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Optimization Perspective

Worst-case probability problems:

sup P(§ ¢ ) =7

PeP
ambiguity set e ~~- open polyhedron
----------------------- 4 vane,
D e

-----------------



Optimization Perspective

Worst-case probability problems:

supP(§ ¢ =) = 7

PeP
ambiguity set e “~ open polyhedron
----------------------- 4 ennet,
7) e

Chebyshev: P = set of all distributions with mean  and variance 02
—={é:u—KO< &< U+ KO}



Optimization Perspective

Worst-case probability problems:

sup P( ¢ =) = 7
P ’

ambiguity set ——"" N— open polyhedron

~
__________ .
~§ ------ .
~ Y .
~§ .' .
. . e,
-
‘ * .
b .
A o2 .

Gauss: P = set of all unimodal distributions with mean u and variance 02
—={é: u—KO< &< U+ KO}



Multivariate Chebyshev Bound
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Vandengerghe, Boyd, Comanor (2007):
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Multivariate Gauss Bound

P.(u,S) = {IP star-unimodal : Ep(&) = p, *3IP>(§§T) = S}

Van Parys, Goulart, K. (2014):
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State-of-the-Art: The Duality Method

* Worst-case probability problem is an infinite-dimensional LP;
* Dual LP is a semi-infinite LP/robust optimization problem;
* Dual can often be reformulated as a tractable conic program:

* Bertsimas & Popescu (2005): SOS techniques

* Popescu (2005): SOS techniques and Choquet theory;

* Boyd, Vandenberghe & Comanor (2007): S-lemma;

* Delage & Ye (2010): Ellipsoid method;

x Zymler, K. & Rustem (2013): Farkas lemma and S-lemma;

* etc.
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Different Degrees of Unimodality

Definition: If P has a continuous pdf f, then P is a-unimodal if

" 9f(tf) is non-increasing in t > 0 for all £ # 0.

Example: n =1, a0 =2
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a-Unimodal Probability Bounds

Goal: Compute sup P(€ ¢ =)
]P)EPG(IJ,S)

Ambiguity set: Py (u,S) = PaNP(U,S)

Special cases:  cl(Ug21Py) = Poo = set of all distributions
—> Generlized Chebyshev bounds

P, = set of all star-unimodal distributions
— Generalized Gauss bounds
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Choquet Representations

Minkowski:  Every point in a compact convex set P C R"
is the mean of a distribution on exP.
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Choquet Representations

Minkowski:  Every point in a compact convex set P C R"
is the mean of a distribution on exP.

pbability
distribution on ex P

A convex set P of distributions admits a Choquet representation
if VI € P there is a distribution m on ex P with:

P(:) :/ O(-) m(dd) mixture distribution
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The Set of all Distributions
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Unimodal Univariate Distributions
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Unimodal Bivariate Distributions
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Multivariate unimodal distributions can be decomposed
into uniform distributions on star-shaped sets.
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Uniform Distributions on Star-shaped Sets
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Radial Unimodal Distributions

> &)




Radial Unimodal Distributions

> &)




Radial Unimodal Distributions

pdf

> &5




Radial Unimodal Distributions

> &)




Radial Unimodal Distributions




Unimodal Bivariate Distributions
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Radial a-Unimodal Distributions
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Main Result

Theorem: If 0 € =, then sup P(¢ ¢ =) is equivalent to:
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Generalized Chebyshev Bound
Generalized Gauss Bound
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Feasibility Conditions

Proof: P € Py iff P(-) = [ &g (-) m(dx) for m € P,
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Feasibility Conditions

Proof: P € Py iff P(-) = [ &g (-) m(dx) for m € P,

(et _“) . (3%7 )
o M 1 Hp 1

Covariance matrix Sy, — ., must be psd.
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Structure of the Extremal Distributions
&

Partition R” into
K cones




Structure of the Extremal Distributions
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Structure of the Extremal Distributions

"Slack” distri-
bution on =

Extremal distribution: P* —=




Structure of the Extremal Distributions

Radial a-unimodal
distribution for
sector of /th facet
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Objective Function
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Objective Function
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In Summary...

max Zf; Ai — T, evaluation of
S.t. aTz,-ZO, >0 Vi=1,...,k P*(fgz)
T-)\a a+1pa P
ria' z)* > A" by Yi=1,...,k

2 1
Zk_ Z‘Ir 4 < %ST %“ .
=1\ zT A i,u 1 moment conditions
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Application: Digital Communication Limits

Transmit symbols Sq, So, ..., S7 over a noisy communication channel.
channel §|
St So Sr
+ N Dec —

Minimum distance decoder
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Normal
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Gauss
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0_2: Chebyshev

[P(correct detection)

0 0.5 1 1.5 2 2.5

‘Channel noise (0)
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Tractable Extensions

Support information: P =
UF . P = {P e Pu(,S) : PC) = 1}

. Moment ambiguity: P = U Pa(u,S)
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