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No derivatives?

I Analytic expression of f is unavailable or complex

I User do not know/want to calculate derivatives

I f is a black box function

I f is not di�erentiable
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No derivatives?

I Derivatives do not provide useful information

Kolda, Lewis e Torczon (2003)
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The problem

We are interested in solving the following optimization problem

min f (x)
s. t. g(x) ≤ 0

h(x) = 0
x ∈ X ,

where f : Rn → R, g : Rn → Rm, h : Rn → Rp
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The problem

I f can be di�erentiable, but its derivatives are unavailable

I The feasible set

Ω = {x ∈ Rn | g(x) ≤ 0 and h(x) = 0}

has constraints that may or may not have derivatives available

I X ⊆ Rn contains unrelaxable or hard constraints (bounds, black
boxes, etc.)
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The problem

I The computational cost of evaluating f is high

I Find x ∈ Ω ∩ X is computationally cheap, but demands a large
amount of operations

I f cannot be evaluated outside X
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Two-phase optimization
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Two-phase optimization

The optimization process is split into two phases (Martínez, 1998):

I Feasibility (or Restoration): feasibility is improved without objective
function evaluations and bounded deterioration of optimality

No computational impact since f is not
evaluated

I Optimality (or Minimization): objective function value is reduced on a
�relaxed� subproblem

Derivative-free subproblems can be solved
by speci�c algorithms
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Direct searches and �thin� domains

I Direct search for general nonlinear constraints

xk
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Skinny � Direct searches for �thin� domains

Let us consider, for simplicity,

min f (x)
s. t. g(x) ≤ 0

x ∈ X

I Equality constraints are given by two inequalities

I f and g are continuous

I Code: http://fsobral.github.io/skinny
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Algorithm

Feasibility. We try to �nd y such that:

y ∈ X and y ∈ Ωγ = {x ∈ Rn | g(x) ≤ γ}, γ ≥ 0

Optimality. We use well-established algorithms to solve the following
derivative-free subproblem:

min f (x)
s. t. x ∈ Ωγ ∩ X
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Algorithm

xk−1

yk

xk

Ωγk−1
Ωγk

?
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Results

Martínez, JM and Sobral, FNC, (2013). �Constrained derivative-free optimization on thin
domains�. Journal of Global Optimization.

Sobral, FNC Two-phase Derivative-free COA, 2018 9 / 19



IRDF � Inexact-Restoration Derivative-free

Let us consider the following problem

min f (x)
s. t. h(x) = 0

x ∈ X

I f and h are continuously di�erentiable

I The derivatives of h are available

I X contains linear and bound constraints

I The aim is to extend the classical Inexact Restoration results (Fischer
and Friedlander, 2010) to the derivative-free case
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IRDF � Inexact-Restoration Derivative-free

xk

yk

yk + dk

•

h(yk) +∇h(yk)Td = h(yk)

h(x) = 0
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Algorithm

Parameter initialization. k ← 1.

Step 1. (Feasibility) Find yk ∈ X which reduces ‖h(xk)‖.
Step 2. Update the penalty parameter of a certain merit function.

Step 3. (Optimality and regularization) Compute dk , the
approximate solution of

min f (yk + d) + µ‖d‖22
s. t. ∇h(yk)Td = 0

yk + d ∈ X

Step 4. If yk + dk decreases the merit function and the objective
function, then xk+1 = xk + dk .
Otherwise, increase µ and go back to 3.

Step 5. k ← k + 1 and go back to 1.

Sobral, FNC Two-phase Derivative-free COA, 2018 11 / 19



Results

Sobral, FNC Two-phase Derivative-free COA, 2018 12 / 19



Results

I The algorithm is well de�ned
I Feasibility step is always possible
I Penalty parameter is bounded away from zero
I Direction dk is found in a �nite number of iterations

I lim
k→∞
‖h(xk)‖2 = lim

k→∞
‖h(yk)‖2 = lim

k→∞
‖dk‖2 = 0

I Under weak constraint quali�cations, every limit point is stationary

Bueno, LF, Friedlander, A, Martínez, JM and Sobral, FNC (2013). �Inexact Restoration Method
for Derivative-Free Optimization with Smooth Constraints�. SIAM Journal on Optimization.

Sobral, FNC Two-phase Derivative-free COA, 2018 12 / 19



FIRD � Filter Inexact-Restoration Derivative-free

Let us now consider the following problem

min f (x)
s. t. cE(x) = 0

cI(x) ≤ 0

I f , ci : Rn −→ R , for i ∈ E ∪ I are continuously di�erentiable

I The derivatives of the constraints are available

I The aim is to replace
I merit function by �lters
I direct search by a derivative-free trust region algorithm
I extend the results of (Gonzaga, Karas, Vanti, 2003) to the

derivative-free case
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Filters

Let
h(x) =

∥∥c+(x)
∥∥ ,

where

c+i (x) =

{
ci (x), for i ∈ E
max {0, ci (x)} , for i ∈ I

A �lter is a set of pairs F = {( f j , h j), j = 1, . . . , nF}

xk

x2

x1

fk

hk

Ω

hk

f

h

xk

(fk, hk)

f > fk

h > hk

Domain of f Plane f × h
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Filters

Flat �lter (Fletcher and Ley�er, 2002)

Rj =
{
x ∈ Rn

∣∣f (x) ≥ f j − αhj and h(x) ≥ (1− α)hj
}
, α ∈ (0, 1)

f

h

(f i, hi)

(f j , hj)

(f ℓ, hℓ)
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Filters

Slanting �lter (Chin and Fletcher, 2003)

Rj =
{
x ∈ Rn

∣∣f (x) + αh(x) ≥ f j and h(x) ≥ (1− α)hj
}
, α ∈ (0, 1)

(f i, hi)

(f j , hj)

(f ℓ, hℓ)

f

h
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Algorithm

f

h

z
k

x
k+1

x
k
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Algorithm

Step 1. De�ne F̂k = Fk ∪
{(

f k , hk
)}

and F̂k = Fk ∪Rk .

Step 2. (Feasibility) Obtain zk /∈ F̂k close to xk which improves the
infeasibility measure.

Step 3. (Optimality) Compute dk by approximately solving

min f (zk) + dTg + 1
2d

TBd
s. t. JcE(zk)d = 0

cI(zk) + JcI(zk)d ≤ c+I (zk)
‖d‖ ≤ ∆

Step 4. If zk + dk belongs to F̂k or increases f , then reduce ∆,
recompute g and H and go to Step 3.

Step 5. Compute xk+1 = zk + dk , update the �lter and the forbidden
region, Fk+1 and Fk+1 and go to Step 1.
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Results
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Results

I Under reasonable assumptions about the quadratic model, Step 3 is
executed a �nite number of times at each iteration

I The algorithm satis�es an E�ciency Condition (Gonzaga, Karas,
Vanti, 2003)

I The sequence has a stationary accumulation point
I If the slanting �lter is used, any accumulation point of the sequence is

stationary

I Code: https://github.com/fsobral/fird

Ferreira, PS, Karas, EW, Sachine, M, Sobral, FNC (2017). �Global convergence of a
derivative-free inexact restoration �lter algorithm for nonlinear programming�. Optimization.
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Conclusions

I Three two-phase derivative-free algorithms for constrained problems
were presented

I Under usual hypotheses, global convergence to stationary points has
been achieved

I Two-phase algorithms can explore the structure of derivative-free
problems when the computation of the objective function is much
more expensive than the constraints

I Di�erent methods for the feasibility and optimality phases are possible
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Thank you!

fncsobral@uem.br

fsobral.github.io
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I Slide 5: https://www.flickr.com/photos/vcucns/8662668483
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