Generalized Gauss Inequalities via Semidefinite Programming

Bart Van Parys,¹ Paul Goulart,¹ Daniel Kuhn²

¹Automatic Control Laboratory Eidgenössische Technische Hochschule Zürich (ETHZ)

²Risk Analytics and Optimization Chair École Polytechnique Fédérale de Lausanne (EPFL)

Bounding Univariate Tail Probabilities

Bounding Univariate Tail Probabilities

Pafnuty Chebyshev (1821–1894)

Chebyshev (1867): For $\xi \sim (\mu, \sigma)$

$$\mathbb{P}(|\xi - \mu| \ge \kappa \sigma) \le \frac{1}{\kappa^2} \quad (\kappa \ge 1)$$

Bounding Univariate Tail Probabilities

Pafnuty Chebyshev (1821–1894)

Chebyshev (1867): For $\xi \sim (\mu, \sigma)$

$$\mathbb{P}(|\xi - \mu| \ge \kappa \sigma) \le \frac{1}{\kappa^2} \quad (\kappa \ge 1)$$

Gauss (1823): For $\xi \sim (\mu, \sigma)$ unimodal

$$\mathbb{P}(|\xi - \mu| \ge \kappa \sigma) \le \frac{4}{9\kappa^2} \quad (\kappa \ge \frac{2}{\sqrt{3}})$$

Carl Friedrich Gauss (1777–1855)

Optimization Perspective

Worst-case probability problems:

 $\sup_{\mathbb{P}\in\mathcal{P}}\mathbb{P}(\boldsymbol{\xi}\notin\boldsymbol{\Xi})=?$

ambiguity set.

open polyhedron

$$\Xi = \left\{ \boldsymbol{\xi} : \boldsymbol{a}_i^{\top} \boldsymbol{\xi} < \boldsymbol{b}_i \ \forall i = 1, \dots, k \right\}$$

Optimization Perspective

Worst-case probability problems:

$$\sup_{\mathbb{P}\in\mathcal{P}}\mathbb{P}(\boldsymbol{\xi}\notin\boldsymbol{\Xi})=?$$

ambiguity set.

open polyhedron

$$\Xi = \left\{ \boldsymbol{\xi} : \boldsymbol{a}_i^{\top} \boldsymbol{\xi} < \boldsymbol{b}_i \ \forall i = 1, \dots, k \right\}$$

Chebyshev: $\mathcal{P} = \text{set of all distributions with mean } \mu \text{ and variance } \sigma^2$

$$\Xi = \{ \xi : \mu - \kappa \sigma < \xi < \mu + \kappa \sigma \}$$

Optimization Perspective

Worst-case probability problems:

 $\sup_{\mathbb{P}\in\mathcal{P}}\mathbb{P}(\boldsymbol{\xi}\notin\boldsymbol{\Xi})=?$

ambiguity set

open polyhedron

$$\Xi = \left\{ \boldsymbol{\xi} : \boldsymbol{a}_i^{\top} \boldsymbol{\xi} < \boldsymbol{b}_i \ \forall i = 1, \dots, k \right\}$$

Gauss: $\mathcal{P} = \text{set of all unimodal distributions with mean } \mu \text{ and variance } \sigma^2$

$$\Xi = \{ \xi : \mu - \kappa \sigma < \xi < \mu + \kappa \sigma \}$$

Multivariate Chebyshev Bound

$$\mathcal{P}(\mu, \mathcal{S}) = \{\mathbb{P} : \mathbb{E}_{\mathbb{P}}(\xi) = \mu, \ \mathbb{E}_{\mathbb{P}}(\xi \xi^{\mathsf{T}}) = \mathcal{S}\}$$

Multivariate Chebyshev Bound

$$\mathcal{P}(\mu, \mathcal{S}) = \{\mathbb{P} : \mathbb{E}_{\mathbb{P}}(\xi) = \mu, \ \mathbb{E}_{\mathbb{P}}(\xi \xi^{\top}) = \mathcal{S}\}$$

Vandengerghe, Boyd, Comanor (2007):

$$\sup_{\mathbb{P}\in\mathcal{P}(\mu,S)} \mathbb{P}(\xi \notin \Xi) = \max_{\substack{i=1 \ S}} \sum_{i=1}^{k} \lambda_{i}$$
s.t. $a_{i}^{\top} z_{i} \geq b_{i} \lambda_{i} \quad \forall i = 1, \dots, k$

$$\sum_{i=1}^{k} \begin{pmatrix} Z_{i} & z_{i} \\ z_{i}^{\top} & \lambda_{i} \end{pmatrix} \preceq \begin{pmatrix} S & \mu \\ \mu^{\top} & 1 \end{pmatrix}$$

$$\begin{pmatrix} Z_{i} & z_{i} \\ z_{i}^{\top} & \lambda_{i} \end{pmatrix} \succeq 0 \quad \forall i = 1, \dots, k$$

$$\mathcal{P}_{\star}(\mu,\mathcal{S}) = \left\{ \mathbb{P} \text{ star-unimodal} : \mathbb{E}_{\mathbb{P}}(\xi) = \mu, \ \mathbb{E}_{\mathbb{P}}(\xi\xi^{\top}) = \mathcal{S} \right\}$$

$$\mathcal{P}_{\star}(\mu, \mathcal{S}) = \{ \mathbb{P} \text{ star-unimodal} : \mathbb{E}_{\mathbb{P}}(\xi) = \mu, \ \mathbb{E}_{\mathbb{P}}(\xi \xi^{\top}) = \mathcal{S} \}$$

Definition: If \mathbb{P} has a continuous pdf f, then \mathbb{P} is star-unimodal if $f(t\xi)$ is non-increasing in t>0 for all $\xi\neq 0$.

$$\mathcal{P}_{\star}(\mu, \mathcal{S}) = \left\{ \mathbb{P} \text{ star-unimodal} : \mathbb{E}_{\mathbb{P}}(\xi) = \mu, \ \mathbb{E}_{\mathbb{P}}(\xi \xi^{\top}) = \mathcal{S} \right\}$$

Definition: If \mathbb{P} has a continuous pdf f, then \mathbb{P} is star-unimodal if $f(t\xi)$ is non-increasing in t>0 for all $\xi\neq 0$.

$$\mathcal{P}_{\star}(\mu, \mathcal{S}) = \left\{ \mathbb{P} \text{ star-unimodal} : \mathbb{E}_{\mathbb{P}}(\xi) = \mu, \ \mathbb{E}_{\mathbb{P}}(\xi \xi^{\top}) = \mathcal{S} \right\}$$

Van Parys, Goulart, K. (2014):

$$\sup_{\mathbb{P}\in\mathcal{P}_{\star}(\mu,S)} \mathbb{P}(\xi \notin \Xi) = \max \sum_{i=1}^{k} \lambda_{i} - \tau_{i}$$
s.t. $a^{\top}z_{i} \geq 0, \ \tau_{i} \geq 0 \quad \forall i = 1, \dots, k$

$$\tau_{i}(a_{i}^{\top}z_{i})^{n} \geq \lambda_{i}^{n+1}b_{i}^{n} \quad \forall i = 1, \dots, k$$

$$\sum_{i=1}^{k} \begin{pmatrix} Z_{i} & z_{i} \\ z_{i}^{\top} & \lambda_{i} \end{pmatrix} \leq \begin{pmatrix} \frac{n+2}{n}S & \frac{n+1}{n}\mu \\ \frac{n+1}{n}\mu^{\top} & 1 \end{pmatrix}$$

$$\begin{pmatrix} Z_{i} & z_{i} \\ z_{i}^{\top} & \lambda_{i} \end{pmatrix} \succeq 0 \quad \forall i = 1, \dots, k$$

State-of-the-Art: The Duality Method

- Worst-case probability problem is an infinite-dimensional LP;
- Dual LP is a semi-infinite LP/robust optimization problem;
- Dual can often be reformulated as a tractable conic program:
 - * Bertsimas & Popescu (2005): SOS techniques
 - * Popescu (2005): SOS techniques and Choquet theory;
 - * Boyd, Vandenberghe & Comanor (2007): S-lemma;
 - * Delage & Ye (2010): Ellipsoid method;
 - * Zymler, K. & Rustem (2013): Farkas lemma and S-lemma;
 - * etc.

Outline

- Different Degrees of Unimodality
- Choquet Representations
 - The Set of All Distributions
 - The Set of Star-unimodal Distributions
 - The Set of α-Unimodal Distributions
- Generalized Probability Bounds
 - Feasibility Conditions
 - Structure of Extremal Distributions
 - SDP Reformulation
- Extensions

Outline

- Different Degrees of Unimodality
- Choquet Representations
 - The Set of All Distributions
 - The Set of Star-unimodal Distributions
 - The Set of α-Unimodal Distributions
- Generalized Probability Bounds
 - Feasibility Conditions
 - Structure of Extremal Distributions
 - SDP Reformulation
- Extensions

Different Degrees of Unimodality

Definition: If \mathbb{P} has a continuous pdf f, then \mathbb{P} is α -unimodal if

 $t^{n-\alpha}f(t\xi)$ is non-increasing in t>0 for all $\xi\neq 0$.

Example: n = 1, $\alpha = 2$

pdf

Definition: \mathcal{P}_{α} = weak closure of the set of

all a-unimodal distributions.

α-Unimodal Probability Bounds

Goal: Compute
$$\sup_{\mathbb{P}\in\mathcal{P}_{\alpha}(\mu,\mathcal{S})}\mathbb{P}(\xi\notin\Xi)$$

Ambiguity set:
$$\mathcal{P}_{\alpha}(\mu, \mathcal{S}) = \mathcal{P}_{\alpha} \cap \mathcal{P}(\mu, \mathcal{S})$$
 structural moment information information

α-Unimodal Probability Bounds

Goal: Compute
$$\sup_{\mathbb{P}\in\mathcal{P}_{\alpha}(\mu,\mathcal{S})}\mathbb{P}(\xi\notin\Xi)$$

Ambiguity set:
$$\mathcal{P}_{\alpha}(\mu, S) = \mathcal{P}_{\alpha} \cap \mathcal{P}(\mu, S)$$

Special cases: $cl(\cup_{\alpha=1}^{\infty} \mathcal{P}_{\alpha}) = \mathcal{P}_{\infty} = \text{set of all distributions} \\ \Longrightarrow \text{Generlized Chebyshev bounds}$

 \mathcal{P}_n = set of all star-unimodal distributions \Longrightarrow Generalized Gauss bounds

Outline

- Different Degrees of Unimodality
- Choquet Representations
 - The Set of All Distributions
 - The Set of Star-unimodal Distributions
 - The Set of α-Unimodal Distributions
- Generalized Probability Bounds
 - Feasibility Conditions
 - Structure of Extremal Distributions
 - SDP Reformulation
- Extensions

Outline

- Different Degrees of Unimodality
- Choquet Representations
 - The Set of All Distributions
 - The Set of Star-unimodal Distributions
 - The Set of α-Unimodal Distributions
- Generalized Probability Bounds
 - Feasibility Conditions
 - Structure of Extremal Distributions
 - SDP Reformulation
- Extensions

Choquet Representations

Minkowski: Every point in a compact convex set $\mathcal{P} \subset \mathbb{R}^n$ is the mean of a distribution on $ex\mathcal{P}$.

$$p = \sum_{i} m_{i} \delta_{i}$$

probability distribution on ex \mathcal{P}

Choquet Representations

Minkowski: Every point in a compact convex set $\mathcal{P} \subset \mathbb{R}^n$ is the mean of a distribution on $ex\mathcal{P}$.

A convex set \mathcal{P} of distributions admits a Choquet representation if $\forall \mathbb{P} \in \mathcal{P}$ there is a distribution m on ex \mathcal{P} with:

$$\mathbb{P}(\cdot) = \int_{\mathsf{ex}\,\mathcal{P}} \delta(\cdot)\, m(\mathsf{d}\delta)$$
 mixture distribution

Outline

- Different Degrees of Unimodality
- Choquet Representations
 - The Set of All Distributions
 - The Set of Star-unimodal Distributions
 - The Set of α-Unimodal Distributions
- Generalized Probability Bounds
 - Feasibility Conditions
 - Structure of Extremal Distributions
 - SDP Reformulation
- Extensions

The Set of all Distributions

The Set of all Distributions

The Set of all Distributions

Outline

- Different Degrees of Unimodality
- Choquet Representations
 - The Set of All Distributions
 - The Set of Star-unimodal Distributions
 - The Set of α-Unimodal Distributions
- Generalized Probability Bounds
 - Feasibility Conditions
 - Structure of Extremal Distributions
 - SDP Reformulation
- Extensions

Outline

- Different Degrees of Unimodality
- Choquet Representations
 - The Set of All Distributions
 - The Set of Star-unimodal Distributions
 - The Set of α-Unimodal Distributions
- Generalized Probability Bounds
 - Feasibility Conditions
 - Structure of Extremal Distributions
 - SDP Reformulation
- Extensions

Unimodal Univariate Distributions

Unimodal Univariate Distributions

Unimodal Univariate Distributions

Khinchine (1938):
$$\mathbb{P}(\cdot) = \int_{-\infty}^{+\infty} \delta_{[0,x]}^{1}(\cdot) \, m(\mathrm{d}x)$$
 uniform distrimixture bution on $[0,x]$ distribution

Unimodal Bivariate Distributions

Multivariate unimodal distributions can be decomposed into uniform distributions on star-shaped sets.

Uniform Distributions on Star-shaped Sets

Uniform Distributions on Star-shaped Sets

Uniform Distributions on Star-shaped Sets

 $\delta^2_{[0,x]}$ is the distribution on [0,x] with $\delta^2_{[0,x]}([0,tx])=t^2\ orall t\in [0,1].$

Unimodal Bivariate Distributions

radial unimodal distribution on [0, x] distribution

mixture

- Different Degrees of Unimodality
- Choquet Representations
 - The Set of All Distributions
 - The Set of Star-unimodal Distributions
 - The Set of α-Unimodal Distributions
- Generalized Probability Bounds
 - Feasibility Conditions
 - Structure of Extremal Distributions
 - SDP Reformulation
- Extensions

- Different Degrees of Unimodality
- Choquet Representations
 - The Set of All Distributions
 - The Set of Star-unimodal Distributions
 - The Set of α-Unimodal Distributions
- Generalized Probability Bounds
 - Feasibility Conditions
 - Structure of Extremal Distributions
 - SDP Reformulation
- Extensions

 $\delta^{lpha}_{[0,x]}$ is the distribution on [0,x] with $\delta^{lpha}_{[0,x]}([0,tx])=t^{lpha}\ orall t\in [0,1].$

Dharmadhikari, Joag-Dev (1988):

$$\mathbb{P} \in \mathcal{P}_{\alpha} \quad \iff \quad \exists ! m \in \mathcal{P}_{\infty} : \ \mathbb{P}(\cdot) = \int_{\mathbb{R}^n} \delta^{\alpha}_{[0,x]}(\cdot) \, m(\mathrm{d}x)$$

- Different Degrees of Unimodality
- Choquet Representations
 - The Set of All Distributions
 - The Set of Star-unimodal Distributions
 - **☑** The Set of α-Unimodal Distributions
- Generalized Probability Bounds
 - Feasibility Conditions
 - Structure of Extremal Distributions
 - SDP Reformulation
- Extensions

- Different Degrees of Unimodality
- Choquet Representations
 - The Set of All Distributions
 - The Set of Star-unimodal Distributions
 - **I** The Set of α-Unimodal Distributions
- Generalized Probability Bounds
 - Feasibility Conditions
 - Structure of Extremal Distributions
 - SDP Reformulation
- Extensions

Main Result

Theorem: If $0 \in \Xi$, then $\sup_{\mathbb{P} \in \mathcal{P}_{\alpha}(\mu, S)} \mathbb{P}(\xi \notin \Xi)$ is equivalent to:

$$\max \sum_{i=1}^{k} \lambda_{i} - \tau_{i}$$
s.t. $\mathbf{a}^{\top} z_{i} \geq 0, \ \tau_{i} \geq 0 \quad \forall i = 1, \dots, k$

$$\tau_{i} (\mathbf{a}_{i}^{\top} z_{i})^{\alpha} \geq \lambda_{i}^{\alpha+1} b_{i}^{\alpha} \quad \forall i = 1, \dots, k$$

$$\sum_{i=1}^{k} \begin{pmatrix} Z_{i} & z_{i} \\ z_{i}^{\top} & \lambda_{i} \end{pmatrix} \preceq \begin{pmatrix} \frac{n+2}{n} S & \frac{n+1}{n} \mu \\ \frac{n+1}{n} \mu^{\top} & 1 \end{pmatrix}$$

$$\begin{pmatrix} Z_{i} & z_{i} \\ z_{i}^{\top} & \lambda_{i} \end{pmatrix} \succeq 0 \quad \forall i = 1, \dots, k$$

 $a o \infty$: Generalized Chebyshev Bound

 $\alpha = n$: Generalized Gauss Bound

- Different Degrees of Unimodality
- Choquet Representations
 - The Set of All Distributions
 - The Set of Star-unimodal Distributions
 - **I** The Set of α-Unimodal Distributions
- Generalized Probability Bounds
 - Feasibility Conditions
 - Structure of Extremal Distributions
 - SDP Reformulation
- Extensions

$$\mathcal{P}_{\alpha}(\mu, S) \neq \emptyset \qquad \Longleftrightarrow \qquad \begin{pmatrix} \frac{\alpha+2}{\alpha}S & \frac{\alpha+1}{\alpha}\mu \\ \frac{\alpha+1}{\alpha}\mu^{\top} & 1 \end{pmatrix} \succeq 0$$

Proof: $\mathbb{P} \in \mathcal{P}_{\alpha}$ iff $\mathbb{P}(\cdot) = \int \delta^{\alpha}_{[0,x]}(\cdot) \, m(\mathrm{d}x)$ for $m \in \mathcal{P}_{\infty}$.

$$\mathcal{P}_{\alpha}(\mu, S) \neq \emptyset \qquad \Longleftrightarrow \qquad \begin{pmatrix} \frac{\alpha+2}{\alpha}S & \frac{\alpha+1}{\alpha}\mu \\ \frac{\alpha+1}{\alpha}\mu^{\top} & 1 \end{pmatrix} \succeq 0$$

Proof: $\mathbb{P} \in \mathcal{P}_{\alpha}$ iff $\mathbb{P}(\cdot) = \int \delta_{[0,x]}^{\alpha}(\cdot) \, m(\mathrm{d}x)$ for $m \in \mathcal{P}_{\infty}$.

$$\begin{pmatrix} S & \mu \\ \mu^{\top} & 1 \end{pmatrix} = \begin{pmatrix} \frac{\alpha}{\alpha+2} S_m & \frac{\alpha}{\alpha+1} \mu_m \\ \frac{\alpha}{\alpha+1} \mu_m^{\top} & 1 \end{pmatrix}$$

$$\mathcal{P}_{\alpha}(\mu, S) \neq \emptyset \qquad \Longleftrightarrow \qquad \begin{pmatrix} \frac{\alpha+2}{\alpha}S & \frac{\alpha+1}{\alpha}\mu \\ \frac{\alpha+1}{\alpha}\mu^{\top} & 1 \end{pmatrix} \succeq 0$$

Proof: $\mathbb{P} \in \mathcal{P}_{\alpha}$ iff $\mathbb{P}(\cdot) = \int \delta_{[0,x]}^{\alpha}(\cdot) \, m(\mathrm{d}x)$ for $m \in \mathcal{P}_{\infty}$.

$$\begin{pmatrix} \frac{\alpha+2}{\alpha}S & \frac{\alpha+1}{\alpha}\mu \\ \frac{\alpha+1}{\alpha}\mu^{\top} & 1 \end{pmatrix} = \begin{pmatrix} S_m & \mu_m \\ \mu_m^{\top} & 1 \end{pmatrix}$$

$$\mathcal{P}_{\alpha}(\mu, S) \neq \emptyset \qquad \Longleftrightarrow \qquad \begin{pmatrix} \frac{\alpha+2}{\alpha}S & \frac{\alpha+1}{\alpha}\mu \\ \frac{\alpha+1}{\alpha}\mu^{\top} & 1 \end{pmatrix} \succeq 0$$

Proof: $\mathbb{P} \in \mathcal{P}_{\alpha}$ iff $\mathbb{P}(\cdot) = \int \delta^{\alpha}_{[0,x]}(\cdot) \, m(\mathrm{d}x)$ for $m \in \mathcal{P}_{\infty}$.

$$\begin{pmatrix} \frac{\alpha+2}{\alpha}S & \frac{\alpha+1}{\alpha}\mu \\ \frac{\alpha+1}{\alpha}\mu^{\top} & 1 \end{pmatrix} = \begin{pmatrix} S_m & \mu_m \\ \mu_m^{\top} & 1 \end{pmatrix}$$

Covariance matrix $S_m - \mu_m \mu_m^{\top}$ must be psd.

- Different Degrees of Unimodality
- Choquet Representations
 - The Set of All Distributions
 - The Set of Star-unimodal Distributions
 - **The Set of α-Unimodal Distributions**
- Generalized Probability Bounds
 - Feasibility Conditions
 - Structure of Extremal Distributions
 - SDP Reformulation
- Extensions

- Different Degrees of Unimodality
- Choquet Representations
 - The Set of All Distributions
 - The Set of Star-unimodal Distributions
 - **I** The Set of α-Unimodal Distributions
- Generalized Probability Bounds
 - Feasibility Conditions
 - Structure of Extremal Distributions
 - SDP Reformulation
- Extensions

Partition \mathbb{R}^n into k cones

Extremal distribution: $\mathbb{P}^* = \lambda_0 \cdot \mathbb{P}_0 + \sum_{i=1}^k \lambda_i \cdot \delta_{[0,x_i]}^{\alpha}$

"Slack" distribution on Ξ

Extremal distribution:
$$\mathbb{P}^* = \lambda_0 \cdot \mathbb{P}_0 + \sum_{i=1}^n \lambda_i \cdot \delta_{[0,x_i]}^{\alpha}$$

Radial α-unimodal distribution for sector of ith facet

$$\mathbb{P}^* = \lambda_0 \cdot \mathbb{P}_0 + \sum_{i=1} \lambda_i \left[\delta_{[0,x_i]}^{\alpha} \right]$$

- Different Degrees of Unimodality
- Choquet Representations
 - The Set of All Distributions
 - The Set of Star-unimodal Distributions
 - **I** The Set of α-Unimodal Distributions
- Generalized Probability Bounds
 - Feasibility Conditions
 - Structure of Extremal Distributions
 - SDP Reformulation
- Extensions

- Different Degrees of Unimodality
- Choquet Representations
 - The Set of All Distributions
 - The Set of Star-unimodal Distributions
 - **I** The Set of α-Unimodal Distributions
- Generalized Probability Bounds
 - Feasibility Conditions
 - Structure of Extremal Distributions
 - SDP Reformulation
- Extensions

$$\mathbb{P}^* = \lambda_0 \cdot \mathbb{P}_0 + \sum_{i=1}^n \lambda_i \cdot \delta_{[0,x_i]}^{\alpha} \qquad m^* = \lambda_0 \cdot m_0 + \sum_{i=1}^n \lambda_i \cdot \delta_{x_i}$$

$$m^* = \lambda_0 \cdot m_0 + \sum_{i=1}^{\kappa} \lambda_i \cdot \delta_{x_i}$$

$$\mathbb{P}^* = \lambda_0 \cdot \mathbb{P}_0 + \sum_{i=1}^{\kappa} \lambda_i \cdot \delta_{[0,x_i]}^{\alpha} \qquad m^* = \lambda_0 \cdot m_0 + \sum_{i=1}^{\kappa} \lambda_i \cdot \delta_{x_i}$$

$$m^* = \lambda_0 \cdot m_0 + \sum_{i=1}^{\kappa} \lambda_i \cdot \delta_{x_i}$$

$$\mathbb{E}_{m^*} \begin{bmatrix} \begin{pmatrix} xx^\top & x \\ x^\top & 1 \end{pmatrix} \end{bmatrix} = \begin{pmatrix} \frac{\alpha+2}{\alpha}S & \frac{\alpha+1}{\alpha}\mu \\ \frac{\alpha+1}{\alpha}\mu^\top & 1 \end{pmatrix}$$

$$\mathbb{P}^* = \lambda_0 \cdot \mathbb{P}_0 + \sum_{i=1}^{\kappa} \lambda_i \cdot \delta_{[0,x_i]}^{\alpha} \qquad m^* = \lambda_0 \cdot m_0 + \sum_{i=1}^{\kappa} \lambda_i \cdot \delta_{x_i}$$

$$\xi_2$$

$$\xi_1$$

$$m^* = \lambda_0 \cdot m_0 + \sum_{i=1}^{\kappa} \lambda_i \cdot \delta_{x_i}$$

$$\lambda_0 \mathbb{E}_{m_0} \left[\begin{pmatrix} xx^\top & x \\ x^\top & 1 \end{pmatrix} \right] + \sum_{i=1}^K \lambda_i \begin{pmatrix} x_i x_i^\top & x_i \\ x_i^\top & 1 \end{pmatrix} = \begin{pmatrix} \frac{\alpha+2}{\alpha} S & \frac{\alpha+1}{\alpha} \mu \\ \frac{\alpha+1}{\alpha} \mu^\top & 1 \end{pmatrix}$$

$$\mathbb{P}^* = \lambda_0 \cdot \mathbb{P}_0 + \sum_{i=1}^n \lambda_i \cdot \delta_{[0,x_i]}^{\alpha} \qquad m^* = \lambda_0 \cdot m_0 + \sum_{i=1}^n \lambda_i \cdot \delta_{x_i}$$

$$m^* = \lambda_0 \cdot m_0 + \sum_{i=1}^{\kappa} \lambda_i \cdot \delta_{x_i}$$

$$\sum_{i=1}^{k} \lambda_{i} \begin{pmatrix} x_{i} x_{i}^{\top} & x_{i} \\ x_{i}^{\top} & 1 \end{pmatrix} \preceq \begin{pmatrix} \frac{\alpha+2}{\alpha} S & \frac{\alpha+1}{\alpha} \mu \\ \frac{\alpha+1}{\alpha} \mu^{\top} & 1 \end{pmatrix}$$

$$\mathbb{P}^* = \lambda_0 \cdot \mathbb{P}_0 + \sum_{i=1}^{\kappa} \lambda_i \cdot \delta_{[0,x_i]}^{\alpha} \qquad m^* = \lambda_0 \cdot m_0 + \sum_{i=1}^{\kappa} \lambda_i \cdot \delta_{x_i}$$

$$\xi_2$$

$$\xi_1$$

$$X_i$$

$$m^* = \lambda_0 \cdot m_0 + \sum_{i=1}^{\kappa} \lambda_i \cdot \delta_{x_i}$$

$$\sum_{i=1}^{k} \begin{pmatrix} Z_{i} & z_{i} \\ z_{i}^{\top} & \lambda_{i} \end{pmatrix} \preceq \begin{pmatrix} \frac{\alpha+2}{\alpha}S & \frac{\alpha+1}{\alpha}\mu \\ \frac{\alpha+1}{\alpha}\mu^{\top} & 1 \end{pmatrix}, \quad \begin{pmatrix} Z_{i} & z_{i} \\ z_{i}^{\top} & \lambda_{i} \end{pmatrix} \succeq 0 \quad \forall i$$

Objective Function

$$\mathbb{P}^* = \lambda_0 \cdot \mathbb{P}_0 + \sum_{i=1}^k \lambda_i \cdot \delta^{\alpha}_{[0,x_i]}$$

$$\mathbb{P}^*(\xi \notin \Xi) = \sum_{i=1}^k \lambda_i \cdot \delta^{\alpha}_{[0,x_i]}(\xi \notin \Xi)$$

Objective Function

$$\mathbb{P}^* = \lambda_0 \cdot \mathbb{P}_0 + \sum_{i=1}^k \lambda_i \cdot \delta_{[0,x_i]}^{\alpha}$$

$$\mathbb{P}^*(\xi \notin \Xi) = \max_{\tau} \sum_{i=1}^k \lambda_i - \tau_i$$
s.t.
$$\tau_i(a_i^\top z_i)^{\alpha} \ge \lambda_i^{\alpha+1} b_i^{\alpha}, \ \tau_i \ge 0$$

In Summary...

$$\begin{array}{lll} \max & \sum_{i=1}^{k} \lambda_{i} - \tau_{i} \\ \text{s.t.} & a^{\top} z_{i} \geq 0, \ \tau_{i} \geq 0 \quad \forall i = 1, \ldots, k \\ & \tau_{i} (a_{i}^{\top} z_{i})^{\alpha} \geq \lambda_{i}^{\alpha+1} b_{i}^{\alpha} \quad \forall i = 1, \ldots, k \\ & \sum_{i=1}^{k} \begin{pmatrix} Z_{i} & z_{i} \\ z_{i}^{\top} & \lambda_{i} \end{pmatrix} \preceq \begin{pmatrix} \frac{n+2}{n} S & \frac{n+1}{n} \mu \\ \frac{n+1}{n} \mu^{\top} & 1 \end{pmatrix} & \text{moment conditions} \\ & \begin{pmatrix} Z_{i} & z_{i} \\ z_{i}^{\top} & \lambda_{i} \end{pmatrix} \succeq 0 \quad \forall i = 1, \ldots, k \end{aligned} & \text{for mixture distribution}$$

$$\mathbb{P}^*(\boldsymbol{\xi} \notin \boldsymbol{\Xi})$$

Application: Digital Communication Limits

Transmit symbols s_1, s_2, \ldots, s_7 over a noisy communication channel.

Minimum distance decoder

- Different Degrees of Unimodality
- Choquet Representations
 - The Set of All Distributions
 - The Set of Star-unimodal Distributions
 - **I** The Set of α-Unimodal Distributions
- Generalized Probability Bounds
 - Feasibility Conditions
 - Structure of Extremal Distributions
 - **SDP** Reformulation
- Extensions

- Different Degrees of Unimodality
- Choquet Representations
 - The Set of All Distributions
 - The Set of Star-unimodal Distributions
 - **I** The Set of α-Unimodal Distributions
- Generalized Probability Bounds
 - Feasibility Conditions
 - Structure of Extremal Distributions
 - SDP Reformulation
- Extensions

Tractable Extensions

Support information: $\mathcal{P} = \{ \mathbb{P} \in \mathcal{P}_{\alpha}(\mu, S) : \mathbb{P}(\mathcal{C}) = 1 \}$

Moment ambiguity: $\mathcal{P} = \bigcup_{(\mu, S) \in \mathcal{M}} \mathcal{P}_{\alpha}(\mu, S)$

Multimodality: $\mathcal{P} = \left\{ \sum_{m} p_{m} \mathbb{P}_{m} : p \in \mathcal{U}, \ \mathbb{P}_{m} \in \mathcal{P}_{\alpha}(c_{m}) \ \forall m \right\} \ \bigcap \ \mathcal{P}(\mu, S)$

- Different Degrees of Unimodality
- Choquet Representations
 - The Set of All Distributions
 - The Set of Star-unimodal Distributions
 - **I** The Set of α-Unimodal Distributions
- Generalized Probability Bounds
 - Feasibility Conditions
 - Structure of Extremal Distributions
 - **SDP** Reformulation
- Extensions

Bibliography

- [1] D. Bertsimas, I. Popescu. Optimal inequalities in probability theory: A convex optimization approach. *SIAM Journal on Optimization* 15(3), 780-804, 2004
- [2] E. Delage, Y. Ye. Distributionally robust optimization under moment uncertainty with application to data-driven problems. *Operations Research* 58(3), 596-612, 2010
- [3] S. Dharmadhikari, K. Joag-Dev. *Unimodality, Convexity, and Applications*, volume 27 of *Probability and Mathematical Statistics*. Academic Press, 1988.
- [4] J. Popescu. A semidefinite programming approach to optimal moment bounds for convex classes of distributions. *Mathematics of Operations Research* 30(3), 632-657, 2005
- [5] L. Vandenberghe, S. Boyd, K. Comanor. Generalized Chebyshev bounds via semidefinite programming. *SIAM Review* 49(1), 52-64, 2007.
- [6] B. Van Parys, P. Goulart, D. Kuhn. Generalized Gauss Inequalities via semidefinite programming. Technical report, available on *Optimization Online*, 2014.
- [7] S. Zymler, D. Kuhn, B. Rustem. Distributionally robust joint chance constraints with second-order moment information. *Mathematical Programming* 137(1-2), 167-198, 2013.