r}(\mathbf{x}) + \frac{1}{2\mu^k} \mathbf{r}(\mathbf{x})^T \mathbf{r}(\mathbf{x})$
Possibly update μ :
 $\mu^{k+1} = \mu^k / \omega$, for some factor $\omega > 1$
 $\lambda^{k+1} = \lambda^k$
Else update λ :
 $\mu^{k+1} = \mu^k$
 $\lambda^{k+1} = \mu^k \mathbf{r}(\mathbf{x}^k)$
End

Idiot crash: Algorithm

• Solve subproblem

$$\min_{\mathbf{x} \ge \mathbf{0}} h(\mathbf{x}) = \mathbf{c}^{\mathsf{T}} \mathbf{x} + {\boldsymbol{\lambda}^{k}}^{\mathsf{T}} \mathbf{r}(\mathbf{x}) + \frac{1}{2\mu^{k}} \mathbf{r}(\mathbf{x})^{\mathsf{T}} \mathbf{r}(\mathbf{x}) \quad \text{where} \quad \mathbf{r}(\mathbf{x}) = A\mathbf{x} - \mathbf{b}$$

• Solve subproblem

$$\min_{\mathbf{x} \ge \mathbf{0}} h(\mathbf{x}) = \mathbf{c}^{\mathsf{T}} \mathbf{x} + \lambda^{k^{\mathsf{T}}} \mathbf{r}(\mathbf{x}) + \frac{1}{2\mu^{k}} \mathbf{r}(\mathbf{x})^{\mathsf{T}} \mathbf{r}(\mathbf{x}) \quad \text{where} \quad \mathbf{r}(\mathbf{x}) = A\mathbf{x} - \mathbf{b}$$

- Initially
 - Penalty parameter μ^1 ranges between 0.001 and 1000
 - Perform 20-30 "sample iterations", minimizing component-wise twice
 - Possibly abandon Idiot if 10% primal infeasibility reduction not achieved

• Solve subproblem

$$\min_{\mathbf{x} \ge \mathbf{0}} h(\mathbf{x}) = \mathbf{c}^{\mathsf{T}} \mathbf{x} + \lambda^{k^{\mathsf{T}}} \mathbf{r}(\mathbf{x}) + \frac{1}{2\mu^{k}} \mathbf{r}(\mathbf{x})^{\mathsf{T}} \mathbf{r}(\mathbf{x}) \quad \text{where} \quad \mathbf{r}(\mathbf{x}) = A\mathbf{x} - \mathbf{b}$$

- Initially
 - Penalty parameter μ^1 ranges between 0.001 and 1000
 - Perform 20-30 "sample iterations", minimizing component-wise twice
 - Possibly abandon Idiot if 10% primal infeasibility reduction not achieved
- Then, according to LP dimensions
 - Number of iterations K ranges between 30 and 200
 - μ is reduced (every 3 or 6 iterations) by $\omega =$ 0.333 (typically)

• Solve subproblem

$$\min_{\mathbf{x} \ge \mathbf{0}} h(\mathbf{x}) = \mathbf{c}^{\mathsf{T}} \mathbf{x} + {\boldsymbol{\lambda}^{k}}^{\mathsf{T}} \mathbf{r}(\mathbf{x}) + \frac{1}{2\mu^{k}} \mathbf{r}(\mathbf{x})^{\mathsf{T}} \mathbf{r}(\mathbf{x}) \quad \text{where} \quad \mathbf{r}(\mathbf{x}) = A\mathbf{x} - \mathbf{b}$$

- Initially
 - Penalty parameter μ^1 ranges between 0.001 and 1000
 - Perform 20-30 "sample iterations", minimizing component-wise twice
 - Possibly abandon Idiot if 10% primal infeasibility reduction not achieved
- Then, according to LP dimensions
 - Number of iterations K ranges between 30 and 200
 - μ is reduced (every 3 or 6 iterations) by $\omega =$ 0.333 (typically)
- Final value of $\boldsymbol{\mu}$ is around machine precision
- $oldsymbol{\lambda}^k o oldsymbol{0}$ rapidly

Idiot crash: How effective is it?

Results: Speed-up of the clp primal simplex solver when the ldiot crash is used and the percentage of solution time accounted for by the ldiot crash

Idiot crash: How effective is it?

Results: Speed-up of the clp primal simplex solver when the ldiot crash is used and the percentage of solution time accounted for by the ldiot crash

	Best		Worst			
$Model^1$	Speed-up	ldiot (%)	$Model^1$	Speed-up	ldiot (%)	
Linf_520c	9.4	8.2	FOME12	1.1	0.1	
stp3d	6.5	0.9	KEN-18	1.0	0.7	
self	6.1	22.7	dfl001	1.0	0.1	
$\text{STORM}_{-}1000$	4.5	0.8	PDS-80	1.0	0.1	
nug15	4.2	0.1	maros-r7	0.9	7.8	
STORM-125	4.1	10.1	TRUSS	0.8	17.1	

Idiot crash: How effective is it?

Results: Speed-up of the clp primal simplex solver when the ldiot crash is used and the percentage of solution time accounted for by the ldiot crash

	Best		Worst			
$Model^1$	Speed-up	ldiot (%)	$Model^1$	Speed-up	ldiot (%)	
Linf_520c	9.4	8.2	FOME12	1.1	0.1	
stp3d	6.5	0.9	KEN-18	1.0	0.7	
self	6.1	22.7	dfl001	1.0	0.1	
$\text{STORM}_{-}1000$	4.5	0.8	PDS-80	1.0	0.1	
nug15	4.2	0.1	maros-r7	0.9	7.8	
storm-125	4.1	10.1	TRUSS	0.8	17.1	

- Mean speed-up is 1.9; mean solution time accounted for by Idiot is 6%
- For only some problems does vanilla clp use the Idiot crash and primal simplex

[1: Results drawn from experiments on 30 Mittelmann benchmarking problems]

Idiot crash: Effect on clp benchmark performance

Results: Performance of clp relative to cplex, gurobi and xpress Mittelmann (25/04/18)

Model	cplex	gurobi	xpress	clp
LINF_520C	495	574	255	35
NUG15	338	12	7	14
QAP12	26	1	1	5
QAP15	365	12	6	13
SELF	18	12	15	5

Results: Performance of clp relative to cplex, gurobi and xpress Mittelmann (25/04/18)

Model	cplex	gurobi	xpress	clp
Linf_520c	495	574	255	35
NUG15	338	12	7	14
QAP12	26	1	1	5
QAP15	365	12	6	13
SELF	18	12	15	5

- $\bullet~\mbox{For LINF}_520\rm{C},~\mbox{clp}$ is vastly faster
- For the three QAP linearizations, clp is very much faster than cplex
- For SELF, clp is significantly faster

Idiot crash: Can it solve LPs?

Results: Accuracy of final point after (up to) 200 Idiot iterations

- Residual $||A\boldsymbol{x} \boldsymbol{b}||_2$
- Objective error $\frac{|f-f^*|}{\max(1,|f^*|)}$

Idiot crash: Can it solve LPs?

Results: Accuracy of final point after (up to) 200 Idiot iterations

- Residual $||A\boldsymbol{x} \boldsymbol{b}||_2$
- Objective error $\frac{|f-f^*|}{\max(1,|f^*|)}$

Best			Worst			
Model	Residual	Objective	Model	Residual	Objective	
NUG15	$2.1 imes 10^{-10}$	3.7×10^{-4}	DBIC1	$3.8 imes 10^{-1}$	$8.5 imes 10^{-2}$	
MAROS-R7	$4.0 imes 10^{-9}$	2.3×10^{-5}	STORM-125	$1.4\! imes\!10^{0}$	$1.2 imes 10^{-1}$	
PDS-100	$7.6 imes 10^{-10}$	3.7×10^{-4}	TRUSS	$7.1\! imes\!10^{\!-1}$	3.2×10^{-1}	
QAP15	$2.1 imes 10^{-10}$	2.8×10^{-3}	MOD2	$3.9\! imes\!10^0$	$2.1 imes 10^{-1}$	
LP22	$1.1\! imes\!10^{-9}$	1.3×10^{-3}	PILOT87	$2.1\! imes\!10^0$	$6.8 imes 10^{-1}$	
DFL001	$1.1 \! imes \! 10^{-9}$	3.7×10^{-3}	WORLD	$4.3\! imes\!10^0$	$5.5 imes 10^{-1}$	

Idiot crash: Can it solve LPs?

Results: Accuracy of final point after (up to) 200 Idiot iterations

• Residual
$$||A\boldsymbol{x} - \boldsymbol{b}||_2$$

• Objective error $\frac{|f-f^*|}{\max(1,|f^*|)}$

Best			Worst			
Model	Residual	Objective	Model	Residual	Objective	
NUG15	$2.1 imes 10^{-10}$	3.7×10^{-4}	DBIC1	$3.8 imes 10^{-1}$	$8.5 imes 10^{-2}$	
MAROS-R7	$4.0 imes 10^{-9}$	2.3×10^{-5}	STORM-125	$1.4\! imes\!10^{0}$	$1.2 imes 10^{-1}$	
PDS-100	$7.6 imes 10^{-10}$	3.7×10^{-4}	TRUSS	$7.1\! imes\!10^{\!-1}$	3.2×10^{-1}	
QAP15	$2.1 imes 10^{-10}$	2.8×10^{-3}	MOD2	$3.9\! imes\!10^0$	$2.1 imes 10^{-1}$	
LP22	$1.1\! imes\!10^{-9}$	1.3×10^{-3}	PILOT87	$2.1\! imes\!10^0$	$6.8 imes 10^{-1}$	
DFL001	$1.1 \! imes \! 10^{-9}$	3.7×10^{-3}	WORLD	$4.3\! imes\!10^0$	$5.5 imes 10^{-1}$	

• Idiot crash clearly solves some problems to acceptable tolerances

• Objective error measure using f^* is not an optimality test

Accuracy measure

A convenient single quality measure for the point returned by the Idiot crash is

$$\mathsf{qual}(oldsymbol{x}) = \|Aoldsymbol{x} - oldsymbol{b}\| imes rac{|f-f^*|}{\mathsf{max}(1,|f^*|)}$$

No problems with low value of qual(x) have accurate optimal objective function value but large residual

Accuracy and condition

- Clear correlation between accuracy of final point and cond(A)
- Quadratic assignment problems are particularly well conditioned

Idiot crash: What can be proved?

minimize
$$f = \boldsymbol{c}^T \boldsymbol{x}$$
 subject to $A\boldsymbol{x} = \boldsymbol{b}$ $\boldsymbol{x} \ge \boldsymbol{0}$

The Idiot objective is bounded below for bounded LP problems

The Idiot objective $h^{k}(\mathbf{x}) = \mathbf{c}^{T}\mathbf{x} + \lambda^{k^{T}}\mathbf{r}(\mathbf{x}) + \frac{1}{2\mu^{k}}\mathbf{r}(\mathbf{x})^{T}\mathbf{r}(\mathbf{x})$, where $\mathbf{r}(\mathbf{x}) = A\mathbf{x} - \mathbf{b}$, has positive semi-definite Hessian $A^{T}A$, but unboundedness of $h^{k}(\mathbf{x})$ implies unboundedness of the LP

minimize
$$f = \boldsymbol{c}^T \boldsymbol{x}$$
 subject to $A\boldsymbol{x} = \boldsymbol{b}$ $\boldsymbol{x} \ge \boldsymbol{0}$

The Idiot objective is bounded below for bounded LP problems

The Idiot objective $h^{k}(\mathbf{x}) = \mathbf{c}^{T}\mathbf{x} + \lambda^{k}{}^{T}\mathbf{r}(\mathbf{x}) + \frac{1}{2\mu^{k}}\mathbf{r}(\mathbf{x})^{T}\mathbf{r}(\mathbf{x})$, where $\mathbf{r}(\mathbf{x}) = A\mathbf{x} - \mathbf{b}$, has positive semi-definite Hessian $A^{T}A$, but unboundedness of $h^{k}(\mathbf{x})$ implies unboundedness of the LP

The Idiot algorithm with exact solution of subproblems converges

Theorem: Suppose, that \mathbf{x}^k is the exact global minimizer of $h^k(\mathbf{x})$ for each k = 1, 2... and that $\{\mu^k\} \to 0$ as $k \to \infty$. Then every limit point of the sequence $\{\mathbf{x}^k\}$ is a solution to the LP problem.

minimize
$$f = \boldsymbol{c}^T \boldsymbol{x}$$
 subject to $A\boldsymbol{x} = \boldsymbol{b}$ $\boldsymbol{x} \ge \boldsymbol{0}$

The Idiot objective is bounded below for bounded LP problems

The Idiot objective $h^{k}(\mathbf{x}) = \mathbf{c}^{T}\mathbf{x} + \lambda^{k}{}^{T}\mathbf{r}(\mathbf{x}) + \frac{1}{2\mu^{k}}\mathbf{r}(\mathbf{x})^{T}\mathbf{r}(\mathbf{x})$, where $\mathbf{r}(\mathbf{x}) = A\mathbf{x} - \mathbf{b}$, has positive semi-definite Hessian $A^{T}A$, but unboundedness of $h^{k}(\mathbf{x})$ implies unboundedness of the LP

The Idiot algorithm with exact solution of subproblems converges

Theorem: Suppose, that \mathbf{x}^k is the exact global minimizer of $h^k(\mathbf{x})$ for each k = 1, 2... and that $\{\mu^k\} \to 0$ as $k \to \infty$. Then every limit point of the sequence $\{\mathbf{x}^k\}$ is a solution to the LP problem.

However: Subproblems are not (currently) solved exactly and ill-conditioning due to small μ mitigates against it

Idiot crash: What happens next?

- Final point is not a vertex (basic) solution
- clp performs
 - Crossover to get a basic solution
 - Primal simplex to get an optimal solution

Idiot crash: What happens next?

- Final point is not a vertex (basic) solution
- clp performs
 - Crossover to get a basic solution
 - Primal simplex to get an optimal solution

Model	Speed-up	ldiot (%)	Residual	Objective
QAP15	4.0	0.1	$2.1 imes 10^{-10}$	2.8×10^{-3}
NUG15	4.2	0.1	$2.1 imes 10^{-10}$	$3.7 imes 10^{-4}$
QAP12	2.5	0.6	$3.6 imes 10^{-10}$	$1.7\! imes\!10^{\!-1}$
STORM_{1000}	4.5	0.8	$5.9\! imes\!10^{-6}$	$5.9 imes 10^{-2}$
stp3d	6.5	0.9	$7.0 imes 10^{-5}$	$2.7 imes 10^{-2}$
PDS-100	2.5	5.4	$7.6 imes 10^{-10}$	3.7×10^{-4}
$Linf_520c$	9.4	8.2	$1.1 \! imes \! 10^{1}$	9.1×10^{-3}

Idiot is a worthwhile crash, but relatively expensive to establish optimality!

• Know: If the Idiot crash yields a feasible point \bar{x}^* then

$$f^* \leq \boldsymbol{c}^T \bar{\boldsymbol{x}}^* = \bar{f}^*$$

• Know: If the Idiot crash yields a feasible point \bar{x}^* then

$$f^* \leq oldsymbol{c}^Toldsymbol{ar{x}}^* = oldsymbol{ar{f}}^*$$

• Consider: dual problem

maximize
$$f_D = \boldsymbol{b}^T \boldsymbol{y}$$
 subject to $A^T \boldsymbol{y} + \boldsymbol{s} = \boldsymbol{c}$ $\boldsymbol{s} \ge \boldsymbol{0}$

• Know: If the Idiot crash yields a feasible point \bar{x}^* then

$$f^* \leq oldsymbol{c}^{\, au} oldsymbol{ar{x}}^* = oldsymbol{ar{f}}^*$$

• Consider: dual problem

maximize
$$f_D = \boldsymbol{b}^T \boldsymbol{y}$$
 subject to $A^T \boldsymbol{y} + \boldsymbol{s} = \boldsymbol{c}$ $\boldsymbol{s} \ge \boldsymbol{0}$

• If the Idiot crash yields a feasible point $ar{m{y}}^*$ then

$$ar{f}_D^* = oldsymbol{b}^Toldsymbol{ar{y}}^* \leq f^*$$

• Hence f^* lies in the interval $[\bar{f}_D^*, \bar{f}^*]$

• Know: If the Idiot crash yields a feasible point \bar{x}^* then

$$f^* \leq oldsymbol{c}^{\, au} oldsymbol{ar{x}}^* = oldsymbol{ar{f}}^*$$

• Consider: dual problem

maximize
$$f_D = \boldsymbol{b}^T \boldsymbol{y}$$
 subject to $A^T \boldsymbol{y} + \boldsymbol{s} = \boldsymbol{c}$ $\boldsymbol{s} \ge \boldsymbol{0}$

• If the Idiot crash yields a feasible point $ar{m{y}}^*$ then

$$ar{f}_D^* = oldsymbol{b}^Toldsymbol{ar{y}}^* \leq f^*$$

- Hence f^* lies in the interval $[\bar{f}_D^*, \bar{f}^*]$
- Unfortunately: Values of \bar{f}_D^* don't (yet) have high accuracy

Idiot crash: Application to quadratic assignment problem linearizations

Quadratic assignment problem (QAP)

min
$$f(X) = \sum_{i,j,k,l} a_{ik} b_{jl} x_{ij} x_{kl}$$
 s.t. $X = [x_{ij}]_{n \times n} \in \Pi_n$

This is a MIQP problem with n^2 binary variables and 2n constraints

Idiot crash: Application to quadratic assignment problem linearizations

Quadratic assignment problem (QAP)

min
$$f(X) = \sum_{i,j,k,l} a_{ik} b_{jl} x_{ij} x_{kl}$$
 s.t. $X = [x_{ij}]_{n \times n} \in \Pi_n$

This is a MIQP problem with n^2 binary variables and 2n constraints

QAP linearization (Adams and Johnson)

$$\begin{array}{ll} \min & f(X) = \sum_{i,j,\,k,\,l} a_{ik} b_{jl} y_{ijkl} \\ \text{s.t.} & \sum_{i} y_{ijkl} = x_{kl}, \ j, k, l = 1, \dots, n; \quad \sum_{j} y_{ijkl} = x_{kl}, \ i, k, l = 1, \dots, n \\ & y_{ijkl} \ge 0, \ i, j, k, l = 1, \dots, n; \quad X = [x_{ij}]_{n \times n} \in \Pi_n \end{array}$$

This is a MILP problem with n^2 binary variables; n^4 continuous variables $y_{ijkl} = x_{ij}x_{kl}$ and $n^4 + 2n^3 + 2n$ constraints.

Idiot crash: Application to quadratic assignment problem linearizations

Results: Performance after (up to) 200 Idiot iterations

Model	Rows	Columns	Optimum	Residual	Objective	Error	Time
NUG05	210	225	50.00	9.4×10^{-9}	50.01	$1.5 \! imes \! 10^{\!-4}$	0.04
NUG06	372	486	86.00	7.8×10^{-9}	86.01	$1.2 \! imes \! 10^{-4}$	0.11
NUG07	602	931	148.00	$7.9 \! imes \! 10^{-9}$	148.64	4.3×10^{-3}	0.25
NUG08	912	1613	203.50	$7.0 imes 10^{-9}$	204.41	$4.5 imes 10^{-3}$	0.47
NUG12	3192	8856	522.89	$8.8 \! imes \! 10^{\! -9}$	523.86	$1.8\! imes\!10^{\!-\!3}$	2.58
NUG15	6330	22275	1041.00	$8.9\! imes\!10^{-9}$	1041.38	$3.7 imes 10^{-4}$	5.13
NUG20	15240	72600	2182.00	7.5×10^{-9}	2183.03	4.7×10^{-4}	14.94
NUG30	52260	379350	4805.00	$1.1 \! imes \! 10^{-8}$	4811.41	1.3×10^{-3}	82.28

- $\bullet~\mbox{Solution}$ of $_{\rm NUG30}$ intractable using simplex or IPM on the same machine
- Idiot crash consistently yields near-optimal solutions
- Useful within a branch-and-bound solver?

Idiot crash: Future work

Exact Idiot

- Convergence of component-wise search can be prohibitively slow
- Solve

$$\min_{\boldsymbol{x}\geq\boldsymbol{0}} h(\boldsymbol{x}) = \boldsymbol{c}^{\mathsf{T}}\boldsymbol{x} + \boldsymbol{\lambda}^{k^{\mathsf{T}}}\boldsymbol{r}(\boldsymbol{x}) + \frac{1}{2\mu^{k}}\boldsymbol{r}(\boldsymbol{x})^{\mathsf{T}}\boldsymbol{r}(\boldsymbol{x})$$

directly using conjugate gradient based approach

• Preconditioning?

Idiot crash: Future work

Exact Idiot

- Convergence of component-wise search can be prohibitively slow
- Solve

$$\min_{\boldsymbol{x}\geq\boldsymbol{0}} h(\boldsymbol{x}) = \boldsymbol{c}^{\mathsf{T}}\boldsymbol{x} + \boldsymbol{\lambda}^{k^{\mathsf{T}}}\boldsymbol{r}(\boldsymbol{x}) + \frac{1}{2\mu^{k}}\boldsymbol{r}(\boldsymbol{x})^{\mathsf{T}}\boldsymbol{r}(\boldsymbol{x})$$

directly using conjugate gradient based approach

• Preconditioning?

Parallel Idiot

- Approximate or exact Idiot dominated by cost of forming Ax
- "Obvious" parallelism is memory bound
- Problem-specific code?

- Has been presented in algorithmic form for the first time
- Generally beneficial for the primal revised simplex method
- Converges to an optimal solution when subproblems are solved exactly
- Consistently and quickly yields near-optimal solutions of QAP linearizations intractable with simplex or IMP

- Has been presented in algorithmic form for the first time
- Generally beneficial for the primal revised simplex method
- Converges to an optimal solution when subproblems are solved exactly
- Consistently and quickly yields near-optimal solutions of QAP linearizations intractable with simplex or IMP

Slides: http://www.maths.ed.ac.uk/hall/COA18

Report: http://www.maths.ed.ac.uk/hall/GaHa18