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Observation

• First-order methods

– complexity O(1/ε) or O(1/ε2)
– produce a rough approx. of solution quickly
– but ... struggle to converge to high accuracy

• IPMs are second-order methods
(they apply Newton method to barrier subprobs)

– complexity O(log(1/ε))
– produce accurate solution in a few iterations
– but ... one iteration may be expensive
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Just think

For example, ε = 10−3 gives

1/ε = 103 and 1/ε2 = 106, but log(1/ε) ≈ 7.

For example, ε = 10−6 gives

1/ε = 106 and 1/ε2 = 1012, but log(1/ε) ≈ 14.

Stirring up a hornets nest:

Give 2nd-order/IPMs a serious consideration!
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Motivation

Large problems are there:

• too large to store

• direct methods (factorizations) impossible

• matrices are available in some “simple” form:
very sparse, or fast MatVec operators

If such problems are easy (many of them are),
then the 1st-order methods may be used

But what if the problems are not so easy?
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Outline

• Motivation: Make 2nd-order methods faster

• Inexact Newton directions

• Homotopy: IPMs and Continuation

• ℓ1-regularization

– use smoothing (pseudo-Huber function)
→ we need the 2nd-order information

– use continuation
→ to improve the pseudo-Huber approx

– work matrix-free

• Computational results

• Conclusions
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ℓ1-regularization

Convex optimization problem:

min
x

τ‖x‖1+ φ(x),

where ‖.‖1 is the ℓ1 norm, and
φ : Rn 7→ R is a convex function (often strongly convex).

Usual example:

min
x

τ‖x‖1+
1
2
‖Ax− b‖22

where A ∈ Rm×n (often m ≥ n or m≫ n).
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ℓ1-regularization

min
x

τ‖x‖1+ φ(x).

Unconstrained optimization ⇒ easy(?)

Serious Issue: nondifferentiability of ‖.‖1

Two possible tricks:

• Splitting x = u− v with u, v ≥ 0

• Huber or pseudo-Huber regression

COB, Edinburgh, June 27, 2014 7



Inexact Newton directions

Splitting: x = u− v, u ≥ 0, v ≥ 0

Replace xi = ui − vi,
where ui = max{xi,0} and vi = max{−xi,0}.

Then xi = ui − vi and |xi| = ui+ vi.

Hence ‖x‖1 =
n
∑

i=1
(ui+ vi).

Removes nondifferentiability, but:

• doubles the dimension,

• introduces inequality constraints (fine for IPMs).
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Huber: Replace ‖x‖1 with ψµ(x)

Huber approximation: replaces ‖x‖1 with
∑n
i=1

[

ψµ(x)
]

i
[

ψµ(x)
]

i
=

{

1
2µ

−1x2i , if |xi| ≤ µ

|xi| −
1
2µ, if |xi| ≥ µ

i = 1,2, . . . , n

where µ > 0. Only first-order differentiable.

Pseudo Huber approximation: replaces ‖x‖1 with

ψµ(x) = µ
n
∑

i=1

(

√

1 +
x2i
µ2

− 1)

Smooth function, has derivatives of any degree.
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Huber:
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Continuation

Embed inexact Newton Meth into a homotopy approach:

• Inequalities u ≥ 0, v ≥ 0 −→ use IPM

replace z ≥ 0 with −µ logz and drive µ to zero.

• pseudo-Huber regression −→ use continuation

replace |xi| with µ(

√

1+x2i
µ2

−1) and drive µ to zero.

Theory ???
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Inexact Newton Direction in IPMs

Replace an exact Newton direction

∇2f(x)∆x = −∇f(x)

with an inexact one:

∇2f(x)∆x = −∇f(x) + r,

where the error r is small: ‖r‖ ≤ η‖∇f(x)‖, η ∈ (0,1).

The NLP community usually writes it as:

‖∇2f(x)∆x+∇f(x)‖2 ≤ η‖∇f(x)‖2, η ∈ (0,1).

Dembo, Eisenstat & Steihaug,
SIAM J. on Numerical Analysis 19 (1982) 400–408.
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Theorem: Suppose the feasible IPM for QP is used.

If the method operates in the small neighbourhood

N2(θ) := {(x, y, s) ∈ F0 : ‖XSe− µe‖2 ≤ θµ}

and uses the inexact Newton direction with η = 0.3,
then it converges in at most

K = O(
√
n ln(1/ǫ)) iterations.

If the method operates in the symmetric neighbourhood

NS(γ) := {(x, y, s) ∈ F0 : γµ ≤ xisi ≤ (1/γ)µ}

and uses the inexact Newton direction with η = 0.05,
then it converges in at most

K = O(n ln(1/ǫ)) iterations.
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Theory for IPM:

G., Convergence Analysis of an Inexact Feasible IPM for
Convex QP, SIAM Journal on Optimization 23 (2013)
No 3, pp. 1510-1527.

G., Matrix-Free Interior Point Method,
Computational Optimization and Applications,
vol. 51 (2012) 457–480.

Computational practice:

Matrix-free IPM solves otherwise intractable problems.
It needs:

• O(log n) iterations

• with O(nz(A)) cost per iteration.
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Quantum Information Problems

Prob Cplex 12.0 mf-IPM

Simplex Barrier rank=200
its time its time its time

16kx16k 62772 57 10 399 5 15
64kx64k 2.6·106 6h51m - OoM 8 3m22s
256kx256k >48h - OoM 9 28m38s
1Mx1M - - OoM 9 1h34m19s
4Mx4M - - OoM 10 9h14m49s

G., Gruca, Hall, Laskowski and Żukowski,
Solving Large-Scale Optimization Problems Related to
Bell’s Theorem, J. of Computational and Applied Maths,
263C (2014) 392–404.
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ℓ1-Regularization and Continuation

Use Pseudo-Huber approximation to replace ‖u(x)‖1 with

ψµ(u(x)) = µ
n
∑

i=1

(

√

1 +
(u(x))2i
µ2

− 1)

Hence replace
min
x

τ‖u(x)‖1+ φ(x)

with
min
x

τψµ(u(x)) + φ(x)

Solve approximately a family of problems for a (short)
decreasing sequence of µ’s: µ0 > µ1 > µ2 · · ·
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Three examples of ℓ1-regularization

• Compressed Sensing
with K. Fountoulakis and P. Zhlobich

• Compressed Sensing (Coherent and Redundant Dict.)
with I. Dassios and K. Fountoulakis

• Machine Learning Problems
with K. Fountoulakis
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Example 1: Compressed Sensing

with K. Fountoulakis and P. Zhlobich

Large dense quadratic optimization problem:

min
x

τ‖x‖1+
1
2
‖Ax− b‖22,

where A ∈ Rm×n is a very special matrix.

Fountoulakis, G., Zhlobich
Matrix-free IPM for Compressed Sensing Problems,
Math. Prog. Computation 6 (2014), pp. 1–31.

Software available at http://www.maths.ed.ac.uk/ERGO/
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Two-way Orthogonality of A

• rows of A are orthogonal to each other (A is built of
a subset of rows of an othonormal matrix U ∈Rn×n)

AAT = Im.

• small subsets of columns of A are nearly-orthogonal
to each other: Restricted Isometry Property (RIP)

‖ĀT Ā−
m

n
Ik‖ ≤ δk ∈ (0,1).

Candès, Romberg & Tao,
Comm on Pure and Appl Maths 59 (2005) 1207-1233.
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Restricted Isometry Property

Matrix Ā ∈ Rm×k (k ≪ n) is built of a subset of columns
of A ∈ Rm×n.

A = −→ Ā =

ĀT Ā = = ≈
m

n
Ik.

This yields a very well conditioned optimization problem.
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Problem Reformulation

min
x

τ‖x‖1+
1
2
‖Ax− b‖22

Replace x = x+ − x− to be able to use |x| = x++ x−.
Use |xi| = zi+ zi+n to replace ‖x‖1 with ‖x‖1 = 1T2nz.

(Increases problem dimension from n to 2n.)

min
z≥0

cTz +
1
2
zTQz,

where

Q =
[

AT

−AT

]

[A −A ] =
[

ATA −ATA

−ATA ATA

]

∈ R2n×2n
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Preconditioner

Approximate

M =
[

ATA −ATA

−ATA ATA

]

+

[

Θ−1
1

Θ−1
2

]

with
P =

m

n

[

In −In
−In In

]

+

[

Θ−1
1

Θ−1
2

]

.

We expect (optimal partition):

• k entries of Θ−1 → 0, k ≪ 2n,

• 2n− k entries of Θ−1 → ∞.
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Spectral Properties of P−1M

Theorem

• Exactly n eigenvalues of P−1M are 1.

• The remaining n eigenvalues satisfy

|λ(P−1M)− 1| ≤ δk +
n

mδkL
,

where δk is the RIP-constant, and
L is a threshold of “large” (Θ1+Θ2)−1.

Fountoulakis, G., Zhlobich
Matrix-free IPM for Compressed Sensing Problems,
Math. Prog. Computation 6 (2014), pp. 1–31.
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Preconditioning
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−→ good clustering of eigenvalues

mfIPM compares favourably with NestA on easy probs
(NestA: Becker, Bobin and Candés).
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Computational Results: Comparing MatVecs

Prob size k NestA mfIPM

4k 51 424 301
16k 204 461 307
64k 816 453 407
256k 3264 589 537
1M 13056 576 613

NestA, Nesterov’s smoothing gradient
Becker, Bobin and Candés,
http://www-stat.stanford.edu/~candes/nesta/

mfIPM, Matrix-free IPM
Fountoulakis, G. and Zhlobich,
http://www.maths.ed.ac.uk/ERGO/
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Nontrivial Reconstruction Problems

Sparse vector: entries zero or 105. Gaussian noise σ = 0.1

2^12 2^13 2^14 2^15 2^16 2^17 2^18
0

1e+3

2e+3

3e+3

4e+3

5e+3

 

 

mfHOPDM
FPC_AS CG
GPSR
l1_ls_nonneg
NestA
SPGL1

For problem: n=218, m=215, spikes=6553
Relative Error     Nonzeros

     2.20e−5              6553

     1.88e−4              6551
     6.08e−1              40531

     9.00e−1              178823
     8.00e−6              6551
     6.10e−1              37420
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SPARCO problems

Comparison on 18 out of 26 classes of problems
(all but 6 complex and 2 installation-dependent ones).

Solvers compared:
PDCO, Saunders and Kim, Stanford,
ℓ1−ℓs, Kim, Koh, Lustig, Boyd, Gorinevsky, Stanford,
FPC-AS-CG, Wen, Yin, Goldfarb, Zhang, Rice,
SPGL1, Van Den Berg, Friedlander, Vancouver, and
mf-IPM, Fountoulakis, G., Zhlobich, Edinburgh.

On 36 runs (noisy and noiseless problems), mf-IPM:
• is the fastest on 11,
• is the second best on 14, and
• overall is very robust.
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Example 2: CS, Coherent & Redundant Dict.

with I. Dassios and K. Fountoulakis.

Large dense quadratic optimization problem:

min
x

τ‖W ∗x‖1+
1
2
‖Ax− b‖22,

where A ∈ Rm×n and W ∈ Cn×l is a dictionary.

Dassios, Fountoulakis and G.
A Second-order Method for Compressed Sensing Prob-
lems with Coherent and Redundant Dictionaries, Tech
Rep ERGO-2014-007, May 2014.

Software available at http://www.maths.ed.ac.uk/ERGO/
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Compressed Sensing and Continuation

Replace
min
x

f(x) = τ‖W ∗x‖1+
1
2
‖Ax− b‖22, −→ xτ

with
min
x

fµ(x) = τψµ(W ∗x) +
1
2
‖Ax− b‖22, −→ xτ,µ

Solve approximately a family of problems for a (short)
decreasing sequence of µ’s: µ0 > µ1 > µ2 · · ·

Theorem (Brief description)

There exists a µ̃ such that ∀µ ≤ µ̃ the difference of the
two solutions satisfies

‖xτ,µ − xτ‖2 = O(µ1/2) ∀ τ, µ
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Convergence of the primal-dual Newton CG

Use inexact Newton directions:

‖∇2fµ(x)∆x+∇fµ(x)‖2 ≤ η‖∇fµ(x)‖2, η ∈ (0,1)

computed by the Newton CG method.

Theorem (Primal convergence)

Let {xk}∞k=0 be a sequence generated by pdNCG. Then
the sequence {xk}∞k=0 converges to the primal (perturbed)
solution xτ,µ.

Theorem (Rate of convergence)

If the forcing factor ηk satisfies limk→∞ ηk = 0, then
pdNCG converges superlinearly.
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W-Restricted Isometry Property (W-RIP)

• rows of A are nearly-orthogonal to each other, i.e.,
there exists a small constant δ such that

‖AAT − Im‖ ≤ δ.

• W-Restricted Isometry Property (W-RIP):
there exists a constant δq such that

(1− δq)‖Wz‖22 ≤ ‖AWz‖22 ≤ (1 + δq)‖Wz‖22

for all at most q-sparse z ∈ Cn.

Candès, Eldar & Nedell,
Appl and Comp Harmonic Anal 31 (2011) 59-73.
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Preconditioner

Approximate
H = τ∇2ψµ(W ∗x) + ATA

with
P = τ∇2ψµ(W ∗x) + ρIn.

We expect (optimal partition):

• k entries of W ∗x ≫ 0, k ≪ l,

• l − k entries of W ∗x ≈ 0.

The preconditioner approximates well the 2nd derivative
of the pseudo-Huber regularization.
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Spectral Properties of P−1H

Theorem

• The eigenvalues of P−1H satisfy

|λ(P−1H)− 1| ≤
η(δ, δq, ρ)

ρ
,

where δq is the W-RIP constant,
δ is another small constant, and
η(δ, δq, ρ) is some simple function.

Dassios, Fountoulakis and G.
A Second-order Method for Compressed Sensing Prob-
lems with Coherent and Redundant Dictionaries, Tech
Rep ERGO-2014-007, May 2014.
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CS: Coherent and Redundant Dictionaries

−→ good clustering of eigenvalues

pdNCG outperforms TFOCS on several examples
(TFOCS: Becker, Candés and Grant).
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Brazil 2014 A 64× 64 resolution example:

Single pixel camera problem set:
http://dsp.rice.edu/cscamera

TFOCS, 24 sec. pdNCG, 15 sec.
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Example 3: Machine Learning Problems

with K. Fountoulakis

Large dense quadratic optimization problem:

min
x

τ‖x‖1+
1
2
‖Ax− b‖22,

where A ∈ Rm×n is: very sparse and unstructured

Fountoulakis and G.
A Second-order Method for Strongly Convex ℓ1 Regular-
ization, Tech Rep ERGO-2014-005, April 2014.

Software available at http://www.maths.ed.ac.uk/ERGO/
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Amazing efficiency of the 1st order methods

Nesterov, Math Prog, 103 (2005) 127-152.
Nesterov, Gradient methods for minimizing composite
objective function. CORE Discussion Papers 2007076,
September 2007.

Richtárik and Takáč, Iteration complexity of ran-
domized block-coordinate descent methods for minimiz-
ing a composite function. Math Prog, 2012.
Richtárik and Takáč, Parallel coordinate descent
methods for big data optimization. Tech Rep ERGO-
2012-013, November 2012.

Problem with n = 2× 109 solved in 37 MatVecs!
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What is going on here?

If we ignore the nondifferentiable ‖x‖1 term, then the
minimization of ‖Ax− b‖22 is equivalent to solving

(ATA)x = AT b.

The conjugate gradient method applied to solve this
system has the following rate of convergence:

ek+1 ≤
κ1/2 − 1

κ1/2+ 1
ek,

where ek is the error at iteration k and κ is the condition
number of ATA.

Inverse engineering exercise:
For ǫ=10−2, κ≈300, for ǫ=10−4, κ≈64, for ǫ=10−6, κ≈29.
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Toy Problem (used by 1st-order community)

min
x

τ‖x‖1+
1
2
‖Ax− b‖22,

where A ∈ Rm×n (m = 2n: overdetermined system).
Dimensions: m = 4× 109, n = 2× 109.
Very sparse: 20 nonzero entries per column.

• Parallel RCD (Richtárik and Takáč)
solves it doing 34-37 scans through the matrix
35 iterations, CPU time: 10779s;

• Inexact Newton (Fountoulakis and G.)
Replace ATA with diag{ATA}
solves it using 12-13 matrix-vector multiplications
13 iterations, CPU time: 5079s.
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Trivial problem

min
x

τ‖x‖1+
1
2
‖Ax− b‖22,

where A∈Rm×n. Highy overdetermined system: m=2n.
Massive diagonal in matrix ATA.

ATA =
d

=
x x x

x x

x

x

x

x

x
0

0d
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What is going on?

The 1st-order method (coordinate descent) uses:

di = argminpiτ |xi+pi|+[∇φ(x)]i pi+
β

2
pTi [diag(∇

2φ(x))]ii pi

If ∇2φ(x) is a diagonal matrix (or well approximated
by a diagonal matrix), then

dCD ≈ dN

hence the 1st-order method is in fact the 2nd-order
method.
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More realistic test example: RCDC vs dcNCG
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RCDC

Dimensions: m = 4× 103, n = 2× 103.
x∗ has 50 non-zero elements randomly positioned.

RCDC interrupted after 109 iterations, 31 hours.
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Newton-CG: Summary

Theory:

The primal-dual Newton Conjugate Gradient (pdNCG)
enjoys good convergence properties.

Computational practice:

The primal-dual Newton-CG

• provides reliability

• outperforms the 1st-order methods

Software available at http://www.maths.ed.ac.uk/ERGO/

Edinburgh Research Group on Optimization
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Conclusions

The 2nd-order information can (sometimes should)
be used also in very large scale optimization.

Use inexact Newton directions in:

• IPMs,

• primal-dual NCG.

Then the 2nd-order methods offer an attractive
alternative to the 1st-order methods.

1st order 2nd order
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