

Inexact search directions and matrix-free second-order methods for optimization

Jacek Gondzio

Email: J.Gondzio@ed.ac.uk URL: http://www.maths.ed.ac.uk/~gondzio/

Observation

- First-order methods
 - complexity $\mathcal{O}(1/\varepsilon)$ or $\mathcal{O}(1/\varepsilon^2)$
 - produce a rough approx. of solution quickly
 - but ... struggle to converge to high accuracy
- IPMs are second-order methods (they apply Newton method to barrier subprobs)
 - complexity $O(\log(1/\varepsilon))$
 - produce accurate solution in a few iterations
 - but ... one iteration may be expensive

Just think

For example,
$$\varepsilon = 10^{-3}$$
 gives $1/\varepsilon = 10^3$ and $1/\varepsilon^2 = 10^6$, but $\log(1/\varepsilon) \approx 7$.

For example,
$$\varepsilon = 10^{-6}$$
 gives $1/\varepsilon = 10^{6}$ and $1/\varepsilon^{2} = 10^{12}$, but $\log(1/\varepsilon) \approx 14$.

Stirring up a hornets nest:

Give 2nd-order/IPMs a serious consideration!

Motivation

Large problems are there:

- too large to store
- direct methods (factorizations) impossible
- matrices are available in some "simple" form: very sparse, or fast MatVec operators

If such problems are *easy* (many of them are), then the 1st-order methods may be used

But what if the problems are *not so easy*?

Outline

- Motivation: Make
 $2nd\mathcharcharcer$ methods faster
- Inexact Newton directions
- Homotopy: IPMs and Continuation
- ℓ_1 -regularization
 - use *smoothing* (pseudo-Huber function) \rightarrow we need the 2nd-order information
 - use *continuation*
 - \rightarrow to improve the pseudo-Huber approx
 - work *matrix-free*
- Computational results
- Conclusions

ℓ_1 -regularization

Convex optimization problem:

$$\min_{x} \quad \tau \|x\|_1 + \phi(x),$$

where $\|.\|_1$ is the ℓ_1 norm, and $\phi : \mathcal{R}^n \mapsto \mathcal{R}$ is a convex function (often strongly convex).

Usual example:

$$\min_{x} \quad \tau \|x\|_{1} + \frac{1}{2} \|Ax - b\|_{2}^{2}$$

where $A \in \mathcal{R}^{m \times n}$ (often $m \ge n$ or $m \gg n$).

ℓ_1 -regularization

$$\min_{x} \quad \tau \|x\|_1 + \phi(x).$$

Unconstrained optimization \Rightarrow easy(?)

Serious Issue: nondifferentiability of $\|.\|_1$

Two possible tricks:

- Splitting x = u v with $u, v \ge 0$
- Huber or pseudo-Huber regression

Splitting: $x = u - v, u \ge 0, v \ge 0$

Replace $x_i = u_i - v_i$, where $u_i = \max\{x_i, 0\}$ and $v_i = \max\{-x_i, 0\}$.

Then
$$x_i = u_i - v_i$$
 and $|x_i| = u_i + v_i$
Hence $||x||_1 = \sum_{i=1}^n (u_i + v_i).$

Removes nondifferentiability, but:

- doubles the dimension,
- introduces inequality constraints (fine for IPMs).

Huber: Replace $\|\mathbf{x}\|_1$ with $\psi_{\mu}(\mathbf{x})$

Huber approximation: replaces $||x||_1$ with $\sum_{i=1}^n |\psi_{\mu}(x)|_i$

$$\left[\psi_{\mu}(x)\right]_{i} = \begin{cases} \frac{1}{2}\mu^{-1}x_{i}^{2}, & \text{if } |x_{i}| \leq \mu\\ |x_{i}| - \frac{1}{2}\mu, & \text{if } |x_{i}| \geq \mu \end{cases} \quad i = 1, 2, \dots, n$$

where $\mu > 0$. Only first-order differentiable.

Pseudo Huber approximation: replaces $||x||_1$ with

$$\psi_{\mu}(x) = \mu \sum_{i=1}^{n} (\sqrt{1 + \frac{x_i^2}{\mu^2}} - 1)$$

Smooth function, has derivatives of any degree.

Huber:

COB, Edinburgh, June 27, 2014

Continuation

Embed inexact Newton Meth into a *homotopy* approach:

- Inequalities $u \ge 0, v \ge 0 \longrightarrow$ use **IPM** replace $z \ge 0$ with $-\mu \log z$ and drive μ to zero.
- pseudo-Huber regression \longrightarrow use **continuation** replace $|x_i|$ with $\mu(\sqrt{1+\frac{x_i^2}{\mu^2}}-1)$ and drive μ to zero.

Theory ???

Inexact Newton Direction in IPMs

Replace an exact Newton direction

$$\nabla^2 f(x) \Delta x = -\nabla f(x)$$

with an *inexact* one:

$$\nabla^2 f(x) \Delta x = -\nabla f(x) + \mathbf{r},$$

where the error \mathbf{r} is small: $\|\mathbf{r}\| \leq \boldsymbol{\eta} \|\nabla f(x)\|, \ \boldsymbol{\eta} \in (0, 1).$

The NLP community usually writes it as: $\|\nabla^2 f(x)\Delta x + \nabla f(x)\|_2 \le \eta \|\nabla f(x)\|_2, \quad \eta \in (0, 1).$

Dembo, Eisenstat & Steihaug, *SIAM J. on Numerical Analysis* 19 (1982) 400–408. COB, Edinburgh, June 27, 2014 12 **Theorem:** Suppose the feasible IPM for QP is used. If the method operates in the *small* neighbourhood

$$\mathcal{N}_2(\theta) := \{ (x, y, s) \in \mathcal{F}^0 : \| XSe - \mu e \|_2 \le \theta \mu \}$$

and uses the *inexact* Newton direction with $\eta = 0.3$, then it converges in at most

$$K = \mathcal{O}(\sqrt{n} \ln(1/\epsilon))$$
 iterations.

If the method operates in the *symmetric* neighbourhood

$$\mathcal{N}_S(\gamma) := \{ (x, y, s) \in \mathcal{F}^0 : \gamma \mu \le x_i s_i \le (1/\gamma) \mu \}$$

and uses the *inexact* Newton direction with $\eta = 0.05$, then it converges in at most

$$K = \mathcal{O}(\mathbf{n} \ln(1/\epsilon))$$
 iterations.

Theory for IPM:

G., Convergence Analysis of an Inexact Feasible IPM for Convex QP, *SIAM Journal on Optimization* 23 (2013) No 3, pp. 1510-1527.

G., Matrix-Free Interior Point Method, *Computational Optimization and Applications*, vol. 51 (2012) 457–480.

Computational practice:

Matrix-free IPM solves otherwise intractable problems. It needs:

- $\mathcal{O}(\log n)$ iterations
- with $\mathcal{O}(nz(A))$ cost per iteration.

Quantum Information Problems

Prob	Cplex 12.0					mf-IPM	
	Simplex		Barrier		rank=200		
	its	time	its	time	its	time	
16kx16k	62772	57	10	399	5	15	
64kx64k	$2.6 \cdot 10^{6}$	6h51m	_	OoM	8	3m22s	
256kx256k		>48 h	_	OoM	9	28m38s	
1Mx1M		-	_	OoM	9	1h34m19s	
4Mx4M		_	_	OoM	10	9h14m49s	

G., Gruca, Hall, Laskowski and Żukowski, Solving Large-Scale Optimization Problems Related to Bell's Theorem, *J. of Computational and Applied Maths*, 263C (2014) 392–404.

ℓ_1 -Regularization and Continuation

Use Pseudo-Huber approximation to replace $\| u(x) \|_1$ with

$$\psi_{\mu}(u(x)) = \mu \sum_{i=1}^{n} \left(\sqrt{1 + \frac{(u(x))_{i}^{2}}{\mu^{2}}} - 1\right)$$

Hence replace

$$\min_{x} \quad \tau \|u(x)\|_1 + \phi(x)$$

with

$$\min_{x} \quad \tau \psi_{\mu}(u(x)) + \phi(x)$$

Solve approximately a family of problems for a (short) decreasing sequence of μ 's: $\mu_0 > \mu_1 > \mu_2 \cdots$

Three examples of ℓ_1 -regularization

- Compressed Sensing with **K. Fountoulakis and P. Zhlobich**
- Compressed Sensing (Coherent and Redundant Dict.) with **I. Dassios and K. Fountoulakis**
- Machine Learning Problems with **K. Fountoulakis**

Example 1: Compressed Sensing with K. Fountoulakis and P. Zhlobich

Large dense quadratic optimization problem:

$$\min_{x} \tau \|x\|_{1} + \frac{1}{2} \|Ax - b\|_{2}^{2},$$

where $A \in \mathbb{R}^{m \times n}$ is a **very special matrix**.

Fountoulakis, G., Zhlobich Matrix-free IPM for Compressed Sensing Problems, Math. Prog. Computation 6 (2014), pp. 1–31. Software available at http://www.maths.ed.ac.uk/ERGO/ COB, Edinburgh, June 27, 2014 18

Two-way Orthogonality of A

• *rows* of A are orthogonal to each other (A is built of a subset of rows of an othonormal matrix $U \in \mathbb{R}^{n \times n}$)

$$AA^T = I_m.$$

• small subsets of *columns* of *A* are nearly-orthogonal to each other: *Restricted Isometry Property (RIP)*

$$\|\bar{A}^T\bar{A} - \frac{m}{n}I_k\| \le \delta_k \in (0, 1).$$

Candès, Romberg & Tao, Comm on Pure and Appl Maths 59 (2005) 1207-1233.

Restricted Isometry Property

Matrix $\overline{A} \in \mathcal{R}^{m \times k}$ $(k \ll n)$ is built of a subset of columns of $A \in \mathcal{R}^{m \times n}$.

This yields a very well conditioned optimization problem.

Problem Reformulation

$$\min_{x} \tau \|x\|_{1} + \frac{1}{2} \|Ax - b\|_{2}^{2}$$

Replace $x = x^+ - x^-$ to be able to use $|x| = x^+ + x^-$. Use $|x_i| = z_i + z_{i+n}$ to replace $||x||_1$ with $||x||_1 = 1_{2n}^T z$. (Increases problem dimension from n to 2n.)

$$\min_{z\geq 0} c^T z + \frac{1}{2} z^T Q z,$$

where

$$Q = \begin{bmatrix} A^T \\ -A^T \end{bmatrix} \begin{bmatrix} A & -A \end{bmatrix} = \begin{bmatrix} A^T A & -A^T A \\ -A^T A & A^T A \end{bmatrix} \in \mathcal{R}^{2n \times 2n}$$

Preconditioner

Approximate

$$\mathcal{M} = \begin{bmatrix} A^T A & -A^T A \\ -A^T A & A^T A \end{bmatrix} + \begin{bmatrix} \Theta_1^{-1} & \\ & \Theta_2^{-1} \end{bmatrix}$$

with

$$\mathcal{P} = \frac{m}{n} \begin{bmatrix} I_n & -I_n \\ -I_n & I_n \end{bmatrix} + \begin{bmatrix} \Theta_1^{-1} & \\ & \Theta_2^{-1} \end{bmatrix}.$$

We expect (*optimal partition*):

- k entries of $\Theta^{-1} \to 0$, $k \ll 2n$,
- 2n k entries of $\Theta^{-1} \to \infty$.

Spectral Properties of $\mathcal{P}^{-1}\mathcal{M}$

Theorem

- Exactly *n* eigenvalues of $\mathcal{P}^{-1}\mathcal{M}$ are 1.
- The remaining n eigenvalues satisfy

$$|\lambda(\mathcal{P}^{-1}\mathcal{M}) - 1| \le \delta_k + \frac{n}{m\delta_k L},$$

where δ_k is the RIP-constant, and *L* is a threshold of "large" $(\Theta_1 + \Theta_2)^{-1}$.

Fountoulakis, G., Zhlobich Matrix-free IPM for Compressed Sensing Problems, *Math. Prog. Computation* 6 (2014), pp. 1–31.

24

Preconditioning

→ good clustering of eigenvalues **mfIPM** compares favourably with **NestA** on easy probs (NestA: Becker, Bobin and Candés). COB, Edinburgh, June 27, 2014

Inexact Newton directions

Computational Results: Comparing **MatVecs**

Prob size	k	NestA	mfIPM
4k	51	424	301
16k	204	461	307
64k	816	453	407
256k	3264	589	537
$1\mathrm{M}$	13056	576	613

NestA, Nesterov's smoothing gradient Becker, Bobin and Candés, http://www-stat.stanford.edu/~candes/nesta/

mfIPM, Matrix-free IPM Fountoulakis, G. and Zhlobich, http://www.maths.ed.ac.uk/ERGO/ COB, Edinburgh, June 27, 2014

Nontrivial Reconstruction Problems

Sparse vector: entries zero or 10⁵. Gaussian noise $\sigma = 0.1$

SPARCO problems

Comparison on 18 out of 26 classes of problems (all but 6 complex and 2 installation-dependent ones).

Solvers compared:

PDCO, Saunders and Kim, Stanford, $\ell_1 - \ell_s$, Kim, Koh, Lustig, Boyd, Gorinevsky, Stanford, **FPC-AS-CG**, Wen, Yin, Goldfarb, Zhang, Rice, **SPGL1**, Van Den Berg, Friedlander, Vancouver, and **mf-IPM**, Fountoulakis, G., Zhlobich, Edinburgh.

On 36 runs (noisy and noiseless problems), **mf-IPM**:

- is the fastest on 11,
- is the second best on 14, and
- overall is very robust.

Example 2: CS, Coherent & Redundant Dict. with I. Dassios and K. Fountoulakis.

Large dense quadratic optimization problem:

$$\min_{x} \tau \|W^*x\|_1 + \frac{1}{2}\|Ax - b\|_2^2,$$

where $A \in \mathbb{R}^{m \times n}$ and $W \in \mathbb{C}^{n \times l}$ is a *dictionary*.

Dassios, Fountoulakis and G.

A Second-order Method for Compressed Sensing Problems with Coherent and Redundant Dictionaries, *Tech Rep ERGO-2014-007*, May 2014.

Software available at http://www.maths.ed.ac.uk/ERGO/

Compressed Sensing and Continuation

Replace

$$\min_{x} f(x) = \tau \|W^*x\|_1 + \frac{1}{2}\|Ax - b\|_2^2, \quad \longrightarrow \mathbf{x_\tau}$$

with
$$\min_{x} f_{\mu}(x) = \tau \psi_{\mu}(W^*x) + \frac{1}{2} \|Ax - b\|_{2}^{2}, \longrightarrow x_{\tau,\mu}$$

Solve approximately a family of problems for a (short) decreasing sequence of μ 's: $\mu_0 > \mu_1 > \mu_2 \cdots$

Theorem (Brief description)

There exists a $\tilde{\mu}$ such that $\forall \mu \leq \tilde{\mu}$ the difference of the two solutions satisfies

$$\|x_{\tau,\mu} - x_{\tau}\|_2 = \mathcal{O}(\mu^{1/2}) \quad \forall \tau, \mu$$

Convergence of the primal-dual Newton CG

Use inexact Newton directions:

 $\|\nabla^2 f_{\mu}(x)\Delta x + \nabla f_{\mu}(x)\|_2 \le \boldsymbol{\eta} \|\nabla f_{\mu}(x)\|_2, \quad \boldsymbol{\eta} \in (0, 1)$

computed by the Newton CG method.

Theorem (Primal convergence)

Let $\{x^k\}_{k=0}^{\infty}$ be a sequence generated by pdNCG. Then the sequence $\{x^k\}_{k=0}^{\infty}$ converges to the primal (perturbed) solution $x_{\tau,\mu}$.

Theorem (Rate of convergence)

If the forcing factor η^k satisfies $\lim_{k\to\infty} \eta^k = 0$, then pdNCG converges superlinearly.

W-Restricted Isometry Property (W-RIP)

• rows of A are nearly-orthogonal to each other, i.e., there exists a small constant δ such that

$$\|AA^T - I_m\| \le \delta.$$

• W-Restricted Isometry Property (W-RIP): there exists a constant δ_q such that $(1 - \delta_q) \|Wz\|_2^2 \le \|AWz\|_2^2 \le (1 + \delta_q) \|Wz\|_2^2$ for all at most q-sparse $z \in C^n$.

Candès, Eldar & Nedell, *Appl and Comp Harmonic Anal* 31 (2011) 59-73. COB, Edinburgh, June 27, 2014 31

Preconditioner

Approximate

$$\mathcal{H} = \tau \nabla^2 \psi_\mu (W^* x) + A^T A$$

with

$$\mathcal{P} = \tau \nabla^2 \psi_\mu (W^* x) + \rho I_n.$$

We expect (*optimal partition*):

- $k \text{ entries of } W^*x \gg 0, \quad k \ll l,$
- l-k entries of $W^*x \approx 0$.

The preconditioner approximates well the 2nd derivative of the pseudo-Huber regularization.

Spectral Properties of $\mathcal{P}^{-1}\mathcal{H}$

Theorem

• The eigenvalues of $\mathcal{P}^{-1}\mathcal{H}$ satisfy

$$|\lambda(\mathcal{P}^{-1}\mathcal{H}) - 1| \le \frac{\eta(\delta, \delta_q, \rho)}{\rho},$$

where δ_q is the W-RIP constant, δ is another small constant, and $\eta(\delta, \delta_q, \rho)$ is some simple function.

Dassios, Fountoulakis and G.

A Second-order Method for Compressed Sensing Problems with Coherent and Redundant Dictionaries, *Tech Rep ERGO-2014-007*, May 2014.

CS: Coherent and Redundant Dictionaries

\rightarrow good clustering of eigenvalues

```
pdNCG outperforms TFOCS on several examples
(TFOCS: Becker, Candés and Grant).
COB, Edinburgh, June 27, 2014
```

Brazil 2014 A 64 × 64 resolution example: Single pixel camera problem set: http://dsp.rice.edu/cscamera

TFOCS, 24 sec.

pdNCG, 15 sec.

Example 3: Machine Learning Problems with **K. Fountoulakis**

Large dense quadratic optimization problem:

$$\min_{x} \tau \|x\|_{1} + \frac{1}{2} \|Ax - b\|_{2}^{2},$$

where $A \in \mathbb{R}^{m \times n}$ is: **very sparse** and **unstructured**

Fountoulakis and G.

A Second-order Method for Strongly Convex ℓ_1 Regularization, *Tech Rep ERGO-2014-005*, April 2014.

Software available at http://www.maths.ed.ac.uk/ERGO/

Amazing efficiency of the 1st order methods

Nesterov, *Math Prog*, 103 (2005) 127-152. Nesterov, Gradient methods for minimizing composite objective function. *CORE Discussion Papers 2007076*, September 2007.

Richtárik and Takáč, Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function. *Math Prog*, 2012.
Richtárik and Takáč, Parallel coordinate descent methods for big data optimization. *Tech Rep ERGO-*2012-013, November 2012.

Problem with $n = 2 \times 10^9$ solved in **37 MatVecs**!

What is going on here?

If we ignore the nondifferentiable $||x||_1$ term, then the minimization of $||Ax - b||_2^2$ is equivalent to solving

$$(A^T A) x = A^T b.$$

The *conjugate gradient method* applied to solve this system has the following rate of convergence:

$$e^{k+1} \leq \frac{\kappa^{1/2} - 1}{\kappa^{1/2} + 1} e^k,$$

where e^k is the error at iteration k and κ is the condition number of $A^T A$.

Inverse engineering exercise: For $\epsilon = 10^{-2}$, $\kappa \approx 300$, for $\epsilon = 10^{-4}$, $\kappa \approx 64$, for $\epsilon = 10^{-6}$, $\kappa \approx 29$. COB, Edinburgh, June 27, 2014 38

Toy Problem (used by 1st-order community)

$$\min_{x} \tau \|x\|_{1} + \frac{1}{2} \|Ax - b\|_{2}^{2},$$

where $A \in \mathbb{R}^{m \times n}$ (m = 2n: overdetermined system). Dimensions: $m = 4 \times 10^9$, $n = 2 \times 10^9$. Very sparse: 20 nonzero entries per column.

- Parallel RCD (Richtárik and Takáč) solves it doing 34-37 scans through the matrix 35 iterations, CPU time: 10779s;
- Inexact Newton (Fountoulakis and G.) Replace $A^T A$ with $diag\{A^T A\}$ solves it using 12-13 matrix-vector multiplications 13 iterations, CPU time: 5079s.

Trivial problem

$$\min_{x} \tau \|x\|_{1} + \frac{1}{2} \|Ax - b\|_{2}^{2},$$

where $A \in \mathbb{R}^{m \times n}$. Highy overdetermined system: m = 2n. Massive diagonal in matrix $A^T A$.

What is going on?

The 1st-order method (coordinate descent) uses:

$$d_i = \operatorname{argmin}_{p_i} \tau |x_i + p_i| + [\nabla \phi(x)]_i p_i + \frac{\beta}{2} p_i^T [\operatorname{diag}(\nabla^2 \phi(x))]_{ii} p_i$$

If $\nabla^2 \phi(x)$ is a **diagonal** matrix (or well approximated by a diagonal matrix), then

$d_{CD} \approx d_N$

hence the **1st-order** method is in fact the **2nd-order** method.

More realistic test example: RCDC vs dcNCG

Dimensions: $m = 4 \times 10^3$, $n = 2 \times 10^3$. x^* has 50 non-zero elements randomly positioned. RCDC interrupted after 10⁹ iterations, 31 hours.

Newton-CG: Summary

Theory:

The primal-dual Newton Conjugate Gradient (pdNCG) enjoys good convergence properties.

Computational practice:

The primal-dual Newton-CG

- provides reliability
- outperforms the 1st-order methods

Software available at http://www.maths.ed.ac.uk/ERGO/Edinburgh Research Group on Optimization

Conclusions

The **2nd-order information** can (sometimes should) be used also in very large scale optimization.

Use **inexact Newton directions** in:

- IPMs,
- primal-dual NCG.

Then the **2nd-order methods** offer an attractive alternative to the **1st-order methods**.

