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No derivatives?

v

Analytic expression of f is unavailable or complex

v

User do not know/want to calculate derivatives

v

f is a black box function

N =

f is not differentiable

v
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No derivatives?

» Derivatives do not provide useful information

=
3

Kolda, Lewis e Torczon (2003)

Sobral, FNC Two-phase Derivative-free COA, 2018 3/19



The problem

We are interested in solving the following optimization problem

min  f(x)

s. t. g(x)<0
h(x) =0
x € X,

where f :R" > R, g : R" - R™, h: R" — RP
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The problem

» f can be differentiable, but its derivatives are unavailable

» The feasible set
Q={xeR"|g(x) <0and h(x) =0}

has constraints that may or may not have derivatives available

» X C R" contains unrelaxable or hard constraints (bounds, black
boxes, etc.)
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The problem

» The computational cost of evaluating f is high

» Find x € QN X is computationally cheap, but demands a large
amount of operations

» f cannot be evaluated outside X
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Two-phase optimization
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Two-phase optimization

The optimization process is split into two phases
» Feasibility (or Restoration): feasibility is improved without objective
function evaluations and bounded deterioration of optimality
No computational impact since f is not
evaluated
» Optimality (or Minimization): objective function value is reduced on a

“relaxed” subproblem

Derivative-free subproblems can be solved
by specific algorithms
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Direct searches and “thin” domains

» Direct search for general nonlinear constraints
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Skinny — Direct searches for “thin” domains

Let us consider, for simplicity,

min  f(x)
s. t. g(x)<0
xe X

» Equality constraints are given by two inequalities

» f and g are continuous

» Code: http://fsobral.github.io/skinny
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Algorithm

Feasibility. We try to find y such that:
yeX and yeQ,={xeR"|g(x)<7} 720

Optimality. We use well-established algorithms to solve the following
derivative-free subproblem:

min  f(x)
s.t. xeQ,NX
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Algorithm

Sobral, FNC Two-phase Derivative-free COA, 2018 8 /19



Results

Number of problems

Martinez, JM and Sobral, FNC, (2013). “Constrained derivative-free optimization on thin
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IRDF — Inexact-Restoration Derivative-free

Let us consider the following problem

min  f(x)
s.t. h(x)=0
xeX
» f and h are continuously differentiable
» The derivatives of h are available
» X contains linear and bound constraints
» The aim is to extend the classical Inexact Restoration results

to the derivative-free case
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IRDF — Inexact-Restoration Derivative-free
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Algorithm

Parameter initialization. k < 1.
Step 1. (Feasibility) Find y* € X which reduces || h(x)||.
Step 2. Update the penalty parameter of a certain merit function.

Step 3. (Optimality and regularization) Compute d*, the
approximate solution of

min  f(y*+ d) + pl|d[3
s.t. Vh(y")Td=0
yk+dex

Step 4. If y¥ + d* decreases the merit function and the objective
function, then x**1 = xk 4 d*.
Otherwise, increase u and go back to 3.

Step 5. k < k+1 and go back to 1.
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Results
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Results

» The algorithm is well defined

» Feasibility step is always possible
» Penalty parameter is bounded away from zero
» Direction d* is found in a finite number of iterations

> lim [[A(x¥)[l2 = lim [[A(y*)[l2 = lim [[d¥]2 =0
k—o0 k—o00 k—o0

» Under weak constraint qualifications, every limit point is stationary

Bueno, LF, Friedlander, A, Martinez, JM and Sobral, FNC (2013). “Inexact Restoration Method
for Derivative-Free Optimization with Smooth Constraints’. SIAM Journal on Optimization.
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FIRD — Filter Inexact-Restoration Derivative-free

Let us now consider the following problem

min  f(x)
s. t. ce(x)=0
CI(X) <0

» f, ¢i:R" — R, for i € EUT are continuously differentiable
» The derivatives of the constraints are available

» The aim is to replace
» merit function by filters
» direct search by a derivative-free trust region algorithm
» extend the results of to the
derivative-free case
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Filters

Let
h(x) = [|c* (]|,
where ) ‘
1oy ocilx), oricé&
6 (x) = { max {0, ¢i(x)}, forieZ

A filter is a set of pairs F = {(f/,hf), j=1,... nf}

) h

_____ g ?x (f*, 15
, .
2, 7
Domain of f Plane f x h
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Filters

Flat filter (Fletcher and Leyffer, 2002)
Ri={xeR"|f(x) > —al and h(x)>(1-a)l}, ac(0,1) }
hl

B 4
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Filters

Slanting filter (Chin and Fletcher, 2003)
Rj={x €R"|f(x)+ah(x) > and h(x)>(1—a)h}, aec(0,1) }

\V
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Algorithm
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Algorithm

Step 1. Define Fy = F, U { (%, h¥)} and F\ = Fi URy.
Step 2. (Feasibility) Obtain zK ¢ 7 close to x* which improves the
infeasibility measure.

Step 3. (Optimality) Compute d* by approximately solving

min  f(z5)+d"g+ 5dT Bd

s. t. Jee(2¥)d =0
cz(zX) + Jez(2¥)d < cf (2¥)
ld]l < A

Step 4. If zK + dk belongs to ]?k or increases f, then reduce A,
recompute g and H and go to Step 3.

Step 5. Compute x*t1 = zk 4 d*, update the filter and the forbidden
region, Fy.1 and Fi1 and go to Step 1.
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Results
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Results

» Under reasonable assumptions about the quadratic model, Step 3 is
executed a finite number of times at each iteration

» The algorithm satisfies an Efficiency Condition

» The sequence has a stationary accumulation point
» If the slanting filter is used, any accumulation point of the sequence is

stationary

» Code: https://github.com/fsobral/fird

Ferreira, PS, Karas, EW, Sachine, M, Sobral, FNC (2017). “Global convergence of a
derivative-free inexact restoration filter algorithm for nonlinear programming”. Optimization.
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https://github.com/fsobral/fird

Conclusions

» Three two-phase derivative-free algorithms for constrained problems
were presented

» Under usual hypotheses, global convergence to stationary points has
been achieved

» Two-phase algorithms can explore the structure of derivative-free
problems when the computation of the objective function is much
more expensive than the constraints

» Different methods for the feasibility and optimality phases are possible
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Thank youl

fncsobral@uem.br

fsobral.github.io

Sobral, FNC Two-phase Derivative-free COA, 2018 18 / 19


fncsobral@uem.br
fsobral.github.io

Credits

P Slide 5: https://www.flickr.com/photos/vcucns/8662668483

Sobral, FNC Two-phase Derivative-free COA, 2018 19 / 19


https://www.flickr.com/photos/vcucns/8662668483

	Introduction
	Two-phase optimization algorithms
	Skinny – Direct searches for ``thin'' domains
	IRDF – Inexact Restoration Derivative-free
	FIRD – Filter Inexact-Restoration Derivative-free

	Conclusions

