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Standard Quadratic Program

Definition

A standard quadratic program involves minimizing a
(nonconvex) quadratic form (i.e., a homogeneous quadratic
function) over the unit simplex.

(StQP) ν(Q) = min{xTQx : x ∈ ∆n},
where ∆n ⊂ Rn denotes the unit simplex given by

∆n = {x ∈ Rn : eT x = 1, x ∈ Rn
+},

and

Q ∈ Sn, where Sn denotes the space of n × n real symmetric matrices,

x ∈ Rn,

e ∈ Rn denotes the vector of all ones, and

Rn
+ denotes the nonnegative orthant in Rn.
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Basic Observations

The term “standard quadratic program” was coined by Bomze.
[Bomze, 1998]

Minimizing a quadratic form is not really restrictive:

xTQx + 2cT x = xT (Q + ceT + ecT )x , ∀x ∈ ∆n.

Therefore,

min{xTQx + 2cT x : x ∈ ∆n} = min{xTQ ′x : x ∈ ∆n} = ν(Q ′),

where Q ′ = Q + ceT + ecT ∈ Sn.

For any γ ∈ R,

ν(Q + γeeT ) = min{xT (Q + γeeT )x : x ∈ ∆n}
= γ + min{xTQx : x ∈ ∆n}
= ν(Q) + γ.

Optimal solution of (StQP) is always attained.
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Applications

Portfolio optimization (e.g., [Markowitz, 1952])

Quadratic resource allocation problem (e.g., [Ibaraki and
Katoh, 1988])

Maximum (weighted) stable set problem [Motzkin and Straus,
1965], [Gibbons et al., 1997]

Social network analysis ([Bomze, 2018])

Copositivity detection (a matrix M ∈ Sn is copositive iff
ν(M) = min{xTMx : x ∈ ∆n} ≥ 0)

NP-hard in general
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Motivation I

In this talk, we are interested in solving (StQP) to global
optimality.

Few specific global solution approaches for standard quadratic
programs.

Adaptive simplicial partitioning [Bundfuss and Dür, 2009]

DC-based branch-and-bound [Bomze, 2002]; clique-based
branch-and-bound [Scozzari and Tardella, 2008], [Liuzzi et
al.,2017]; KKT-based branch-and-bound [Burer and
Vandenbussche, 2009], [Chen and Burer, 2012]
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Motivation II

General purpose solvers (e.g. BARON [Sahinidis, 1996] and
COUENNE [Belotti, 2000]) usually exhibit poor performance.

We focus on MILP reformulations of standard quadratic
programs.

Sophisticated state-of-the-art MILP solvers (e.g., CPLEX,
GUROBI, MOSEK, etc.)

Our work is closely related to the MILP reformulation of
nonconvex quadratic programs [Xia, Vera, and Zuluaga, 2015]

Our MILP reformulations are aimed at exploiting the specific
structure of standard quadratic programs.
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KKT Conditions

Let Q ∈ Sn.
(StQP) ν(Q) = min{xTQx : x ∈ ∆n}.

By the Karush-Kuhn-Tucker optimality conditions, if x ∈ ∆n is an optimal
solution of (StQP), then there exist s ∈ Rn and λ ∈ R such that

Qx − λe − s = 0, (1)

eT x = 1, (2)

x ∈ Rn
+, (3)

s ∈ Rn
+, (4)

xj sj = 0, j = 1, . . . , n. (5)

x ∈ ∆n is a KKT point of (StQP) if there exists (s, λ) ∈ Rn ×R such that (1) –
(5) are satisfied.

By (1), (2), and (5), if x ∈ ∆n is a KKT point of (StQP), then
ν(Q) = xTQx = λ.
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An LCP Reformulation

Therefore, (StQP) can be equivalently reformulated by

(R1) min λ
Qx − λe − s = 0,

eT x = 1,
xjsj = 0, j = 1, . . . , n,
x ≥ 0,
s ≥ 0.

We can linearize the nonconvex complementarity constraints
by using binary variables.
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KKT-Based MILP Reformulation

(MILP1) min λ
Qx − λe − s = 0,

eT x = 1,
xj ≤ yj , j = 1, . . . , n,
sj ≤ Mj(1− yj), j = 1, . . . , n,
x ≥ 0,
s ≥ 0,
yj ∈ {0, 1}, j = 1, . . . , n.

How big should Mj be?
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Big M

Recall
sj ≤ Mj(1− yj), j = 1, . . . , n.

By the first constraint Qx − λe − s = 0, which implies,

sj = eTj Qx − λ, j = 1, . . . , n,

where ej ∈ Rn denotes the jth unit vector, j = 1, . . . , n.

Since x ∈ ∆n, we have eTj Qx = xTQej ≤ maxi=1,...,n Qij .

If we can obtain a lower bound on λ (equivalently, a lower
bound on ν(Q)), then we can use it to obtain an upper bound
on sj , j = 1, . . . , n.
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A Simple Lower Bound on ν(Q)

Let Q ∈ Sn and let λ ∈ R.

Suppose that Q − λeeT satisfies ν(Q − λeeT ) ≥ 0. Then,

xT
(
Q − λeeT

)
x = xTQx−λ ≥ ν(Q−λeeT ) = ν(Q)−λ ≥ 0, ∀x ∈ ∆n.

Therefore, if ν(Q − λeeT ) ≥ 0, then ν(Q) ≥ λ.

How can we ensure that ν(Q − λeeT ) ≥ 0?

If Q − λeeT has nonnegative components, then ν(Q − λeeT ) ≥ 0, since

xT
(
Q − λeeT

)
x = xTQx − λ ≥ 0, ∀x ∈ ∆n.
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Therefore, if ν(Q − λeeT ) ≥ 0, then ν(Q) ≥ λ.

How can we ensure that ν(Q − λeeT ) ≥ 0?

If Q − λeeT has nonnegative components, then ν(Q − λeeT ) ≥ 0, since

xT
(
Q − λeeT

)
x = xTQx − λ ≥ 0, ∀x ∈ ∆n.
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A Simple Lower Bound on ν(Q)

The best lower bound is given by

ν(Q) ≥ sup{λ : Q − λeeT has nonnegative components},

= sup{λ : Qij ≥ λ, i = 1, . . . , n; j = 1, . . . , n}.

Clearly, the best lower bound is given by λ1 = min1≤i≤j≤n Qij .

We obtain ν(Q) ≥ λ1 = min1≤i≤j≤n Qij .

This lower bound can be slightly sharpened if Q − λ1ee
T has strictly

positive entries along the main diagonal. [Bomze et al., 2008].

Henceforth, `1(Q) denotes the slightly sharpened lower bound, i.e.,

(LB1) ν(Q) ≥ `1(Q) := min
1≤i≤j≤n

Qij +
1

n∑
k=1

(1/(Qkk −min1≤i≤j≤n Qij))
.
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A Tighter Lower Bound

Let Q ∈ Sn and let λ ∈ R.

Recall: If ν(Q − λeeT ) ≥ 0, then ν(Q) ≥ λ.

Can we obtain a larger class of matrices that satisfy
ν(Q − λeeT ) ≥ 0?

If ν(Q − λeeT ) = S1 + S2, where S1 ∈ Sn is positive semidefinite
and S2 ∈ Sn has nonnegative components, then ν(Q − λeeT ) ≥ 0
(such matrices are called SPN).

The best lower bound is given by

(LB2) ν(Q) ≥ `2(Q) := max{λ : Q − λeeT is SPN}.

Alternative MILP Formulations for Globally Solving Standard Quadratic Programs E. Alper Yıldırım 14/34



Outline
Introduction

Two MILP Formulations
Computational Results

Conclusions

KKT-Based Reformulation
Upper Bounds on Big M
An Alternative MILP Formulation
Valid Inequalities

A Tighter Lower Bound

Let Q ∈ Sn and let λ ∈ R.

Recall: If ν(Q − λeeT ) ≥ 0, then ν(Q) ≥ λ.

Can we obtain a larger class of matrices that satisfy
ν(Q − λeeT ) ≥ 0?

If ν(Q − λeeT ) = S1 + S2, where S1 ∈ Sn is positive semidefinite
and S2 ∈ Sn has nonnegative components, then ν(Q − λeeT ) ≥ 0
(such matrices are called SPN).

The best lower bound is given by

(LB2) ν(Q) ≥ `2(Q) := max{λ : Q − λeeT is SPN}.

Alternative MILP Formulations for Globally Solving Standard Quadratic Programs E. Alper Yıldırım 14/34



Outline
Introduction

Two MILP Formulations
Computational Results

Conclusions

KKT-Based Reformulation
Upper Bounds on Big M
An Alternative MILP Formulation
Valid Inequalities

A Tighter Lower Bound

Let Q ∈ Sn and let λ ∈ R.

Recall: If ν(Q − λeeT ) ≥ 0, then ν(Q) ≥ λ.

Can we obtain a larger class of matrices that satisfy
ν(Q − λeeT ) ≥ 0?

If ν(Q − λeeT ) = S1 + S2, where S1 ∈ Sn is positive semidefinite
and S2 ∈ Sn has nonnegative components, then ν(Q − λeeT ) ≥ 0
(such matrices are called SPN).

The best lower bound is given by

(LB2) ν(Q) ≥ `2(Q) := max{λ : Q − λeeT is SPN}.

Alternative MILP Formulations for Globally Solving Standard Quadratic Programs E. Alper Yıldırım 14/34



Outline
Introduction

Two MILP Formulations
Computational Results

Conclusions

KKT-Based Reformulation
Upper Bounds on Big M
An Alternative MILP Formulation
Valid Inequalities

A Tighter Lower Bound

Let Q ∈ Sn and let λ ∈ R.

Recall: If ν(Q − λeeT ) ≥ 0, then ν(Q) ≥ λ.

Can we obtain a larger class of matrices that satisfy
ν(Q − λeeT ) ≥ 0?

If ν(Q − λeeT ) = S1 + S2, where S1 ∈ Sn is positive semidefinite
and S2 ∈ Sn has nonnegative components, then ν(Q − λeeT ) ≥ 0
(such matrices are called SPN).

The best lower bound is given by

(LB2) ν(Q) ≥ `2(Q) := max{λ : Q − λeeT is SPN}.

Alternative MILP Formulations for Globally Solving Standard Quadratic Programs E. Alper Yıldırım 14/34



Outline
Introduction

Two MILP Formulations
Computational Results

Conclusions

KKT-Based Reformulation
Upper Bounds on Big M
An Alternative MILP Formulation
Valid Inequalities

A Tighter Lower Bound

Let Q ∈ Sn and let λ ∈ R.

Recall: If ν(Q − λeeT ) ≥ 0, then ν(Q) ≥ λ.

Can we obtain a larger class of matrices that satisfy
ν(Q − λeeT ) ≥ 0?

If ν(Q − λeeT ) = S1 + S2, where S1 ∈ Sn is positive semidefinite
and S2 ∈ Sn has nonnegative components, then ν(Q − λeeT ) ≥ 0
(such matrices are called SPN).

The best lower bound is given by

(LB2) ν(Q) ≥ `2(Q) := max{λ : Q − λeeT is SPN}.

Alternative MILP Formulations for Globally Solving Standard Quadratic Programs E. Alper Yıldırım 14/34



Outline
Introduction

Two MILP Formulations
Computational Results

Conclusions

KKT-Based Reformulation
Upper Bounds on Big M
An Alternative MILP Formulation
Valid Inequalities

Comparison of Lower Bounds

Recall

ν(Q) ≥ `1(Q) = min
1≤i≤j≤n

Qij +
1

n∑
k=1

(1/(Qkk −min1≤i≤j≤n Qij))
,

ν(Q) ≥ `2(Q) = max{λ : Q − λeeT is SPN}.

We have `1(Q) ≤ `2(Q).

`1(Q) can be computed in O(n2) time whereas `2(Q) can be
computed by solving a semidefinite program.

There exist other lower bounds in the literature (see, e.g., [Nowak,
1999], [Bomze and de Klerk, 2002], [Anstreicher and Burer, 2005];
and [Bomze et al., 2008] for a comparison)

Usually, trade-off between quality and computational cost.
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Back to KKT-Based MILP Formulation

Recall the KKT-based MILP formulation of (StQP):

(MILP1) min λ
Qx − λe − s = 0,

eT x = 1,
xj ≤ yj , j = 1, . . . , n,
sj ≤ Mj (1− yj ), j = 1, . . . , n,
x ≥ 0,
s ≥ 0,
yj ∈ {0, 1}, j = 1, . . . , n.

For any feasible solution (x , y , s, λ), we have

λ ≥ ν(Q),

sj = eTj Qx − λ, j = 1, . . . , n.
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Choice of Big M

Therefore,

sj = xTQej − λ ≤ max
i=1,...,n

Qij − ν(Q) ≤ max
i=1,...,n

Qij − `,

where ` is any lower bound on ν(Q).

Therefore, we can substitute Mj := maxi=1,...,n Qij − ` in the
constraint sj ≤ Mj(1− yj), j = 1, . . . , n.

In theory, one can use any lower bound ` on ν(Q).

In practice, however, larger values of big M tend to yield
poorer linear programming relaxations and may lead to
numerical instability.
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A Different Perspective

For x ∈ ∆n, the support set is given by

P(x) = {j ∈ {1, . . . , n} : xj > 0} .

Lemma

Let x ∈ ∆n and let Q ∈ Sn. Then,

min
j∈P(x)

eTj Qx ≤ xTQx ≤ max
j∈P(x)

eTj Qx .

Furthermore, if x ∈ ∆n is a KKT point of (StQP), then

min
j∈P(x)

eTj Qx = xTQx = max
j∈P(x)

eTj Qx .
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A Min-Max Characterization

Proposition

Given an instance of (StQP),

ν(Q) = min{xTQx : x ∈ ∆n} = min
x∈∆n

max
j∈P(x)

eTj Qx .
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An Alternative Min-Max MILP Formulation

(MILP2) min α

eTj Qx ≤ α + zj , j = 1, . . . , n,
eT x = 1,
xj ≤ yj , j = 1, . . . , n,
zj ≤ Uj(1− yj), j = 1, . . . , n,
x ≥ 0,
z ≥ 0,
yj ∈ {0, 1}, j = 1, . . . , n.

Remark

Given an instance of (StQP), (MILP2) is an equivalent reformulation of (StQP)
if

Uj ≥ Mj , j = 1, . . . , n,

where Mj = maxi=1,...,n Qij − ` and ` is any valid lower bound on ν(Q).
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A Comparison of Two Formulations

There is a one-to-one correspondence between feasible
solutions (x , y , s, λ) of the KKT-based formulation (MILP1)
and KKT points of (StQP).

On the other hand, for any x ∈ ∆n, we can construct a
feasible solution (x , y , z , α) of the min-max based formulation
(MILP2) such that α ≥ xTQx , with equality if x is a KKT
point of (StQP).

Therefore, (MILP2) is an exact relaxation of (MILP1).
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Convexity Graph

(StQP) ν(Q) = min{xTQx : x ∈ ∆n}

∆n has n vertices e1, . . . , en and
(
n
2

)
edges.

The restriction of xTQx along the edge between ei and ej is strictly
convex iff Qii + Qjj − 2Qij > 0, 1 ≤ i < j ≤ n.

Definition

A graph G = (V ,E) is called the convexity graph of Q if V = {1, . . . , n} and

E = {(i , j) : Qii + Qjj − 2Qij > 0, 1 ≤ i < j ≤ n}.

Theorem (Scozzari and Tardella, 2008)

There exists an optimal solution x∗ ∈ ∆n of (StQP) such that the vertices
corrresponding to P(x∗) form a clique in the convexity graph G = (V ,E) of Q.
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Valid Inequalities

Recall the convexity graph G = (V ,E), where V = {1, . . . , n} and

E = {(i , j) : Qii + Qjj − 2Qij > 0, 1 ≤ i < j ≤ n}.

There is an optimal solution x∗ ∈ ∆n of (StQP) such that the vertices
corresponding to P(x∗) form a clique in G = (V ,E).

Vertices corresponding to P(x∗) form a stable (independent) set in the
complement of G .

Theorem

The following inequalities are valid for both (MILP1) and (MILP2):

yi + yj ≤ 1, 1 ≤ i < j ≤ n s.t. Qii + Qjj − 2Qij ≤ 0.
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Computational Experiment I

No standard test problems for (StQP)

We used (StQP) instances generated by [Nowak, 1999] (later used
by [Scozzari and Tardella, 2008] and [Liuzzi et al., 2017]; made
publicly available by Giampaolo Liuzzi)

Randomly generated instances with convexity graphs having a
prespecified density δ (n ∈ {100, 200} and δ ∈ {0.25, 0.5, 0.75}).

Difficulty increases as δ increases.

Six instances for each choice of (n, δ) (total of 36 instances)
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Computational Setup

Two MILP formulations (KKT-Based and Min-Max Based)

Two lower bounds (`1(Q) and `2(Q))

All valid inequalities vs no valid inequalities

Our implementation uses the YALMIP interface in (MATLAB
2017b). We use CPLEX 12.8 as an MILP solver and MOSEK 8) as
an SDP solver.

Four Intel Xeon CPUs (E5-4610 @ 1.80 Ghz), 10 cores per socket, 2
threads per core, 512 GB RAM, Redhat Enterprise Linux.

We imposed a CPU time limit of 3600 seconds for MILP problems
(CPLEX uses at most 32 threads).

We used MATLAB’s fmincon to compute a quick upper bound.
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Computational Results I - Base Models

KKT MIN-MAX DNN fmincon

Instance `1(Q) `2(Q) `1(Q) `2(Q) Time Time
(100, 0.25) 0.62 0.49 0.38 0.36 14.04 1.72
(100, 0.5) 0.71 0.79 0.45 0.44 14.66 1.43

(100, 0.75) 2.28 2.03 0.86 0.48 15.49 1.10
(200, 0.25) 2.81 1.46 2.03 1.48 270.92 11.26
(200, 0.5) 14.65 11.83 7.74 0.99 297.44 7.98

(200, 0.75) 67.70 88.55 14.56 2.07 350.84 5.05

Table: Average Results
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Computational Results I - Valid Inequalities

KKT MIN-MAX DNN fmincon

Instance # of VIs `1(Q) `2(Q) `1(Q) `2(Q) Time Time
(100, 0.25) 3712 1.33 0.96 0.97 0.75 14.04 1.72
(100, 0.5) 2484 1.09 1.13 0.70 0.79 14.66 1.43

(100, 0.75) 1219 2.52 2.24 1.03 0.73 15.49 1.10
(200, 0.25) 14923 9.83 7.91 8.06 4.86 270.92 11.26
(200, 0.5) 9958 27.75 9.85 11.83 4.28 297.44 7.98

(200, 0.75) 4914 76.19 83.83 31.46 6.99 350.84 5.05

Table: Average Results
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Overall Comparison and Discussion

KKT MIN-MAX
`1(Q) `2(Q) `1(Q) `2(Q)

No VIs 532.57 630.82 156.13 34.99
VIs 712.30 635.51 324.19 110.38

Table: Cumulative Results

Total time for solving the DNN relaxation is 5780.35.

Each matrix Q has about n/2 negative and n/2 positive eigenvalues.

DNN relaxation was exact on all instances!

The support of optimal solutions was in the range 3, . . . , 7.
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Computational Experiments

We tested MILP formulations on the maximum stable set problem.

Let G = (V ,E) be a simple, undirected graph.

A set S ⊆ V is a stable set if each pair of vertices in S is mutually nonadjacent.

The maximum stable set problem is concerned with finding a stable set with the
largest cardinality, denoted by α(G).

[Motzkin and Straus, 1965]

1

α(G)
= min

{
xT (I + AG )x : x ∈ ∆n

}

We also solve another ILP formulation:

α(G) = max


n∑

j=1

xj : xi + xj ≤ 1, (i , j) ∈ E , xj ∈ {0, 1}, j = 1, . . . , n


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xj : xi + xj ≤ 1, (i , j) ∈ E , xj ∈ {0, 1}, j = 1, . . . , n
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Computational Results I - Base Models

KKT MIN-MAX ILP DNN
Instance n |E | δ α(G) `1(Q) `2(Q) `1(Q) `2(Q) Time Time
johnson8-2-4.co 28 168 0.56 4 0.28 0.22 0.19 0.15 0.04 0.15
MANN-a9.co 45 72 0.93 16 3.96 19.39 4.8 1.95 0.16 0.67
hamming6-4.co 64 1312 0.35 4 0.26 0.13 0.17 0.17 0.22 1.53
hamming6-2.co 64 192 0.9 32 2.13 0.46 0.25 0.21 0.03 1.88
johnson8-4-4.co 70 560 0.77 14 0.28 0.31 0.58 0.28 0.03 2.62
johnson16-2-4.co 120 1680 0.76 8 0.38 0.19 0.38 0.12 0.04 20.27
C125.9.co 125 787 0.9 34 (73%) (9%) (73%) (9%) 0.39 44.74
keller4.co 171 5100 0.65 11 (21%) 222.59 26.28 32.58 2.71 179.32
c-fat200-1.co 200 18366 0.08 12 1.54 0.28 1.17 0.22 11.59 197.5
c-fat200-2.co 200 16665 0.16 24 1.59 0.79 1.39 1.11 9.57 228.37
c-fat-200-5.co 200 11427 0.43 58 1.56 1.5 0.99 1.08 4.34 228.15
brock200-2.co 200 10024 0.5 12 148.17 109.31 102.08 93.37 13.41 319.01
brock200-3.co 200 7852 0.61 15 3380.29 1473.09 929.61 1205.56 34.16 319.22
brock200-4.co 200 6811 0.66 17 (93%) (24%) (92%) 2125.48 33.59 323.92
brock200-1.co 200 5066 0.75 21 (91%) (26%) (90%) (26%) 62.47 349.36
sanr200-0.7.co 200 6032 0.7 18 (92%) (24%) (92%) (24%) 57.42 321.44
sanr200-0.9.co 200 2037 0.9 42 (79%) (16%) (80%) (14%) 51.26 353.87
san200-0.7-2.co 200 5970 0.7 18 (93%) (17%) (93%) (17%) 1.07 450.41
san200-0.7-1.co 200 5970 0.7 30 (92%) (43%) (85%) (43%) 0.33 270.1

Table: DIMACS Instances
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Computational Results I - Valid Inequalities

KKT MIN-MAX ILP DNN
Instance n |E | δ α(G) `1(Q) `2(Q) `1(Q) `2(Q) Time Time
johnson8-2-4.co 28 168 0.56 4 0.16 0.02 0.21 0.21 0.04 0.15
MANN-a9.co 45 72 0.93 16 0.48 0.29 0.5 0.31 0.16 0.67
hamming6-4.co 64 1312 0.35 4 0.5 0.16 0.44 0.2 0.22 1.53
hamming6-2.co 64 192 0.9 32 0.39 0.5 0.24 0.24 0.03 1.88
johnson8-4-4.co 70 560 0.77 14 0.99 0.24 1.19 0.18 0.03 2.62
johnson16-2-4.co 120 1680 0.76 8 0.56 0.03 0.43 0.16 0.04 20.27
C125.9.co 125 787 0.9 34 5.21 9.52 5.32 2.15 0.39 44.74
keller4.co 171 5100 0.65 11 35.68 26.17 28.28 29.76 2.71 179.32
c-fat200-1.co 200 18366 0.08 12 14.25 1.85 43.98 1.73 11.59 197.5
c-fat200-2.co 200 16665 0.16 24 13.5 1.73 31.38 1.65 9.57 228.37
c-fat-200-5.co 200 11427 0.43 58 5.9 5.42 10.94 5.09 4.34 228.15
brock200-2.co 200 10024 0.5 12 64.86 75.64 77.25 60.27 13.41 319.01
brock200-3.co 200 7852 0.61 15 178.06 105.28 204.35 171.24 34.16 319.22
brock200-4.co 200 6811 0.66 17 197.58 193.29 245.55 197.95 33.59 323.92
brock200-1.co 200 5066 0.75 21 880.32 1690.36 528.01 499.21 62.47 349.36
sanr200-0.7.co 200 6032 0.7 18 308.89 231.84 380.09 227.66 57.42 321.44
sanr200-0.9.co 200 2037 0.9 42 (78%) (14%) 2261.92 (14%) 51.26 353.87
san200-0.7-2.co 200 5970 0.7 18 34.19 9.32 25.1 9.45 1.07 450.41
san200-0.7-1.co 200 5970 0.7 30 25.06 62.11 58.43 143.72 0.33 270.1

Table: DIMACS Instances
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Overall Comparison and Discussion

KKT MIN-MAX
`1(Q) `2(Q) `1(Q) `2(Q)

No VIs 32496 (8) 27154 (7) 26427 (8) 25115 (7)
VIs 5383 (1) 6030 (1) 3904 (0) 4965 (1)

Table: Cumulative Results on 19 DIMACS instances

Total time for solving the DNN relaxation is 3613.

Total time for solving ILP is 283.
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Concluding Remarks

We considered solving standard quadratic programs by using
two alternative MILP reformulations.

We used two different upper bounds on the parameters
Mj , j = 1, . . . , n.

We proposed valid inequalities.

Encouraging computational results on certain sets of
instances.

Performance on hard instances ([Bomze et al., 2017]?

Comparison with other branch-and-bound approaches?
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