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Solving LP problems: Crash start

minimize f = cTx subject to Ax ≤ b x ≥ 0

Choosing the initial basis

“Slack” basis is simple choice x 0

Standard crash aims for feasible vertex xF

“Idiot” crash aims for near-optimal point x̄∗

Idiot crash

Feasibility crash

Slack basis

f

x∗

xF

x̄∗

x0

Idiot crash exists as code in clp

What is it?
(Why) does it work?
How good is it?

Google wanted to know!
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Idiot crash: What was known?

Definition: Forrest (2002)

Source code of clp

Dissemination: Forrest (2014)

“I gave a bad talk on it years ago”
“You minimize mu*objective + sum of squared primal infeasibilities”
“This is done column by column... you just solve a quadratic to get new value”
“Periodically you reduce mu”

Analysis: Forrest (2014)

“For many problems you finish with a small sum of infeasibilities and an objective a
bit higher than the optimal one”
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Idiot crash: Sounds familiar?

minimize f (x) subject to r(x) = 0

Quadratic penalty method

Minimize
φ(x , µ) = f (x) +

1

2µ
r(x)T r(x)

Decreasing sequence {µk}
xk → x∗ as k →∞
Subproblems increasingly
ill-conditioned as µk decreases

Augmented Lagrangian method

Minimize

φ(x , µ) = f (x) + λT r(x) +
1

2µ
r(x)T r(x)

Decreasing sequence {µk}
λk+1
i = λk

i + µkr(xk)

xk → x∗ and λk → λ∗ rapidly so
ill-conditioning not an issue

Beale (1985)

Quadratic form minimization as
LP crash

Implemented in SCICONIC

Idiot algorithm

Starts like augmented Lagrangian

Finishes like quadratic penalty
method

Julian Hall, Ivet Galabova A quadratic penalty algorithm for linear programming 4 / 18



Idiot crash: Sounds familiar?

minimize f (x) subject to r(x) = 0

Quadratic penalty method

Minimize
φ(x , µ) = f (x) +

1

2µ
r(x)T r(x)

Decreasing sequence {µk}
xk → x∗ as k →∞
Subproblems increasingly
ill-conditioned as µk decreases

Augmented Lagrangian method

Minimize

φ(x , µ) = f (x) + λT r(x) +
1

2µ
r(x)T r(x)

Decreasing sequence {µk}
λk+1
i = λk

i + µkr(xk)

xk → x∗ and λk → λ∗ rapidly so
ill-conditioning not an issue

Beale (1985)

Quadratic form minimization as
LP crash

Implemented in SCICONIC

Idiot algorithm

Starts like augmented Lagrangian

Finishes like quadratic penalty
method

Julian Hall, Ivet Galabova A quadratic penalty algorithm for linear programming 4 / 18



Idiot crash: Sounds familiar?

minimize f (x) subject to r(x) = 0

Quadratic penalty method

Minimize
φ(x , µ) = f (x) +

1

2µ
r(x)T r(x)

Decreasing sequence {µk}
xk → x∗ as k →∞
Subproblems increasingly
ill-conditioned as µk decreases

Augmented Lagrangian method

Minimize

φ(x , µ) = f (x) + λT r(x) +
1

2µ
r(x)T r(x)

Decreasing sequence {µk}
λk+1
i = λk

i + µkr(xk)

xk → x∗ and λk → λ∗ rapidly so
ill-conditioning not an issue

Beale (1985)

Quadratic form minimization as
LP crash

Implemented in SCICONIC

Idiot algorithm

Starts like augmented Lagrangian

Finishes like quadratic penalty
method

Julian Hall, Ivet Galabova A quadratic penalty algorithm for linear programming 4 / 18



Idiot crash: Sounds familiar?

minimize f (x) subject to r(x) = 0

Quadratic penalty method

Minimize
φ(x , µ) = f (x) +

1

2µ
r(x)T r(x)

Decreasing sequence {µk}
xk → x∗ as k →∞
Subproblems increasingly
ill-conditioned as µk decreases

Augmented Lagrangian method

Minimize

φ(x , µ) = f (x) + λT r(x) +
1

2µ
r(x)T r(x)

Decreasing sequence {µk}
λk+1
i = λk

i + µkr(xk)

xk → x∗ and λk → λ∗ rapidly so
ill-conditioning not an issue

Beale (1985)

Quadratic form minimization as
LP crash

Implemented in SCICONIC

Idiot algorithm

Starts like augmented Lagrangian

Finishes like quadratic penalty
method

Julian Hall, Ivet Galabova A quadratic penalty algorithm for linear programming 4 / 18



Idiot crash: Algorithm

minimize f = cTx subject to Ax = b x ≥ 0

The Idiot algorithm: r(x) = Ax − b

Initialize x0 ≥ 0, µ1, λ1 = 0
For k = 1, 2, 3, ...K

xk = arg min
x≥0

h(x) = cTx + λkTr(x) +
1

2µk
r(x)T r(x)

Possibly update µ:
µk+1 = µk/ω, for some factor ω > 1
λk+1 = λk

Else update λ:
µk+1 = µk

λk+1 = µkr(xk)
End
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Idiot crash: Algorithm

Solve subproblem

min
x≥0

h(x) = cTx + λkTr(x) +
1

2µk
r(x)T r(x) where r(x) = Ax − b

approximately by repeated component-wise minimization

Initially

Penalty parameter µ1 ranges between 0.001 and 1000
Perform 20-30 “sample iterations”, minimizing component-wise twice
Possibly abandon Idiot if 10% primal infeasibility reduction not achieved

Then, according to LP dimensions

Number of iterations K ranges between 30 and 200
µ is reduced (every 3 or 6 iterations) by ω = 0.333 (typically)

Final value of µ is around machine precision

λk → 0 rapidly
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Idiot crash: How effective is it?

Results: Speed-up of the clp primal simplex solver when the Idiot crash is used and
the percentage of solution time accounted for by the Idiot crash

Best Worst

Model1 Speed-up Idiot (%) Model1 Speed-up Idiot (%)

Linf 520c 9.4 8.2 fome12 1.1 0.1
stp3d 6.5 0.9 ken-18 1.0 0.7
self 6.1 22.7 dfl001 1.0 0.1
storm 1000 4.5 0.8 pds-80 1.0 0.1
nug15 4.2 0.1 maros-r7 0.9 7.8
storm-125 4.1 10.1 truss 0.8 17.1

Mean speed-up is 1.9; mean solution time accounted for by Idiot is 6%

For only some problems does vanilla clp use the Idiot crash and primal simplex

[1: Results drawn from experiments on 30 Mittelmann benchmarking problems]
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Idiot crash: Effect on clp benchmark performance

Results: Performance of clp relative to cplex, gurobi and xpress

Mittelmann (25/04/18)

Model cplex gurobi xpress clp

Linf 520c 495 574 255 35

nug15 338 12 7 14
qap12 26 1 1 5
qap15 365 12 6 13

self 18 12 15 5

For Linf 520c, clp is vastly faster

For the three QAP linearizations, clp is very much faster than cplex

For self, clp is significantly faster
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Idiot crash: Can it solve LPs?

Results: Accuracy of final point after (up to) 200 Idiot iterations

Residual ‖Ax − b‖2
Objective error |f−f ∗|

max(1,|f ∗|)

Best Worst

Model Residual Objective Model Residual Objective

nug15 2.1×10-10 3.7×10-4 dbic1 3.8×10-1 8.5×10-2

maros-r7 4.0×10-9 2.3×10-5 storm-125 1.4×100 1.2×10-1

pds-100 7.6×10-10 3.7×10-4 truss 7.1×10-1 3.2×10-1

qap15 2.1×10-10 2.8×10-3 mod2 3.9×100 2.1×10-1

lp22 1.1×10-9 1.3×10-3 pilot87 2.1×100 6.8×10-1

dfl001 1.1×10-9 3.7×10-3 world 4.3×100 5.5×10-1

Idiot crash clearly solves some problems to acceptable tolerances

Objective error measure using f ∗ is not an optimality test
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Idiot crash: For what LPs does it work well?

Accuracy measure
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A convenient single quality measure for
the point returned by the Idiot crash is

qual(x) = ‖Ax − b‖ × |f − f ∗|
max(1, |f ∗|)

No problems with low value of qual(x)
have accurate optimal objective
function value but large residual
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Idiot crash: For what LPs does it work well?

Accuracy and condition
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Clear correlation between
accuracy of final point and
cond(A)

Quadratic assignment problems
are particularly well conditioned
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Idiot crash: What can be proved?

minimize f = cTx subject to Ax = b x ≥ 0

The Idiot objective is bounded below for bounded LP problems

The Idiot objective hk(x) = cTx + λkTr(x) +
1

2µk
r(x)T r(x), where r(x) = Ax − b,

has positive semi-definite Hessian ATA, but unboundedness of hk(x) implies
unboundedness of the LP

The Idiot algorithm with exact solution of subproblems converges

Theorem: Suppose, that xk is the exact global minimizer of hk(x) for each k = 1, 2...
and that

{
µk
}
→ 0 as k →∞. Then every limit point of the sequence {xk} is a

solution to the LP problem.

However: Subproblems are not (currently) solved exactly and ill-conditioning due to
small µ mitigates against it
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Idiot crash: What happens next?

Final point is not a vertex (basic) solution

clp performs

Crossover to get a basic solution
Primal simplex to get an optimal solution

Model Speed-up Idiot (%) Residual Objective

qap15 4.0 0.1 2.1×10-10 2.8×10-3

nug15 4.2 0.1 2.1×10-10 3.7×10-4

qap12 2.5 0.6 3.6×10-10 1.7×10-1

storm 1000 4.5 0.8 5.9×10-6 5.9×10-2

stp3d 6.5 0.9 7.0×10-5 2.7×10-2

pds-100 2.5 5.4 7.6×10-10 3.7×10-4

Linf 520c 9.4 8.2 1.1×10-1 9.1×10-3

Idiot is a worthwhile crash, but relatively expensive to establish optimality!
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Idiot crash: Bounding the optimal objective value

Know: If the Idiot crash yields a feasible point x̄∗ then

f ∗ ≤ cT x̄∗ = f̄ ∗

Consider: dual problem

maximize fD = bTy subject to ATy + s = c s ≥ 0

If the Idiot crash yields a feasible point ȳ∗ then

f̄ ∗D = bT ȳ∗ ≤ f ∗

Hence f ∗ lies in the interval [f̄ ∗D , f̄
∗]

Unfortunately: Values of f̄ ∗D don’t (yet) have high accuracy
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Idiot crash: Application to quadratic assignment problem linearizations

Quadratic assignment problem (QAP)

min f (X ) =
∑

i , j , k, l

aikbjlxijxkl s.t. X = [xij ]n×n ∈ Πn

This is a MIQP problem with n2 binary variables and 2n constraints

QAP linearization (Adams and Johnson)

min f (X ) =
∑

i , j , k, l

aikbjlyijkl

s.t.
∑
i

yijkl = xkl , j , k, l = 1, . . . , n;
∑
j

yijkl = xkl , i , k, l = 1, . . . , n

yijkl ≥ 0, i , j , k, l = 1, . . . , n; X = [xij ]n×n ∈ Πn

This is a MILP problem with n2 binary variables; n4 continuous variables yijkl = xijxkl
and n4 + 2n3 + 2n constraints.
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Idiot crash: Application to quadratic assignment problem linearizations

Results: Performance after (up to) 200 Idiot iterations

Model Rows Columns Optimum Residual Objective Error Time

nug05 210 225 50.00 9.4×10-9 50.01 1.5×10-4 0.04
nug06 372 486 86.00 7.8×10-9 86.01 1.2×10-4 0.11
nug07 602 931 148.00 7.9×10-9 148.64 4.3×10-3 0.25
nug08 912 1613 203.50 7.0×10-9 204.41 4.5×10-3 0.47
nug12 3192 8856 522.89 8.8×10-9 523.86 1.8×10-3 2.58
nug15 6330 22275 1041.00 8.9×10-9 1041.38 3.7×10-4 5.13
nug20 15240 72600 2182.00 7.5×10-9 2183.03 4.7×10-4 14.94
nug30 52260 379350 4805.00 1.1×10-8 4811.41 1.3×10-3 82.28

Solution of nug30 intractable using simplex or IPM on the same machine

Idiot crash consistently yields near-optimal solutions

Useful within a branch-and-bound solver?
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Idiot crash: Future work

Exact Idiot

Convergence of component-wise search can be prohibitively slow

Solve

min
x≥0

h(x) = cTx + λkTr(x) +
1

2µk
r(x)T r(x)

directly using conjugate gradient based approach

Preconditioning?

Parallel Idiot

Approximate or exact Idiot dominated by cost of forming Ax
“Obvious” parallelism is memory bound

Problem-specific code?
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Conclusions on the Idiot crash

Has been presented in algorithmic form for the first time

Generally beneficial for the primal revised simplex method

Converges to an optimal solution when subproblems are solved exactly

Consistently and quickly yields near-optimal solutions of QAP linearizations
intractable with simplex or IMP

Slides: http://www.maths.ed.ac.uk/hall/COA18

Report: http://www.maths.ed.ac.uk/hall/GaHa18
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