Capacity equilibria in energy production under risk aversion & risk trading

Daniel Ralph (U Cambridge)
Andreas Ehrenmann (GDF-Suez)
Gauthier de Maere (GDF-Suez)
Yves Smeers (U catholique de Louvain)

CONVEX OPTIMIZATION AND BEYOND ICMS, EDINBURGH, JUNE 2014

Outline

- 1 Review of risk neutral capacity equilibria
- Risk aversion and risk trading
 - Risk averse capacity equilibria
 - Risk trading and risk markets
 - Risky capacity equilibria in a complete risk market
- 3 Examples
 - Two stage capacity equilibrium
 - Multi stage capacity equilibrium

Motivation from electricity capacity equilibria under uncertainty & perfect competition

Electricity capacity expansion is kind of stochastic equilibrium

Invest Today: In stage 1, generator (genco) makes investments in different technologies (power plants)

Later consider 3 technologies: Coal Steam Turbine (CST),
 Combined Cycle Gas Turbine (CCGT), Gas Turbine (GT)
 (Can deal with any no. of gencos, consumers, technologies)

Operate in Uncertain Tomorrow: In stage 2, operating cost of portfolio of plants is stochastic, depends on scenario ω

- Fuel & C prices, weather (demand) depend on ω stochastic data
- Perfect competition sets price P_{ω} that clears energy market
 - Endogenous to equilibrium
 - Agents do not see their affect on price: perfect competition

Motivation from electricity capacity equilibria under uncertainty & perfect competition

Electricity capacity expansion is kind of stochastic equilibrium

Invest Today: In stage 1, generator (genco) makes investments in different technologies (power plants)

Later consider 3 technologies: Coal Steam Turbine (CST),
 Combined Cycle Gas Turbine (CCGT), Gas Turbine (GT)
 (Can deal with any no. of gencos, consumers, technologies)

Operate in Uncertain Tomorrow: In stage 2, operating cost of portfolio of plants is stochastic, depends on scenario ω

- Fuel & C prices, weather (demand) depend on ω stochastic data
- ullet Perfect competition sets price P_ω that clears energy market
 - Endogenous to equilibrium
 - Agents do not see their affect on price: perfect competition

Start with review of risk neutral capacity equilibrium

We will review Risk Neutral (RN) perfectly competitive case

- To assess uncertain outcomes, take an average
- Economic interpretation of optimization as equilibrium
- Basis for stochastic MARKAL long term capacity planning

Genco's two stage RN capacity problem

Genco minimises **Investment** + **Average Operating** costs:

$$\label{eq:loss_equation} \min_{x} \textstyle \sum_{\mathbf{j}} \mathbf{I_{j}}(\mathbf{x_{j}}) + \mathbb{E}_{\Pi_{0}} \Big[\mathcal{Q}_{\mathbf{g}}(\mathbf{x}, \mathbf{P}) \Big] \quad \text{s.t.} \quad x \in \mathcal{X}$$

Stage 1, investment

- There are j = 1, ..., J energy technologies (plants)
- $I_j(x_j) :=$ convex investment cost of plant j, capacity x_j
- $\mathcal{X}:=$ closed convex set of feasible technology designs, any $x=\left(x_{j}\right)_{j}\in\mathcal{X}$ specifies portfolio of plants

Stage 2, uncertain cost of production

- Π_0 = probability density (PD) over scenarios $\omega = 1,..,K$
- $P = (P_{\omega})$ = prices in <u>all</u> future scenarios
- $Q_g(x,P) := (Q_{g\omega}(x,P_{\omega}))_{\omega}$ has expectation $\mathbb{E}_{\Pi_0}[Q_g(x,P)]$ • $Q_{g\omega}(x,P_{\omega}) :=$ generator's operating costs net of revenue, or negative profit, in scenario ω

Genco's two stage RN capacity problem

Genco minimises **Investment** + **Average Operating** costs:

$$\min_{x} \sum_{\mathbf{j}} \mathbf{I}_{\mathbf{j}}(\mathbf{x}_{\mathbf{j}}) + \mathbb{E}_{\Pi_{\mathbf{0}}} \Big[\mathcal{Q}_{\mathbf{g}}(\mathbf{x}, \mathbf{P}) \Big] \quad \text{s.t.} \quad x \in \mathcal{X}$$

Stage 1, investment

- There are j = 1, ..., J energy technologies (plants)
- $I_j(x_j) :=$ convex investment cost of plant j, capacity x_j
- $\mathcal{X}:=$ closed convex set of feasible technology designs, any $x=\left(x_{j}\right)_{j}\in\mathcal{X}$ specifies portfolio of plants

Stage 2, uncertain cost of production

- Π_0 = probability density (PD) over scenarios $\omega=1,..,K$
- $P = (P_{\omega})$ = prices in <u>all</u> future scenarios
- $\mathcal{Q}_g(x,P) := \left(\mathcal{Q}_{g\omega}(x,P_\omega)\right)_\omega$ has expectation $\mathbb{E}_{\Pi_0}\left[\mathcal{Q}_g(x,P)\right]$ $\mathcal{Q}_{g\omega}(x,P_\omega) :=$ generator's operating costs net of revenue, or negative profit, in scenario ω

Stage 2: Spot market in scenario ω

Fix plant capacities $x \geq 0$ and spot market scenario ω .

Genco optimises production $Y_{\omega}=(Y_{j\omega})_{j}$ given cap. x, price P_{ω}

$$\mathcal{Q}_{\mathbf{g}\omega}(\mathbf{x}, \mathbf{P}_{\omega})
:= \min_{Y_{\omega}} \sum_{j} C_{j\omega}(Y_{j\omega}) - P_{\omega} \sum_{j} Y_{j\omega} \quad \text{s.t.} \quad 0 \le Y_{j\omega} \le x_{j}, \forall j$$

where $C_{j\omega}(y_j) := \text{convex production cost of technology } j$

(Consumer optimises unserved (shed) load U_{ω} given price P_{ω}

$$Q_{\mathbf{c}\omega}(\mathbf{P}_{\omega}) := \min_{U_{\omega}} (\hat{p} - P_{\omega})U_{\omega} \quad \text{s.t.} \quad U_{\omega} \ge 0$$

where $\hat{p}:=$ positive price cap or Value of Lost Load (exog. data) $D_{\omega}:=$ inelastic demand (exog. data)

Price of electricity P_{ω} clears the market given Y_{ω} , U_{ω}

$$0 \le \sum_{j} Y_{j\omega} + U_{\omega} - D_{\omega} \perp P_{\omega} \ge 0$$

Stage 2: Spot market in scenario ω

Fix plant capacities $x \geq 0$ and spot market scenario ω .

Genco optimises production $Y_{\omega}=(Y_{j\omega})_{j}$ given cap. x, price P_{ω}

$$\begin{array}{ll} \mathcal{Q}_{\mathbf{g}\omega}(\mathbf{x}, \mathbf{P}_{\omega}) \\ := & \min_{Y_{\omega}} \sum_{j} C_{j\omega}(Y_{j\omega}) - P_{\omega} \sum_{j} Y_{j\omega} \quad \text{s.t.} \quad 0 \le Y_{j\omega} \le x_{j}, \forall j \end{array}$$

where $C_{j\omega}(y_j) := \text{convex production cost of technology } j$

Consumer optimises unserved (shed) load U_{ω} given price P_{ω}

$$Q_{\mathbf{c}\omega}(\mathbf{P}_{\omega}) := \min_{U_{\omega}} (\hat{p} - P_{\omega})U_{\omega} \quad \text{s.t.} \quad U_{\omega} \ge 0$$

where $\hat{p}:=$ positive price cap or Value of Lost Load (exog. data) $D_{\omega}:=$ inelastic demand (exog. data)

Price of electricity P_{ω} clears the market given Y_{ω} , U_{ω}

$$0 \le \sum_{j} Y_{j\omega} + U_{\omega} - D_{\omega} \perp P_{\omega} \ge 0$$

Stage 2: Spot market in scenario ω

Fix plant capacities $x \geq 0$ and spot market scenario ω .

Genco optimises production $Y_{\omega}=(Y_{j\omega})_{j}$ given cap. x, price P_{ω}

$$\mathcal{Q}_{\mathbf{g}\omega}(\mathbf{x}, \mathbf{P}_{\omega})
:= \min_{Y_{\omega}} \sum_{j} C_{j\omega}(Y_{j\omega}) - P_{\omega} \sum_{j} Y_{j\omega} \quad \text{s.t.} \quad 0 \le Y_{j\omega} \le x_{j}, \forall j$$

where $C_{j\omega}(y_j) :=$ convex production cost of technology j

Consumer optimises unserved (shed) load U_{ω} given price P_{ω}

$$Q_{\mathbf{c}\omega}(\mathbf{P}_{\omega}) := \min_{U_{\omega}} (\hat{p} - P_{\omega})U_{\omega} \quad \text{s.t.} \quad U_{\omega} \ge 0$$

where $\hat{p}:=$ positive price cap or Value of Lost Load (exog. data) $D_{\omega}:=$ inelastic demand (exog. data)

Price of electricity P_{ω} clears the market given Y_{ω} , U_{ω}

$$0 \leq \sum_{j} Y_{j\omega} + U_{\omega} - D_{\omega} \perp P_{\omega} \geq 0$$

Stage 2: Spot market in scenario ω — System optimisation

Assume C_{jw} as convex & increasing; $\hat{p} > 0$; $D_{\omega} > 0$

Economics 101

Standard welfare theory for perfectly competitive market says

Theorem (Spot equilibrium ←⇒ Spot cost minimization)

Fix plant capacities $x \geq 0$ and spot market scenario ω .

Then $Y_{\omega}=\left(Y_{j\omega}\right)_{j}$, U_{ω} , P_{ω} is spot equilibrium $\iff Y_{\omega}$, U_{ω} solve

$$\begin{array}{ll}
\mathcal{Q}_{\mathbf{S}\omega}(\mathbf{x}) & := & \min_{Y_{\omega}, U_{\omega}} & \sum_{j} C_{j\omega}(Y_{j\omega}) + \hat{p}U_{\omega} \\
\text{s.t.} & 0 \le Y_{j\omega} \le x_{j} \,\forall j, \quad 0 \le U_{\omega} \\
0 \le \sum_{j} Y_{j\omega} + U_{\omega} - D_{\omega}
\end{array}$$

and P_{ω} is KKT multiplier for demand constraint.

Note. $Q_{s\omega}(x)$ is convex in $x \ge 0$.

Stage 2: Spot market in scenario ω — System optimisation

Assume C_{jw} as convex & increasing; $\hat{p} > 0$; $D_{\omega} > 0$

Economics 101

Standard welfare theory for perfectly competitive market says

Theorem (Spot equilibrium ←⇒ Spot cost minimization)

Fix plant capacities $x \geq 0$ and spot market scenario ω .

Then $Y_{\omega}=\left(Y_{j\omega}\right)_{j}$, U_{ω} , P_{ω} is spot equilibrium $\iff Y_{\omega}$, U_{ω} solve

$$\begin{array}{ll}
\mathcal{Q}_{\mathbf{S}\omega}(\mathbf{x}) & := & \min_{Y_{\omega}, U_{\omega}} & \sum_{j} C_{j\omega}(Y_{j\omega}) + \hat{p}U_{\omega} \\
\text{s.t.} & 0 \le Y_{j\omega} \le x_{j} \,\forall j, \quad 0 \le U_{\omega} \\
0 \le \sum_{j} Y_{j\omega} + U_{\omega} - D_{\omega}
\end{array}$$

and P_{ω} is KKT multiplier for demand constraint.

Note. $Q_{s\omega}(x)$ is convex in $x \geq 0$.

RN capacity equilibrium \Leftrightarrow RN capacity optimization

Assume $\mathcal{X} \subset \mathbb{R}_+^J$ is nonempty, closed & convex Assume $C_{j\omega}$ is convex & increasing; $\hat{p} > 0$; $D_{\omega} > 0$ $(\forall j, \omega)$

Economics 102 Two stage risk neutral capacity equilibrium

Genco finds
$$x=(x_j)$$
 and $(Y_{j\omega})_j$ for all ω given $P=(P_{\omega})$:

$$\min_{x} \sum_{j} I_{j}(x_{j}) + \mathbb{E}_{\Pi_{0}} \Big[\mathcal{Q}_{g}(x, P) \Big] \quad \text{s.t.} \quad x \in \mathcal{X}$$

Consumer sets U_ω for all ω given P

Spot price P_{ω} clears market for all ω given all $Y_{\omega}=(Y_{j\omega})_{j}$, U_{ω}

Theorem (RN capacity equilibrium \Leftrightarrow RN capacity optimization) Then x is a RN capacity equilibrium (for some (Y_{ω}) , (U_{ω}) , (P_{ω})) $\iff x$ solves

$$\min_x \sum_j I_j(x_j) + \mathbb{E}_{\Pi_0} \Big[\mathcal{Q}_s(x) \Big] \quad \text{s.t.} \quad x \in \mathcal{X}$$
 where $\mathcal{Q}_s(x) = \big(\mathcal{Q}_{s\omega}(x) \big)$

RN capacity equilibrium \Leftrightarrow RN capacity optimization

Assume $\mathcal{X} \subset \mathbb{R}_+^J$ is nonempty, closed & convex

Assume $C_{j\omega}$ is convex & increasing; $\hat{p} > 0$; $D_{\omega} > 0$ ($\forall j, \omega$)

Economics 102 Two stage risk neutral capacity equilibrium

Genco finds $x=(x_j)$ and $(Y_{j\omega})_j$ for all ω given $P=(P_{\omega})$:

$$\min_{x} \sum_{j} I_{j}(x_{j}) + \mathbb{E}_{\Pi_{0}} \left[\mathcal{Q}_{g}(x, P) \right] \quad \text{s.t.} \quad x \in \mathcal{X}$$

Consumer sets U_{ω} for all ω given P

 $oxed{\mathsf{Spot}}$ price P_ω clears market for all ω given all $Y_\omega = (Y_{j\omega})_j$, U_ω

Theorem (RN capacity equilibrium ⇔ RN capacity optimization)

Then x is a RN capacity equilibrium (for some (Y_{ω}) , (U_{ω}) , (P_{ω})) $\iff x$ solves

$$\min_{x} \sum_{j} I_{j}(x_{j}) + \mathbb{E}_{\Pi_{0}} \left[\mathcal{Q}_{s}(x) \right] \quad \text{s.t.} \quad x \in \mathcal{X}$$

where
$$Q_s(x) = (Q_{s\omega}(x))$$

Why is optimization important?

Optimization is important because — in the convex case (here) — it leads to **tractable** problems

Economic consistency of social planning, or system optimization, with agents' investment decisions makes it **credible**

MARKAL, MARket ALlocation, [Fishbone-Abilock-81] is prototype software package implementing the theorem above

- Long term planning model under perfect competition
- Deterministic stagewise linear program (optimization) when functions are piecewise linear
- googlescholar: 4.3k publications mention MARKAL
- Stochastic MARKAL [Kanudia-Loulou-98]
- General MARKAL review [Seebregts-etal-01]

Outline

- Review of risk neutral capacity equilibria
- 2 Risk aversion and risk trading
 - Risk averse capacity equilibria
 - Risk trading and risk markets
 - Risky capacity equilibria in a complete risk market
- 3 Examples
 - Two stage capacity equilibrium
 - Multi stage capacity equilibrium

Risk averse agents

In risk neutral capacity equilibrium, given x and $P=(P_{\omega})_{\omega=1}^{K}$,

- ullet cost to generator of 2nd stage $=\mathbb{E}_{\Pi_0}igl[\mathcal{Q}_g(x,P)igr]$
- ullet cost to consumer of 2nd stage $=\mathbb{E}_{\Pi_0}ig[\mathcal{Q}_c(P)ig]$

where Π_0 , $\mathcal{Q}_g(x,P)$, $\mathcal{Q}_c(P)$ have dimension K

What if expectation is replaced by **coherent risk measure** (CRM), $r: \mathbb{R}^K \to \mathbb{R}$?

[Artzner-et-al-99] characterise r as a worst case expectation:

- ullet $r(Z) = \max_{\Pi \in \mathcal{D}} \mathbb{E}_{\Pi}[Z]$ for any cost $Z \in {\rm I\!R}^K$... risk averse
- ullet D is nonempty closed convex set of PDs; **risk set** of r
- CVaR/AVaR/E Tail Loss is famous CRM in optimization [Roc-Uryasev-00]
- Good Deal is CRM adapted from [Cochrane-Saa-Requejo-00

Risk averse agents

In risk neutral capacity equilibrium, given x and $P=(P_{\omega})_{\omega=1}^{K}$,

- ullet cost to generator of 2nd stage $=\mathbb{E}_{\Pi_0}ig[\mathcal{Q}_g(x,P)ig]$
- ullet cost to consumer of 2nd stage $=\mathbb{E}_{\Pi_0}ig[\mathcal{Q}_c(P)ig]$

where Π_0 , $\mathcal{Q}_g(x,P)$, $\mathcal{Q}_c(P)$ have dimension K

What if expectation is replaced by **coherent risk measure** (CRM), $r: \mathbb{R}^K \to \mathbb{R}$?

[Artzner-et-al-99] characterise r as a worst case expectation:

- $\bullet \ r(Z) \, = \, \max_{\Pi \in \mathcal{D}} \mathbb{E}_{\Pi}[Z] \ \text{ for any cost } Z \in {\rm I\!R}^K \, \ldots {\rm risk \ averse}$
- ullet D is nonempty closed convex set of PDs; risk set of r
- CVaR/AVaR/E Tail Loss is famous CRM in optimization [Roc-Uryasev-00]
- Good Deal is CRM adapted from [Cochrane-Saa-Requejo-00]

Risk averse capacity equilibrium

Risk averse agents

- ullet Genco's CRM is $r_g(.) = \max_{\Pi \in \mathcal{D}_g} \mathbb{E}_{\Pi}[\cdot]$
- Consumer's CRM is $r_c(.) = \max_{\Pi \in \mathcal{D}_c} \mathbb{E}_{\Pi}[\cdot]$

Risk averse capacity equilibrium:

Genco finds
$$x=(x_j)$$
 and $(Y_{j\omega})_j$ for all ω given $P=(P_{\omega})$:

$$\min_{x} \sum_{j} I_{j}(x_{j}) + \mathbf{r_{g}} \left(\mathcal{Q}_{g}(x, P) \right) \quad \text{s.t.} \quad x \in \mathcal{X}$$

ig(Consumer sets U_ω for all $\omegaig)$ given P

• $\mathbf{r_c}(\mathcal{Q}_c(P))$ is risked cost of consumption over all ω

Spot price P_{ω} clears market for all ω given all $Y_{\omega}=(Y_{j\omega})_{j},\ U_{\omega}$

This is inescapably equilibrium not convex optimization

Risk averse capacity equilibrium

Risk averse agents

- ullet Genco's CRM is $r_g(.) = \max_{\Pi \in \mathcal{D}_g} \mathbb{E}_{\Pi}[\cdot]$
- Consumer's CRM is $r_c(.) = \max_{\Pi \in \mathcal{D}_c} \mathbb{E}_{\Pi}[\cdot]$

Risk averse capacity equilibrium:

Genco finds
$$x=(x_j)$$
 and $(Y_{j\omega})_j$ for all ω given $P=(P_{\omega})$:

$$\min_{x} \sum_{j} I_{j}(x_{j}) + \mathbf{r_{g}} \Big(\mathcal{Q}_{g}(x, P) \Big) \quad \text{s.t.} \quad x \in \mathcal{X}$$

ig(Consumer sets U_ω for all $\omegaig)$ given P

• $\mathbf{r_c}(\mathcal{Q}_c(P))$ is risked cost of consumption over all ω

Spot price P_{ω} clears market for all ω given all $Y_{\omega}=(Y_{j\omega})_{j},\ U_{\omega}$

This is inescapably equilibrium not convex optimization

There exists a solution of a risk averse capacity equilbrium

Theorem (Ehrenmann-Smeers-11a)

Under the same conditions given for RN case:

There exists an investment solution (x_j) , along with spot market equilibria (Y_ω) , (U_ω) (P_ω) , of the risk averse capacity equilibrium

Proof is via Kakutani's fixed point theorem.

But equilibrium solutions are tricky

- How does a solution relate to risk neutral (optimization) case?
- How to find/interpret multiple equilibria?
- Computationally can be hard to find any solution
 - Use PATH: Write equilibrium as large complementarity problem (use KKT conditions for genco & consumer)
 - Diagonalisation/Round Robin/Jacobi iteration: solve each equilibrium condition in turn and update [recent Ferris-Wathen]

There exists a solution of a risk averse capacity equilbrium

Theorem (Ehrenmann-Smeers-11a)

Under the same conditions given for RN case:

There exists an investment solution (x_j) , along with spot market equilibria (Y_ω) , (U_ω) (P_ω) , of the risk averse capacity equilibrium

Proof is via Kakutani's fixed point theorem.

But equilibrium solutions are tricky

- How does a solution relate to risk neutral (optimization) case?
- How to find/interpret multiple equilibria?
- Computationally can be hard to find any solution
 - Use PATH: Write equilibrium as large complementarity problem (use KKT conditions for genco & consumer)
 - Diagonalisation/Round Robin/Jacobi iteration: solve each equilibrium condition in turn and update [recent Ferris-Wathen]

Outline

- 1 Review of risk neutral capacity equilibria
- Risk aversion and risk trading
 - Risk averse capacity equilibria
 - Risk trading and risk markets
 - Risky capacity equilibria in a complete risk market
- 3 Examples
 - Two stage capacity equilibrium
 - Multi stage capacity equilibrium

Introducing trading of financial products

Fix $x \geq 0$ and spot prices $P = (P_{\omega})$. Genco has risky cost $Z_g = \mathcal{Q}_g(x,P)$. How to manage risk?

- Genco is risk averse: $r_gig(Z_gig) = \max_{\Pi \in \mathcal{D}_g} ig[Z_gig].$
- What if Genco could buy contracts or securities $W_g \in {\rm I\!R}^K$ to change $r_g(Z_g)$ to $r_g(Z_g-W_g)$
 - Eg, natural gas futures to hedge cost of CCGT or GT
 - ullet May buy a <u>bundle</u> of hedges: W_g is a vector

Eg, there are K=4 equally likely scenarios, and $Z_g=(-2,0,2,4)$

- Taking $W_g = (0,0,0,2)$ gives $Z_g W_g = (-2,0,2,2)$ le, your worst outcome is not so bad
- Value gained is $r_g((-2,0,2,4)) r_g((-2,0,2,2))$
- ullet What this is worth depends on risk set \mathcal{D}_q

Introducing trading of financial products

Fix $x \ge 0$ and spot prices $P = (P_\omega)$. Genco has risky cost $Z_g = \mathcal{Q}_g(x, P)$. How to manage risk?

- Genco is risk averse: $r_gig(Z_gig) = \max_{\Pi \in \mathcal{D}_g} ig[Z_gig].$
- What if Genco could buy contracts or securities $W_g \in {\rm I\!R}^K$ to change $r_g(Z_g)$ to $r_g(Z_g-W_g)$
 - Eg, natural gas futures to hedge cost of CCGT or GT
 - ullet May buy a <u>bundle</u> of hedges: W_g is a vector

Eg, there are K=4 equally likely scenarios, and $Z_g=(-2,0,2,4)$

- Taking $W_g=(0,0,0,2)$ gives $Z_g-W_g=(-2,0,2,{\color{red}2})$ le, your worst outcome is not so bad
- Value gained is $r_g((-2,0,2,4)) r_g((-2,0,2,2))$
- ullet What this is worth depends on risk set \mathcal{D}_g

A market for risk

Consumer has same question,

- ullet $Z_c=\mathcal{Q}_c(P)$, quantified as $r_cig(Z_cig)$
- What to pay for W_c to change $r_c(Z_c)$ to $r_c(Z_c-W_c)$?

Economics answer:

A market gives price of risk $P^{\mathrm{r}} \in \mathbb{R}^{K}$,

- \bullet Genco pays $P^{\mathrm{r}}[W_g]:=\sum_{\omega}P_{\omega}^{\mathrm{r}}W_{g\omega}$ & consumer pays $P^{\mathrm{r}}[W_c]$
- Trades balance: $W_g + W_c = 0$

A risk market puts a price on risk (securities)

Where does price of risk P^{r} come from? Risk market:

- Genco finds W_g : $\min_{W_g} P^{\mathrm{r}}[W_g] + r_g(Z_g W_g)$
- (Consumer finds W_c): $\min_{W_c} P^{\mathrm{r}}[W_c] + r_c(Z_c W_c)$
- ullet (Price of risk P^{r} clears market): $W_g + W_c = 0$

[Arrow-60] characterised this as system risk minimization

$$r_s(Z_g, Z_c)$$

:= $\min_{W_g, W_c} r_g(Z_g - W_c) + r_c(Z_c - W_c)$ s.t. $W_g + W_c = 0$

Remarkable recent work on CRMs gives something more concrete [Heath-Ku-04, Barrieu -El Karoui-05, Cherny-06, Burgert-Ruschendorf-08, Filipovíc-et-al-08, Dana-le-Van-10]

A risk market puts a price on risk (securities)

Risk market:

$$\bullet \ \, \overline{ \left(\text{Genco finds } W_g \right) } \! : \min_{W_g} P^{\mathrm{r}}[W_g] + r_g(Z_g - W_g)$$

• (Consumer finds
$$W_c$$
): $\min_{W_c} P^{\mathrm{r}}[W_c] + r_c(Z_c - W_c)$

• (Price of risk $P^{\rm r}$ clears market): $W_g + W_c = 0$

Theorem (Finance: Risk market under CRMs ← System CRM)

If r_a and r_c are CRMS:

Finding risk equilibrium ⇒ evaluating system risk using

system CRM
$$r_s(Z_g + Z_c)$$

where
$$r_s(\cdot) := \max_{\Pi \in \mathcal{D}_s} \mathbb{E}_{\Pi}[\cdot]$$

and system risk set $\mathcal{D}_s := \mathcal{D}_g \cap \mathcal{D}_c$ is <u>nonempty</u>.

Converse holds under mild technical conditions, eg, risk sets polyhedral or relative interiors intersect

Complete risk market

The last result assumes any uncertainty is priced in risk market

- Terminology: Risk market is complete
- Mathematical meaning: $W_g, W_c \in {\rm I\!R}^K$
- Practical meaning: all significant risks can be contracted or covered by mixing contracts

We'll return to this assumption later . . .

Outline

- 1 Review of risk neutral capacity equilibria
- Risk aversion and risk trading
 - Risk averse capacity equilibria
 - Risk trading and risk markets
 - Risky capacity equilibria in a complete risk market
- 3 Examples
 - Two stage capacity equilibrium
 - Multi stage capacity equilibrium

Risky capacity equilibrium

Introduce risk trading into capacity equilibrium

Risky capacity equilibrium:

Genco finds
$$x=(x_j)$$
, $W_g \in \mathbb{R}^K$ and $(Y_{j\omega})_j$ for all ω given $P=(P_\omega)$:

$$\min_{x,W_g} \sum_{j} I_j(x_j) + P^{\mathbf{r}}[W_g] + r_g \Big(\mathcal{Q}_g(x,P) - W_g \Big) \quad \text{s.t.} \quad x \in \mathcal{X}$$

Consumer finds $W_c \in \mathbb{R}^K$ and $U\omega$ for all ω given P:

$$\min_{W_c} P^{\mathrm{r}}[W_c] + r_c (\mathcal{Q}_c(P) - W_c)$$

Spot price P_{ω} clears market for all ω given all $Y_{\omega}=(Y_{j\omega})_{j}$, U_{ω}

(**Price of risk** $P^{
m r}$ clears risk market): $W_q + W_c = 0$

Risky capacity equilibrium

Introduce risk trading into capacity equilibrium

Risky capacity equilibrium:

Genco finds
$$x=(x_j)$$
, $W_g\in {\rm I\!R}^K$ and $(Y_{j\omega})_j$ for all ω given $P=(P_\omega)$:

$$\min_{x,W_g} \sum_{j} I_j(x_j) + P^{\mathrm{r}}[W_g] + r_g \Big(\mathcal{Q}_g(x,P) - W_g \Big) \quad \text{s.t.} \quad x \in \mathcal{X}$$

Consumer finds $W_c \in \mathbb{R}^K$ and $U\omega$ for all ω given P:

$$\min_{W_c} P^{\mathrm{r}}[W_c] + r_c (\mathcal{Q}_c(P) - W_c)$$

 $egin{equation} { t Spot price} \ P_{\omega} \ { t clears market for all } \omega \ { t given all} \ Y_{\omega} = (Y_{j\omega})_j, \ U_{\omega} \end{aligned}$

Price of risk $P^{\rm r}$ clears risk market: $W_a + W_c = 0$

Risky capacity equilibria \iff Risky capacity optimization

Some work that combines

- economic theory of RN capacity equilibria
- finance theory of complete risk markets with CRMs

Theorem (Ehren-Smeers-11b, R-Smeers-12 . . .)

 $Under\ assumptions\ for\ RN\ case +\ completeness\ of\ risk\ market:$

x solves risky capacity equilibrium (for some (Y_{ω}) , (U_{ω}) , (P_{ω}) , (W_{a}, W_{c})) $\Longrightarrow x$ solves

$$\min_{x} \sum_{j} I_{j}(x_{j}) + r_{s} \left[Q_{s}(x) \right] \quad \text{s.t.} \quad x \in \mathcal{X}$$

Converse holds under mild technical conditions.

This has exactly same form as Risk Neutral case:

equilibrium ⇔ convex optimization

Cf related two stage structure [Philpott-Ferris-Wets] in progress

Completeness?

But energy generation markets are far from complete!

- Can contract fuel (coal, natural gas) prices out many months, even several years
- Can contract electricity prices somewhat into future
- Cannot contract price or penalty of C or other emissions

What if a major uncertainty is not priced in risk market?

- We'll look at range between "worst case" of no risk trading and "best case" of complete risk trading
- Range indicates uncertainty in long term capacity planning

Completeness?

But energy generation markets are far from complete!

- Can contract fuel (coal, natural gas) prices out many months, even several years
- Can contract electricity prices somewhat into future
- Cannot contract price or penalty of C or other emissions

What if a major uncertainty is not priced in risk market?

- We'll look at range between "worst case" of no risk trading and "best case" of complete risk trading
- Range indicates uncertainty in long term capacity planning

Summary of capacity equilibria under uncertainty

- 3 different cases of capacity equilibria, from worst to best
 - 1 No risk trading: Risk averse capacity equilibrium
 - Complete risk trading: Risky capacity equilibrium
 - **3** Risk neutral: RN capacity equilibrium using PD Π_0

Corollary (Easy)

Provided RN probability density Π_0 lies in \mathcal{D}_s :

Social cost at equilibrium:

No Risk Trading \geq Complete RT \geq Risk Neutral

Or, welfare at equilibrium:

No Risk Trading \leq Complete RT \leq Risk Neutral

Outline

- 1 Review of risk neutral capacity equilibria
- Risk aversion and risk trading
 - Risk averse capacity equilibria
 - Risk trading and risk markets
 - Risky capacity equilibria in a complete risk market
- 3 Examples
 - Two stage capacity equilibrium
 - Multi stage capacity equilibrium

2 stage capacity equilibrium

Stage 1 Generator sets capacity x of future electricity plants

- ullet There are J=3 technologies: j=1 Coal Steam Turbine, j=2 Combined Cycle Gas Turbine, j=3 Gas Turbine
- $x=(x_j)_j$ specifies plant capacities, so $x\in\mathcal{X}:=\mathbb{R}^3_+$
- Cost of capacity is $I(x):=I_1(x_1)+I_2(x_2)+I_3(x_3)$ $I_3(1) \leq I_2(1) \leq I_1(1)$ in ratio 1:1.5:3

Stage 2, scenario ω

- There are K=15 scenarios, $\omega \in \{1,..,15\}$ Fuel prices of Coal & Natural Gas are random (exog. data) Price of C emissions is also highly uncertain (exog. data) Demand split into 8 random load segments (exog. data)
- CST runs cheaper than CCGT except when high coal & high C prices
- GTs are "peakers", expensive to run

2 stage capacity equilibrium

Stage 1 Generator sets capacity x of future electricity plants

- There are J=3 technologies: j=1 Coal Steam Turbine, j=2 Combined Cycle Gas Turbine, j=3 Gas Turbine
- $x=(x_j)_j$ specifies plant capacities, so $x\in\mathcal{X}:=\mathbb{R}^3_+$
- Cost of capacity is $I(x):=I_1(x_1)+I_2(x_2)+I_3(x_3)$ $I_3(1) \leq I_2(1) \leq I_1(1)$ in ratio 1:1.5:3

Stage 2, scenario ω

- There are K=15 scenarios, $\omega \in \{1,..,15\}$ Fuel prices of Coal & Natural Gas are random (exog. data) Price of C emissions is also highly uncertain (exog. data) Demand split into 8 random load segments (exog. data)
- CST runs cheaper than CCGT except when high coal & high C prices
- GTs are "peakers", expensive to run

Good deal risk measure

Adapt Good Deal risk measure from [Cochrane-Saa-Requejo-00]

ullet Given "base" PD Π_0 and scalar u>0, define risk set

$$\mathcal{D}_{
u}^{\mathrm{GD}} \ := \ \left\{ \zeta \Pi_0 \in \mathcal{P} \, : \, \mathbb{E}_{\Pi_0} \big[\zeta^2 \big] \leq
u^2
ight\}$$
 where $\zeta \Pi_0 = (\zeta_\omega \Pi_{0\omega})$ and $\zeta^2 = (\zeta_\omega^2)$

- ullet Taking u=1 gives risk neutral case with respect to Π_0
- ullet As u increases above 1, risk aversion also increases

In results to follow.

- Both generator and consumer use same Good Deal risk set
 - Π_0 is uniform (1/15, ..., 1/15)
 - ν is 1 (Risk Neutral) or 1.2 (Medium risk aversion) or 2 (High)
- There are approx 500 variables/constraints
- Use CONOPT & PATH: Tried EMP but need more smarts

Good deal risk measure

Adapt Good Deal risk measure from [Cochrane-Saa-Requejo-00]

ullet Given "base" PD Π_0 and scalar u>0, define risk set

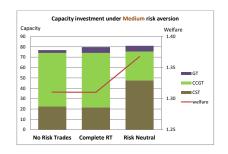
$$\begin{array}{ll} \mathcal{D}_{\nu}^{\mathrm{GD}} &:= & \left\{ \zeta \Pi_0 \in \mathcal{P} \, : \, \mathbb{E}_{\Pi_0} \big[\zeta^2 \big] \leq \nu^2 \right\} \\ \text{where } \zeta \Pi_0 = \left(\zeta_\omega \Pi_{0\omega} \right) \text{ and } \zeta^2 = \left(\zeta_\omega^2 \right) \end{array}$$

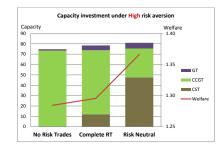
- ullet Taking u=1 gives risk neutral case with respect to Π_0
- ullet As u increases above 1, risk aversion also increases

In results to follow,

- Both generator and consumer use same Good Deal risk set
 - Π_0 is uniform (1/15,..,1/15)
 - ν is 1 (Risk Neutral) or 1.2 (Medium risk aversion) or 2 (High)
- There are approx 500 variables/constraints
- Use CONOPT & PATH: Tried EMP but need more smarts . . .

2 stage capacity equilibrium results





- With respect to equilibrium Welfare (negative system cost), No risk trading \leq Complete risk trading \leq Risk neutral
- Split between CST, CCGT and GT shows fear of high C price

Outline

- 1 Review of risk neutral capacity equilibria
- Risk aversion and risk trading
 - Risk averse capacity equilibria
 - Risk trading and risk markets
 - Risky capacity equilibria in a complete risk market
- 3 Examples
 - Two stage capacity equilibrium
 - Multi stage capacity equilibrium

Case study of capacity development in Italy

Backdrop of recent mothballing & closures of EU gas plants

- Low coal prices
- High wind penetration
- Low demand (recession)

Model of Italian power system is used to explore this

- Runs from 2013 to 2030 with annual decisions
 - Existing plants:
 - Close existing plant?
 - Mothball or demothball?
 - Extend life of plant due for retirement?
 - Convert fuel type?
 - New plants commission new plant in which technology?

Size of problem in 10's of 000's of variables

Modelling uncertainty between now and 2030

Uncertainty

- Uncertainty is mainly seen in demand via 3 economic states
 - Flat, Stagnation or Growth
 - Only 4 branching points, all from Flat
 - 2016, 2017, 2018, 2019
 - You can branch from Flat to either Stagnation or Growth
 - Once you have branched, you stay on that branch deterministically till 2030
- Some uncertainty in fuel prices

Where risk matters — no risk trading

No risk trading

- Risk averse genco delays demothballing in Stagnation
- Risk measure puts a higher probability on Stagnation

Where risk matters — complete risk market

No risk trading

- Risk averse genco delays the demothballing in Stagnation
- Risk measure puts a higher probability on Stagnation

Complete risk trading

- Risk averse genco wants to avoid under-capacity in Growth
- Financial market incentivizes more capacity in the system
- Risk measure puts a higher probability on Growth

A price corridor spanning the impacts of risk hedging

No risk trading

• The spot is the only signal to incentivise physical assets

Complete risk trading

- A complete market leads to lower spot price
- It is accompanied by risk reduction (not represented here)



CONCLUSION

- Managing risk of physical assets with financial assets is exciting
 - Combines energy economics with financial markets
 - Risk neutral capacity equilibrium ⇔ RN optimization
 - ... extends to risk averse case if all risks can be traded:
 Risky capacity equilibrium ⇔ Risk averse optimization
- Incomplete risk trading remains a challenge
- Multi stage likewise challenging

CONCLUSION

- Managing risk of physical assets with financial assets is exciting
 - Combines energy economics with financial markets
 - Risk neutral capacity equilibrium ⇔ RN optimization
 - ... extends to risk averse case if all risks can be traded:
 Risky capacity equilibrium ⇔ Risk averse optimization
- Incomplete risk trading remains a challenge
- Multi stage likewise challenging

Selected references

Arrow, 1964. The role of securities in the optimal allocation of risk-bearing, *The Review of Economic Studies* 31

Artzner, Delbaen, Eber & Heath, 1999. Coherent Measures of Risk, *Mathematical Finance* 9

Ehrenmann & Smeers, 2011a. Generation capacity expansion in a risky environment: A stochastic equilibrium analysis. *Operations Research* 59

Ehrenmann & Smeers, 2011b, Stochastic equilibrium models for generation capacity expansion, Stochastic Optimization Methods in Finance and Energy (Bertocchi et al eds.), Springer

Föllmer & Schied, 2002. Convex measures of risk and trading constraints, *Finance and Stochastics* 6

Rockafellar & Uryasev 2000. Optimization of conditional value-at-risk, *The Journal of Risk* 2

Ralph & Smeers, 2011, Pricing risk under risk measures: an introduction to stochastic-endogenous equilibria, SSRN 1903897

Ruszczynski & Shapiro, 2006. Optimization of convex risk functions, *Mathematics of Operations Research* 31