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Linear programming (LP)

minimize cTx
subject to Ax = b x ≥ 0

Background

Fundamental model in optimal
decision-making

Solution techniques

◦ Simplex method (1947)
◦ Interior point methods (1984)

Large problems have

◦ 103–107/8 variables
◦ 103–107/8 constraints

Matrix A is (usually) sparse

Example

STAIR: 356 rows, 467 columns and 3856 nonzeros
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Solving LP problems

minimize fP = cTx maximize fD = bTy
subject to Ax = b x ≥ 0 (P) subject to ATy + s = c s ≥ 0 (D)

Optimality conditions

For a partition B ∪N of the variable set with nonsingular basis matrix B in

BxB + NxN = b for (P) and

[
BT

NT

]
y +

[
sB

sN

]
=

[
cB

cN

]
for (D)

with xN = 0 and sB = 0
Primal basic variables xB given by b̂ = B−1b
Dual non-basic variables sN given by ĉTN = cTN − cTB B

−1N

Partition is optimal if there is

Primal feasibility b̂ ≥ 0
Dual feasibility ĉN ≥ 0
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Simplex algorithm: Each iteration

RHS

âq

âT
p

ĉTN

âpq

ĉq

b̂p

b̂

N

B

Dual algorithm: Assume ĉN ≥ 0 Seek b̂ ≥ 0

Scan b̂i , i ∈ B, for a good candidate p to leave B CHUZR

Scan ĉj/âpj , j ∈ N , for a good candidate q to leave N CHUZC

Update: Exchange p and q between B and N
Update b̂ := b̂− θpâq θp = b̂p/âpq UPDATE-PRIMAL

Update ĉTN := ĉTN − θd âT
p θd = ĉq/âpq UPDATE-DUAL
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ĉTN
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Standard simplex method (SSM): Computation

Major computational component

Update of tableau:

N̂ := N̂ − 1

âpq
âqâT

p

where N̂ = B−1N

Hopelessly inefficient for sparse LP problems

Prohibitively expensive for large LP problems
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Revised simplex method (RSM): Computation

Major computational components

πT
p = eTp B

−1 BTRAN âT
p = πT

p N PRICE

âq = B−1aq FTRAN Invert B INVERT

Hyper-sparsity

Vectors ep and aq are always sparse

B may be highly reducible; B−1 may be sparse

Vectors πp, âT
p and âq may be sparse

Efficient implementations must exploit these features
H and McKinnon (1998–2005), Bixby (1999)

Clp, Koberstein and Suhl (2005–2008)
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Revised simplex method (RSM): Algorithmic enhancements

Row selection: Dual steepest edge (DSE)

Weight b̂i by wi : measure of ‖B−1ei‖2
Requires additional FTRAN but can reduce iteration count significantly

Column selection: Bound-flipping ratio test (BFRT)

Minimizes the dual objective whilst remaining dual feasible

Dual variables may change sign if corresponding primal variables can flip bounds

Requires additional FTRAN but can reduce iteration count significantly
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Exploiting parallelism: Background

Data parallel standard simplex method

Good parallel efficiency was achieved

Only relevant for dense LP problems

Data parallel revised simplex method

Only immediate parallelism is in forming πT
p N

When n� m significant speed-up was achieved Bixby and Martin (2000)

Task parallel revised simplex method

Overlap computational components for different iterations
Wunderling (1996), H and McKinnon (1995-2005)

Modest speed-up was achieved on general sparse LP problems
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Parallelising the dual revised simplex method: Overview

Single iteration parallelism for general LP

Pure dual revised simplex

Data parallelism: Form πT
p N

Task parallelism: Identify serial computation which can be overlapped

Multiple iteration parallelism for general LP

Dual revised simplex with minor iterations of dual standard simplex

Data parallelism: Form πT
p N and update (slice of) dual standard simplex tableau

Task parallelism: Identify serial computation which can be overlapped

Data parallelism for stochastic LP

Pure dual revised simplex for column-linked block angular LP problems

Data parallelism: Solve BTπ = ep, B âq = aq and form πT
p N
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Single iteration parallelism



Single iteration parallelism: Dual revised simplex method

Computational components appear sequential

Each has highly-tuned sparsity-exploiting serial implementation

Exploit “slack” in data dependencies
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Single iteration parallelism: Computational scheme

Parallel PRICE to form âT
p = πT

p N

Other computational components
serial

Overlap any independent calculations

Only four worthwhile threads unless
n� m so PRICE dominates

More than Bixby and Martin (2000)

Better than Forrest (2012)
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Single iteration parallelism: 4-core sip vs 1-core hsol

Model Speedup Model Speedup Model Speedup

sgpf5y6 0.67 maros-r7 1.12 world 1.27
stormG2-125 0.76 stp3d 1.15 dfl001 1.28
watson 2 0.78 nug12 1.16 l30 1.28
ken-18 0.79 pds-40 1.16 Linf 520c 1.31
watson 1 0.80 dbic1 1.21 pilot87 1.31
qap12 0.83 fome12 1.22 self 1.36
stormG2-1000 0.84 dcp2 1.23 lp22 1.45
pds-80 1.05 ns1688926 1.23 dano3mip lp 1.49
pds-100 1.06 fome13 1.24 truss 1.58
cre-b 1.08 mod2 1.25 stat96v4 2.05

Geometric mean speedup is 1.13

Performance is generally poor for problems with high hyper-sparsity

Performance is generally good for problems with low hyper-sparsity
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Multiple iteration parallelism



Multiple iteration parallelism

sip has too little work to be performed in parallel to get good speedup

Perform standard dual simplex minor iterations for rows in set P (|P| � m)

Suggested by Rosander (1975) but never implemented efficiently in serial

RHS

ĉTN

âT
P

b̂

b̂P

N

B

Task-parallel multiple BTRAN to form πP = B−1eP
Data-parallel PRICE to form âT

p (as required)

Data-parallel tableau update

Task-parallel multiple FTRAN for primal, dual and weight updates
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p (as required)

Data-parallel tableau update

Task-parallel multiple FTRAN for primal, dual and weight updates

Julian Hall Parallelising the dual revised simplex method 17 / 42



Multiple iteration parallelism: 8-core pami vs 1-core pami

Model Speedup Model Speedup Model Speedup

ken-18 1.54 Linf 520c 2.00 world 2.54
maros-r7 1.56 pds-40 2.00 fome12 2.58
cre-b 1.62 ns1688926 2.10 truss 2.67
stormG2-125 1.70 fome13 2.20 l30 2.74
watson 2 1.72 stormG2-1000 2.25 dfl001 2.74
self 1.81 stp3d 2.33 lp22 2.75
watson 1 1.83 dbic1 2.36 qap12 2.75
pds-100 1.88 sgpf5y6 2.40 nug12 2.81
dcp2 1.89 pilot87 2.48 dano3mip lp 3.10
pds-80 1.92 mod2 2.53 stat96v4 3.50

Speed-up for all problems

Geometric mean speedup is 2.23
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Multiple iteration parallelism: 8-core pami vs 1-core hsol

Model Speedup Model Speedup Model Speedup

maros-r7 0.47 pds-40 1.35 lp22 1.67
Linf 520c 0.75 world 1.37 nug12 1.78
self 1.07 stormG2-125 1.44 dfl001 1.81
pds-80 1.16 pilot87 1.50 sgpf5y6 1.90
ns1688926 1.26 dcp2 1.52 truss 1.94
pds-100 1.29 fome13 1.52 cre-b 1.95
mod2 1.29 watson 1 1.55 dano3mip lp 2.12
l30 1.29 watson 2 1.61 stat96v4 2.33
ken-18 1.30 fome12 1.61 stp3d 2.41
dbic1 1.31 stormG2-1000 1.66 qap12 2.53

Geometric mean speedup is 1.49

Lower than speedup relative to 1-core pami

Geometric mean speed of 1-core pami relative to 1-core hsol is 0.67
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Multiple iteration parallelism: Performance profile benchmarking

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

pami clp cplex

pami is plainly better than clp

pami is comparable with cplex

pami ideas have been incorporated in FICO Xpress (Huangfu 2014)
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Data parallelism for stochastic LPs



Stochastic MIP problems: General

Two-stage stochastic LPs have column-linked block angular structure

minimize cT0 x0 + cT1 x1 + cT2 x2 + . . . + cTNxN
subject to Ax0 = b0

T1x0 + W1x1 = b1

T2x0 + W2x2 = b2

...
. . .

...
TNx0 + WNxN = bN

x0 ≥ 0 x1 ≥ 0 x2 ≥ 0 . . . xN ≥ 0

Variables x0 ∈ Rn0 are first stage decisions

Variables xi ∈ Rni for i = 1, . . . ,N are second stage decisions
Each corresponds to a scenario which occurs with modelled probability

The objective is the expected cost of the decisions

In stochastic MIP problems, some/all decisions are discrete
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Stochastic MIP problems: For Argonne

Power systems optimization project at Argonne

Integer second-stage decisions

Stochasticity comes from availability of wind-generated electricity

Initial experiments carried out using model problem

Number of scenarios increases with refinement of probability distribution sampling

Solution via branch-and-bound

Solve root node using parallel IPM solver PIPS Lubin, Petra et al. (2011)
Solve subsequent nodes using parallel dual simplex solver PIPS-S

Lubin, H et al. (2013)
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Stochastic MIP problems: General

Convenient to permute the LP thus:

minimize cT1 x1 + cT2 x2 + . . . + cTNxN + cT0 x0
subject to W1x1 + T1x0 = b1

W2x2 + T2x0 = b2

. . .
...

...
WNxN + TNx0 = bN

Ax0 = b0

x1 ≥ 0 x2 ≥ 0 . . . xN ≥ 0 x0 ≥ 0
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Exploiting problem structure: Basis matrix inversion

Inversion of the basis matrix B is key to revised simplex efficiency
For column-linked BALP problems

B =




W B
1 T B

1
. . .

...
W B

N T B
N

AB




W B
i are columns corresponding to nB

i basic variables in scenario i



T B
1
...

T B
N

AB


 are columns corresponding to nB

0 basic first stage decisions

.
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Exploiting problem structure: Basis matrix inversion

Inversion of the basis matrix B is key to revised simplex efficiency
For column-linked BALP problems

B =




W B
1 T B

1
. . .

...
W B

N T B
N

AB




B is nonsingular so
W B

i are “tall”: full column rank[
W B

i T B

i

]
are “wide”: full row rank

AB is “wide”: full row rank

Scope for parallel inversion is immediate and well known
Duff and Scott (2004)

.

Julian Hall Parallelising the dual revised simplex method 26 / 42



Exploiting problem structure: Basis matrix inversion

Eliminate sub-diagonal entries in each W B
i (independently)

Apply elimination operations to each T B
i (independently)

Accumulate non-pivoted rows from the W B
i with AB and

complete elimination
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Exploiting problem structure: Basis matrix inversion

After Gaussian elimination, have invertible representation of

B =




S1 C1

. . .
...

SN CN

R1 . . . RN V


 =




S C

R V




Specifically

LiUi = Si of dimension nB

i

Ĉi = L−1i Ci

R̂i = RiU
−1
i

LU factors of the Schur complement M = V − RS−1C of dimension nB
0

Scope for parallelism since each GE applied to
[
W B

i | T B
i

]
is independent
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Exploiting problem structure: Solving Bx = b

FTRAN for Bx = b

Solve

[
S C
R V

] [
x•
x0

]
=

[
b•
b0

]
as

1 Liyi = bi , i = 1, . . . ,N

2 zi = R̂iyi , i = 1, . . . ,N

3 z = b0 −
N∑

i=1

zi

4 Mx0 = z

5 Uixi = yi − Ĉix0, i = 1, . . . ,N

Appears to be dominated by parallelizable

Solves Liyi = bi and Uixi = yi − Ĉix0
Products R̂iyi and Ĉix0

Curse of exploiting hyper-sparsity

In simplex, b• is from constraint column

Either




t1q
...

tNq


or, more likely,




0
wiq

0




In latter case, the yi inherit structure

Only one Liyi = wiq

Only one R̂iyi

Less scope for parallelism than anticipated

.
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5 Uixi = yi − Ĉix0, i = 1, . . . ,N

Appears to be dominated by parallelizable

Solves Liyi = bi and Uixi = yi − Ĉix0
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Exploiting problem structure: Solving BTx = b

BTRAN for BTx = b

Solve

[
ST RT

CT V T

] [
x•
x0

]
=

[
b•
b0

]
as

1 UT
i yi = bi , i = 1, . . . ,N

2 zi = ĈT
i yi , i = 1, . . . ,N

3 z = b0 −
N∑

i=1

zi

4 MTx0 = z

5 LTi xi = yi − R̂T
i x0, i = 1, . . . ,N

Appears to be dominated by parallelizable

Solves UT
i yi = bi and LTi xi = yi − R̂T

i x0
Products ĈT

i yi and R̂T
i x0

Curse of exploiting hyper-sparsity

In simplex, b = ep

At most one solve UT
i yi = bi

At most one ĈT
i yi

Less scope for parallelism than anticipated

.
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i yi

Less scope for parallelism than anticipated

.

Julian Hall Parallelising the dual revised simplex method 30 / 42



Exploiting problem structure: Solving BTx = b

BTRAN for BTx = b

Solve

[
ST RT

CT V T

] [
x•
x0

]
=

[
b•
b0

]
as

1 UT
i yi = bi , i = 1, . . . ,N

2 zi = ĈT
i yi , i = 1, . . . ,N

3 z = b0 −
N∑

i=1

zi

4 MTx0 = z

5 LTi xi = yi − R̂T
i x0, i = 1, . . . ,N

Appears to be dominated by parallelizable

Solves UT
i yi = bi and LTi xi = yi − R̂T

i x0
Products ĈT
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Exploiting problem structure: Forming πT
p N

PRICE forms

[
πT
1 πT

2 . . . πT
N πT

0

]




W N
1 T N

1

W N
2 T N

2
. . .

...
W N

N T N
N

AN




=

[
πT
1 W

N
1 πT

2 W
N
2 . . . πT

NW
N
N πT

0 A
N +

N∑

i=1

πT
i T

N
i

]

Dominated by parallelizable products πT
i W

N
i and πT

i T
N
i
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Exploiting problem structure: Update

Update of the invertible representation of B is second major factor in revised
simplex efficiency

Each iteration column aq of the constraint matrix replaces column Bep of B

B ′ = B[I + (âq − ep)eTp ]

Unfortunately, the structure of B is not generally maintained

PIPS-S uses standard product form update

B ′
−1

= [I + (âq − ep)eTp ]−1B−1 = E−1B−1 where E−1 = I − 1

âpq
(âq − ep)eTp
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Exploiting problem structure: Applying update

Form x = E−1b as xp = − bp
âpq

then xp′ = bp′ + âqxp

Updates {Ek}Kk=1 of B0 to BK require {âqk}Kk=1 and P = {pk}Kk=1, |P| � m

Exploit parallelism when forming x = E−1K . . .E−11 b thus

Compute xP serially
Compute xP′ as a parallel matrix-vector product

xP′ = bP′ +
[
âq1 . . . âqK

]
xP

Similar trick for parallelising xT = bTE−1K . . .E−11

Lubin, H et al. (2013)
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Exploit parallelism when forming x = E−1K . . .E−11 b thus

Compute xP serially
Compute xP′ as a parallel matrix-vector product

xP′ = bP′ +
[
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Results



Results: Stochastic LP test problems

Test 1st Stage 2nd-Stage Scenario Nonzero Elements
Problem n0 m0 ni mi A Wi Ti

Storm 121 185 1,259 528 696 3,220 121
SSN 89 1 706 175 89 2,284 89
UC12 3,132 0 56,532 59,436 0 163,839 3,132
UC24 6,264 0 113,064 118,872 0 327,939 6,264

Storm and SSN are publicly available

UC12 and UC24 are stochastic unit commitment problems developed at Argonne

Aim to choose optimal on/off schedules for generators on the power grid of the state
of Illinois over a 12-hour and 24-hour horizon
In practice each scenario corresponds to a weather simulation
Model problem generates scenarios by normal perturbations

Zavala (2011)
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Results: Baseline serial performance for large instances

Serial performance of PIPS-S and clp

Problem Dimensions Solver Iterations Time (s) Iter/sec

Storm n =10,313,849 PIPS-S 6,353,593 385,825 16.5
8,192 scen. m = 4, 325, 561 clp 6,706,401 133,047 50.4

SSN n = 5, 783, 651 PIPS-S 1,025,279 58,425 17.5
8,192 scen. m = 1, 433, 601 clp 1,175,282 12,619 93.1

UC12 n = 1, 812, 156 PIPS-S 1,968,400 236,219 8.3
32 scen. m = 1, 901, 952 clp 2,474,175 39,722 62.3

UC24 n = 1, 815, 288 PIPS-S 2,142,962 543,272 3.9
16 scen. m = 1, 901, 952 clp 2,441,374 41,708 58.5
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Results: On Fusion cluster

Speed-up of PIPS-S relative to 1-core PIPS-S and 1-core clp

Cores Storm SSN UC12 UC24

1 1.0 1.0 1.0 1.0
4 3.6 3.5 2.7 3.0
8 7.3 7.5 6.1 5.3

16 13.6 15.1 8.5 8.9
32 24.6 30.3 14.5

clp 8.5 6.5 2.4 0.7
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Results: On Fusion cluster - larger instances

Storm SSN UC12 UC24

Scenarios 32,768 32,768 512 256
Variables 41,255,033 23,134,297 28,947,516 28,950,648

Constraints 17,301,689 5,734,401 30,431,232 30,431,232
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Results: On Fusion cluster - larger instances, from an advanced basis

Speed-up of PIPS-S relative to 1-core PIPS-S and 1-core clp

Cores Storm SSN UC12 UC24

1 1 1 1 1
8 15 19 7 6

16 52 45 14 12
32 117 103 26 22
64 152 181 44 41

128 202 289 60 64
256 285 383 70 80

clp 299 45 67 68
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Results: On Blue Gene supercomputer - very large instance

Instance of UC12

8,192 scenarios
463,113,276 variables
486,899,712 constraints

Requires 1 TB of RAM (≥ 1024 Blue Gene cores)

Runs from an advanced basis

Cores Iterations Time (h) Iter/sec

1024 Exceeded execution time limit
2048 82,638 6.14 3.74
4096 75,732 5.03 4.18
8192 86,439 4.67 5.14
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Parallelising the dual revised simplex method: Conclusions

Two schemes for general LP problems

Meaningful performance improvement
Have led to publicised advances in a leading commercial solver

One scheme for stochastic LP problems

Demonstrated scalable parallel performance... for highly specialised problems...
on highly specialised machines
Solved problems which would be intractable using commercial serial solvers

Helped develop two really talented young researchers: Qi Huangfu and Miles Lubin

Slides: http://www.maths.ed.ac.uk/hall/COB14/

Paper: M. Lubin, J. A. J. Hall, C. G. Petra, and M. Anitescu
Parallel distributed-memory simplex for large-scale stochastic LP
problems
Computational Optimization and Applications, 55(3):571–596, 2013 Cup winners: 2013
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