Parallelising the dual revised simplex method

Julian Hall¹ Qi Huangfu² Miles Lubin³

¹School of Mathematics, University of Edinburgh

 2 FICO

 ^{3}MIT

Convex Optimization and Beyond

Edinburgh

27 June 2014

- Background
- Three approaches
 - Multiple iteration parallelism for general LP
 - Single iteration parallelism for general LP
 - Data parallelism for stochastic LP
- Conclusions

Linear programming (LP)

Background

- Fundamental model in optimal decision-making
- Solution techniques
 - Simplex method (1947)
 - Interior point methods (1984)
- Large problems have
 - \circ 10³-10⁷⁸ variables
 - \circ 10³-10⁷⁸ constraints
- Matrix A is (usually) sparse

Example

STAIR: 356 rows, 467 columns and 3856 nonzeros

Solving LP problems

minimize $f_P = \mathbf{c}^T \mathbf{x}$ subject to $A\mathbf{x} = \mathbf{b} \quad \mathbf{x} \ge \mathbf{0}$ (P)

$$\begin{array}{ll} \mathsf{maximize} & f_D = \mathbf{b}^T \mathbf{y} \\ \mathsf{subject to} & A^T \mathbf{y} + \mathbf{s} = \mathbf{c} \quad \mathbf{s} \geq \mathbf{0} \quad (D) \end{array}$$

Optimality conditions

• For a partition $\mathcal{B} \cup \mathcal{N}$ of the variable set with nonsingular **basis matrix** B in

$$B\mathbf{x}_{B} + N\mathbf{x}_{N} = \mathbf{b} \text{ for } (P) \quad \text{and} \quad \begin{bmatrix} B^{T} \\ N^{T} \end{bmatrix} \mathbf{y} + \begin{bmatrix} \mathbf{s}_{B} \\ \mathbf{s}_{N} \end{bmatrix} = \begin{bmatrix} \mathbf{c}_{B} \\ \mathbf{c}_{N} \end{bmatrix} \text{ for } (D)$$

with $\mathbf{x}_{\scriptscriptstyle N} = \mathbf{0}$ and $\mathbf{s}_{\scriptscriptstyle B} = \mathbf{0}$

- Primal basic variables $\mathbf{x}_{\scriptscriptstyle B}$ given by $\widehat{\mathbf{b}} = \underline{B}^{-1}\mathbf{b}$
- Dual non-basic variables $\mathbf{s}_{\scriptscriptstyle N}$ given by $\widehat{\mathbf{c}}_{\scriptscriptstyle N}^{\sf T} = \mathbf{c}_{\scriptscriptstyle N}^{\sf T} \mathbf{c}_{\scriptscriptstyle B}^{\sf T} B^{-1} N$
- Partition is optimal if there is
 - Primal feasibility $\widehat{\boldsymbol{b}} \geq \boldsymbol{0}$
 - Dual feasibility $\widehat{c}_{\scriptscriptstyle N} \geq 0$

Simplex algorithm: Each iteration

Dual algorithm: Assume $\widehat{\mathbf{c}}_{\scriptscriptstyle N} \geq \mathbf{0}$ Seek $\widehat{\mathbf{b}} \geq \mathbf{0}$

Scan \hat{b}_i , $i \in \mathcal{B}$, for a good candidate p to leave \mathcal{B} CHUZRScan \hat{c}_j/\hat{a}_{pj} , $j \in \mathcal{N}$, for a good candidate q to leave \mathcal{N} CHUZC

Simplex algorithm: Each iteration

Dual algorithm: Assume $\widehat{\mathbf{c}}_{\scriptscriptstyle N} \geq \mathbf{0}$ Seek $\widehat{\mathbf{b}} \geq \mathbf{0}$

Scan \widehat{b}_i , $i \in \mathcal{B}$, for a good candidate p to leave \mathcal{B} CHUZRScan $\widehat{c}_j / \widehat{a}_{pj}$, $j \in \mathcal{N}$, for a good candidate q to leave \mathcal{N} CHUZC

Update: Exchange p and q between \mathcal{B} and \mathcal{N}

 $\begin{array}{ll} \text{Update } \widehat{\mathbf{b}} := \widehat{\mathbf{b}} - \theta_p \widehat{\mathbf{a}}_q & \theta_p = \widehat{b}_p / \widehat{a}_{pq} & \text{UPDATE-PRIMAL} \\ \text{Update } \widehat{\mathbf{c}}_N^{\ T} := \widehat{\mathbf{c}}_N^{\ T} - \theta_d \widehat{\mathbf{a}}_p^{\ T} & \theta_d = \widehat{c}_q / \widehat{a}_{pq} & \text{UPDATE-DUAL} \end{array}$

Major computational component

Update of tableau:

$$\widehat{\mathsf{N}} := \widehat{\mathsf{N}} - rac{1}{\widehat{a}_{pq}} \widehat{\mathbf{a}}_q \widehat{\mathbf{a}}_p^{\mathcal{T}}$$

where $\widehat{N} = B^{-1}N$

- Hopelessly inefficient for sparse LP problems
- Prohibitively expensive for large LP problems

Revised simplex method (RSM): Computation

Major computational components

$$\begin{aligned} \pi_p^T &= \mathbf{e}_p^T B^{-1} \quad \text{BTRAN} & \widehat{\mathbf{a}}_p^T &= \pi_p^T N \quad \text{PRICE} \\ \widehat{\mathbf{a}}_q &= B^{-1} \mathbf{a}_q \quad \text{FTRAN} & \text{Invert } B \quad \text{INVERT} \end{aligned}$$

Major computational components

$$\begin{aligned} \pi_p^T &= \mathbf{e}_p^T B^{-1} \quad \text{BTRAN} & \widehat{\mathbf{a}}_p^T &= \pi_p^T N \quad \text{PRICE} \\ \widehat{\mathbf{a}}_q &= B^{-1} \mathbf{a}_q \quad \text{FTRAN} & \text{Invert } B \quad \text{INVERT} \end{aligned}$$

Hyper-sparsity

- Vectors \mathbf{e}_p and \mathbf{a}_q are always sparse
- B may be highly reducible; B^{-1} may be sparse
- Vectors π_p , $\widehat{\mathbf{a}}_p^T$ and $\widehat{\mathbf{a}}_q$ may be sparse
- Efficient implementations must exploit these features

H and McKinnon (1998–2005), Bixby (1999) Clp, Koberstein and Suhl (2005–2008)

Row selection: Dual steepest edge (DSE)

- Weight \hat{b}_i by w_i : measure of $||B^{-1}\mathbf{e}_i||_2$
- Requires additional FTRAN but can reduce iteration count significantly

Column selection: Bound-flipping ratio test (BFRT)

- Minimizes the dual objective whilst remaining dual feasible
 - Dual variables may change sign if corresponding primal variables can flip bounds
- Requires additional FTRAN but can reduce iteration count significantly

Exploiting parallelism: Background

Data parallel standard simplex method

- Good parallel efficiency was achieved
- Only relevant for dense LP problems

Exploiting parallelism: Background

Data parallel standard simplex method

- Good parallel efficiency was achieved
- Only relevant for dense LP problems

Data parallel revised simplex method

- Only immediate parallelism is in forming $\pi_p^T N$
- When $n \gg m$ significant speed-up was achieved

Bixby and Martin (2000)

Exploiting parallelism: Background

Data parallel standard simplex method

- Good parallel efficiency was achieved
- Only relevant for dense LP problems

Data parallel revised simplex method

- Only immediate parallelism is in forming $\pi_p^T N$
- When $n \gg m$ significant speed-up was achieved

Bixby and Martin (2000)

Task parallel revised simplex method

• Overlap computational components for different iterations

Wunderling (1996), H and McKinnon (1995-2005)

• Modest speed-up was achieved on general sparse LP problems

Single iteration parallelism for general LP

- Pure dual revised simplex
- Data parallelism: Form $\pi_p^T N$
- Task parallelism: Identify serial computation which can be overlapped

Single iteration parallelism for general LP

- Pure dual revised simplex
- Data parallelism: Form $\pi_p^T N$
- Task parallelism: Identify serial computation which can be overlapped

Multiple iteration parallelism for general LP

- Dual revised simplex with minor iterations of dual standard simplex
- **Data parallelism:** Form $\pi_p^T N$ and update (slice of) dual standard simplex tableau
- Task parallelism: Identify serial computation which can be overlapped

Single iteration parallelism for general LP

- Pure dual revised simplex
- Data parallelism: Form $\pi_p^T N$
- Task parallelism: Identify serial computation which can be overlapped

Multiple iteration parallelism for general LP

- Dual revised simplex with minor iterations of dual standard simplex
- **Data parallelism:** Form $\pi_p^T N$ and update (slice of) dual standard simplex tableau
- Task parallelism: Identify serial computation which can be overlapped

Data parallelism for stochastic LP

- Pure dual revised simplex for column-linked block angular LP problems
- Data parallelism: Solve $B^T \pi = \mathbf{e}_p$, $B \widehat{\mathbf{a}}_q = \mathbf{a}_q$ and form $\pi_p^T N$

Single iteration parallelism

Single iteration parallelism: Dual revised simplex method

- Computational components appear sequential
- Each has highly-tuned sparsity-exploiting serial implementation
- Exploit "slack" in data dependencies

Single iteration parallelism: Computational scheme

- Parallel PRICE to form $\hat{\mathbf{a}}_p^T = \pi_p^T N$
- Other computational components serial
- Overlap any independent calculations

Single iteration parallelism: Computational scheme

- Parallel PRICE to form $\hat{\mathbf{a}}_p^T = \pi_p^T N$
- Other computational components serial
- Overlap any independent calculations
- Only four worthwhile threads unless $n \gg m$ so PRICE dominates

Single iteration parallelism: Computational scheme

• Parallel PRICE to form $\hat{\mathbf{a}}_p^T = \pi_p^T N$

- Other computational components serial
- Overlap any independent calculations
- Only four worthwhile threads unless $n \gg m$ so PRICE dominates
- More than Bixby and Martin (2000)
- Better than Forrest (2012)

Single iteration parallelism: 4-core sip vs 1-core hsol

Model	Speedup	Model	Speedup	Model	Speedup
sgpf5y6	0.67	MAROS-R7	1.12	WORLD	1.27
stormG2-125	0.76	STP3D	1.15	dfl001	1.28
WATSON_2	0.78	NUG12	1.16	L30	1.28
KEN-18	0.79	PDS-40	1.16	$Linf_520c$	1.31
WATSON_1	0.80	DBIC1	1.21	PILOT87	1.31
QAP12	0.83	FOME12	1.22	SELF	1.36
stormG2-1000	0.84	DCP2	1.23	LP22	1.45
PDS-80	1.05	NS1688926	1.23	DANO3MIP_LP	1.49
PDS-100	1.06	FOME13	1.24	TRUSS	1.58
CRE-B	1.08	MOD2	1.25	stat96v4	2.05

- Geometric mean speedup is 1.13
- Performance is generally poor for problems with high hyper-sparsity
- Performance is generally good for problems with low hyper-sparsity

Multiple iteration parallelism

Multiple iteration parallelism

- sip has too little work to be performed in parallel to get good speedup
- Perform standard dual simplex minor iterations for rows in set $\mathcal{P}~(|\mathcal{P}|\ll m)$
- Suggested by Rosander (1975) but never implemented efficiently in serial

Multiple iteration parallelism

- sip has too little work to be performed in parallel to get good speedup
- Perform standard dual simplex minor iterations for rows in set $\mathcal{P}~(|\mathcal{P}|\ll m)$
- Suggested by Rosander (1975) but never implemented efficiently in serial

- Task-parallel multiple BTRAN to form $m{\pi}_{\mathcal{P}}=B^{-1}m{e}_{\mathcal{P}}$
- Data-parallel PRICE to form $\widehat{\mathbf{a}}_{p}^{T}$ (as required)
- Data-parallel tableau update
- Task-parallel multiple FTRAN for primal, dual and weight updates

Multiple iteration parallelism: 8-core pami vs 1-core pami

Model	Speedup	Model	Speedup	Model	Speedup
KEN-18	1.54	Linf_520c	2.00	WORLD	2.54
MAROS-R7	1.56	PDS-40	2.00	FOME12	2.58
CRE-B	1.62	NS1688926	2.10	TRUSS	2.67
stormG2-125	1.70	FOME13	2.20	L30	2.74
WATSON_2	1.72	STORMG2-1000	2.25	dfl001	2.74
\mathbf{SELF}	1.81	stp3d	2.33	LP22	2.75
watson_1	1.83	dbic1	2.36	QAP12	2.75
PDS- 100	1.88	sgpf5y6	2.40	NUG12	2.81
$\mathrm{DCP2}$	1.89	PILOT87	2.48	dano3mip_lp	3.10
PDS- 80	1.92	MOD2	2.53	stat96v4	3.50

- Speed-up for all problems
- Geometric mean speedup is 2.23

Multiple iteration parallelism: 8-core pami vs 1-core hsol

Model	Speedup	Model	Speedup	Model	Speedup
MAROS-R7	0.47	PDS-40	1.35	LP22	1.67
$Linf_520c$	0.75	WORLD	1.37	NUG12	1.78
SELF	1.07	stormG2-125	1.44	DFL001	1.81
PDS-80	1.16	PILOT87	1.50	sgpf5y6	1.90
NS1688926	1.26	DCP2	1.52	TRUSS	1.94
PDS-100	1.29	FOME13	1.52	CRE-B	1.95
MOD2	1.29	watson_1	1.55	dano3mip_lp	2.12
L30	1.29	WATSON_2	1.61	stat96v4	2.33
KEN-18	1.30	FOME12	1.61	stp3d	2.41
DBIC1	1.31	stormG2-1000	1.66	QAP12	2.53

- Geometric mean speedup is 1.49
- Lower than speedup relative to 1-core pami
 - Geometric mean speed of 1-core pami relative to 1-core hsol is 0.67

Multiple iteration parallelism: Performance profile benchmarking

- pami is plainly better than clp
- pami is comparable with cplex
- pami ideas have been incorporated in FICO Xpress (Huangfu 2014)

Data parallelism for stochastic LPs

Stochastic MIP problems: General

Two-stage stochastic LPs have column-linked block angular structure

- Variables $\mathbf{x}_0 \in \mathbb{R}^{n_0}$ are first stage decisions
- Variables x_i ∈ ℝ^{n_i} for i = 1,..., N are second stage decisions
 Each corresponds to a scenario which occurs with modelled probability
- The objective is the expected cost of the decisions
- In stochastic MIP problems, some/all decisions are discrete

- Power systems optimization project at Argonne
- Integer second-stage decisions
- Stochasticity comes from availability of wind-generated electricity
- Initial experiments carried out using model problem
- Number of scenarios increases with refinement of probability distribution sampling
- Solution via branch-and-bound
 - Solve root node using parallel IPM solver PIPS Lubin, Petra et al. (2011)
 - Solve subsequent nodes using parallel dual simplex solver PIPS-S

Lubin, H et al. (2013)

Convenient to permute the LP thus:

Exploiting problem structure: Basis matrix inversion

- Inversion of the basis matrix B is key to revised simplex efficiency
- For column-linked BALP problems

• W_i^B are columns corresponding to n_i^B basic variables in scenario *i*

Exploiting problem structure: Basis matrix inversion

- Inversion of the basis matrix B is key to revised simplex efficiency
- For column-linked BALP problems

- B is nonsingular so
 - $W_i^{\scriptscriptstyle B}$ are "tall": full column rank
 - $\begin{bmatrix} W_i^B & T_i^B \end{bmatrix}$ are "wide": full row rank
 - $A^{\scriptscriptstyle B}$ is "wide": full row rank
- Scope for parallel inversion is immediate and well known

Duff and Scott (2004)

Exploiting problem structure: Basis matrix inversion

• Eliminate sub-diagonal entries in each $W_i^{\scriptscriptstyle B}$ (independently)

• Eliminate sub-diagonal entries in each W_i^B (independently)

• Apply elimination operations to each T_i^B (independently)

• Eliminate sub-diagonal entries in each W_i^B (independently)

• Apply elimination operations to each T_i^B (independently)

• Accumulate non-pivoted rows from the W_i^B with A^B and complete elimination

• After Gaussian elimination, have invertible representation of

$$B = \begin{bmatrix} S_1 & & C_1 \\ & \ddots & & \vdots \\ & S_N & C_N \\ \hline R_1 & \dots & R_N & V \end{bmatrix} = \begin{bmatrix} S & C \\ & & \\ \hline R & V \end{bmatrix}$$

• After Gaussian elimination, have invertible representation of

$$B = \begin{bmatrix} S_1 & & C_1 \\ & \ddots & & \vdots \\ & S_N & C_N \\ \hline R_1 & \dots & R_N & V \end{bmatrix} = \begin{bmatrix} S & C \\ & & \\ \hline R & V \end{bmatrix}$$

- Specifically
 - $L_i U_i = S_i$ of dimension $n_i^{\scriptscriptstyle B}$

• After Gaussian elimination, have invertible representation of

$$B = \begin{bmatrix} S_1 & & C_1 \\ & \ddots & & \vdots \\ & S_N & C_N \\ \hline R_1 & \dots & R_N & V \end{bmatrix} = \begin{bmatrix} S & C \\ & & \\ \hline R & V \end{bmatrix}$$

Specifically

•
$$L_i U_i = S_i$$
 of dimension $n_i^{\scriptscriptstyle B}$
• $\widehat{C}_i = L_i^{-1} C_i$
• $\widehat{R}_i = R_i U_i^{-1}$

• After Gaussian elimination, have invertible representation of

$$B = \begin{bmatrix} S_1 & & C_1 \\ & \ddots & & \vdots \\ & & S_N & C_N \\ \hline R_1 & \dots & R_N & V \end{bmatrix} = \begin{bmatrix} S & C \\ & & \\ \hline R & V \end{bmatrix}$$

- Specifically
 - $L_i U_i = S_i$ of dimension $n_i^{\scriptscriptstyle B}$
 - $\widehat{C}_i = L_i^{-1}C_i$
 - $\widehat{R}_i = R_i U_i^{-1}$
 - LU factors of the Schur complement $M = V RS^{-1}C$ of dimension $n_0^{\scriptscriptstyle B}$

• After Gaussian elimination, have invertible representation of

$$B = \begin{bmatrix} S_1 & & C_1 \\ & \ddots & & \vdots \\ & & S_N & C_N \\ \hline R_1 & \dots & R_N & V \end{bmatrix} = \begin{bmatrix} S & C \\ & & \\ \hline R & V \end{bmatrix}$$

- Specifically
 - $L_i U_i = S_i$ of dimension $n_i^{\scriptscriptstyle B}$
 - $\widehat{C}_i = L_i^{-1}C_i$
 - $\widehat{R}_i = R_i U_i^{-1}$
 - LU factors of the Schur complement $M = V RS^{-1}C$ of dimension $n_0^{\scriptscriptstyle B}$
- Scope for parallelism since each GE applied to $[W_i^B | T_i^B]$ is independent

FTRAN for $B\mathbf{x} = \mathbf{b}$ Solve $\begin{bmatrix} S & C \\ R & V \end{bmatrix} \begin{bmatrix} \mathbf{x}_{\bullet} \\ \mathbf{x}_{0} \end{bmatrix} = \begin{bmatrix} \mathbf{b}_{\bullet} \\ \mathbf{b}_{0} \end{bmatrix}$ as **9** $L_i \mathbf{y}_i = \mathbf{b}_i, \ i = 1, \dots, N$ **2** $\mathbf{z}_i = \widehat{R}_i \mathbf{y}_i, i = 1, \dots, N$ **4** $Mx_0 = z$ $U_i \mathbf{x}_i = \mathbf{y}_i - \widehat{C}_i \mathbf{x}_0, \ i = 1, \dots, N$

FTRAN for $B\mathbf{x} = \mathbf{b}$ Solve $\begin{bmatrix} S & C \\ R & V \end{bmatrix} \begin{bmatrix} \mathbf{x}_{\bullet} \\ \mathbf{x}_{0} \end{bmatrix} = \begin{bmatrix} \mathbf{b}_{\bullet} \\ \mathbf{b}_{0} \end{bmatrix}$ as **1** $L_i \mathbf{y}_i = \mathbf{b}_i, i = 1, ..., N$ **2** $\mathbf{z}_i = \widehat{R}_i \mathbf{y}_i, i = 1, \dots, N$ $\mathbf{3} \ \mathbf{z} = \mathbf{b}_0 - \sum_{i=1}^N \mathbf{z}_i$ $M \mathbf{x}_0 = \mathbf{z}$ $U_i \mathbf{x}_i = \mathbf{y}_i - \widehat{C}_i \mathbf{x}_0, \ i = 1, \dots, N$

- Appears to be dominated by parallelizable
 - Solves $L_i \mathbf{y}_i = \mathbf{b}_i$ and $U_i \mathbf{x}_i = \mathbf{y}_i \widehat{C}_i \mathbf{x}_0$
 - Products $\widehat{R}_i \mathbf{y}_i$ and $\widehat{C}_i \mathbf{x}_0$

FTRAN for $B\mathbf{x} = \mathbf{b}$ Solve $\begin{bmatrix} S & C \\ R & V \end{bmatrix} \begin{bmatrix} \mathbf{x}_{\bullet} \\ \mathbf{x}_{0} \end{bmatrix} = \begin{bmatrix} \mathbf{b}_{\bullet} \\ \mathbf{b}_{0} \end{bmatrix}$ as **9** $L_i \mathbf{y}_i = \mathbf{b}_i, \ i = 1, \dots, N$ 2 $\mathbf{z}_i = \widehat{R}_i \mathbf{y}_i, i = 1, \dots, N$ $M \mathbf{x}_0 = \mathbf{z}$ $U_i \mathbf{x}_i = \mathbf{y}_i - \widehat{C}_i \mathbf{x}_0, \ i = 1, \dots, N$

- Appears to be dominated by parallelizable
 - Solves $L_i \mathbf{y}_i = \mathbf{b}_i$ and $U_i \mathbf{x}_i = \mathbf{y}_i \widehat{C}_i \mathbf{x}_0$
 - Products $\widehat{R}_i \mathbf{y}_i$ and $\widehat{C}_i \mathbf{x}_0$
- Curse of exploiting hyper-sparsity

FTRAN for $B\mathbf{x} = \mathbf{b}$ Solve $\begin{bmatrix} S & C \\ R & V \end{bmatrix} \begin{bmatrix} \mathbf{x}_{\bullet} \\ \mathbf{x}_{0} \end{bmatrix} = \begin{bmatrix} \mathbf{b}_{\bullet} \\ \mathbf{b}_{0} \end{bmatrix}$ as **1** $L_i \mathbf{y}_i = \mathbf{b}_i, i = 1, ..., N$ **2** $\mathbf{z}_i = \widehat{R}_i \mathbf{y}_i, i = 1, \dots, N$ $\mathbf{3} \ \mathbf{z} = \mathbf{b}_0 - \sum_{i=1}^N \mathbf{z}_i$ $M \mathbf{x}_0 = \mathbf{z}$ $U_i \mathbf{x}_i = \mathbf{y}_i - \widehat{C}_i \mathbf{x}_0, \ i = 1, \dots, N$

- Appears to be dominated by parallelizable
 - Solves $L_i \mathbf{y}_i = \mathbf{b}_i$ and $U_i \mathbf{x}_i = \mathbf{y}_i \widehat{C}_i \mathbf{x}_0$
 - Products $\widehat{R}_i \mathbf{y}_i$ and $\widehat{C}_i \mathbf{x}_0$
- Curse of exploiting hyper-sparsity
 - In simplex, \boldsymbol{b}_{\bullet} is from constraint column $\left\lceil \boldsymbol{t}_{1q} \right\rceil$

Either $\begin{bmatrix} \mathbf{t}_{1q} \\ \vdots \\ \mathbf{t}_{Nq} \end{bmatrix}$

FTRAN for $B\mathbf{x} = \mathbf{b}$ Solve $\begin{bmatrix} S & C \\ R & V \end{bmatrix} \begin{bmatrix} \mathbf{x}_{\bullet} \\ \mathbf{x}_{0} \end{bmatrix} = \begin{bmatrix} \mathbf{b}_{\bullet} \\ \mathbf{b}_{0} \end{bmatrix}$ as **1** $L_i \mathbf{y}_i = \mathbf{b}_i, i = 1, ..., N$ **2** $\mathbf{z}_i = \widehat{R}_i \mathbf{y}_i, i = 1, \dots, N$ $\mathbf{3} \ \mathbf{z} = \mathbf{b}_0 - \sum_{i=1}^N \mathbf{z}_i$ $M \mathbf{x}_0 = \mathbf{z}$ $U_i \mathbf{x}_i = \mathbf{y}_i - \widehat{C}_i \mathbf{x}_0, \ i = 1, \dots, N$

- Appears to be dominated by parallelizable
 - Solves $L_i \mathbf{y}_i = \mathbf{b}_i$ and $U_i \mathbf{x}_i = \mathbf{y}_i \widehat{C}_i \mathbf{x}_0$
 - Products $\widehat{R}_i \mathbf{y}_i$ and $\widehat{C}_i \mathbf{x}_0$
- Curse of exploiting hyper-sparsity
 - In simplex, \boldsymbol{b}_{\bullet} is from constraint column

Either $\begin{bmatrix} \mathbf{t}_{1q} \\ \vdots \\ \mathbf{t}_{Nq} \end{bmatrix}$ or, more likely, $\begin{bmatrix} \mathbf{0} \\ \mathbf{w}_{iq} \\ \mathbf{0} \end{bmatrix}$

FTRAN for $B\mathbf{x} = \mathbf{b}$ Solve $\begin{bmatrix} S & C \\ R & V \end{bmatrix} \begin{bmatrix} \mathbf{x}_{\bullet} \\ \mathbf{x}_{0} \end{bmatrix} = \begin{bmatrix} \mathbf{b}_{\bullet} \\ \mathbf{b}_{0} \end{bmatrix}$ as **1** $L_i \mathbf{y}_i = \mathbf{b}_i, i = 1, ..., N$ **2** $\mathbf{z}_i = \widehat{R}_i \mathbf{y}_i, i = 1, \dots, N$ $\mathbf{3} \ \mathbf{z} = \mathbf{b}_0 - \sum_{i=1}^N \mathbf{z}_i$ $M \mathbf{x}_0 = \mathbf{z}$ $U_i \mathbf{x}_i = \mathbf{y}_i - \widehat{C}_i \mathbf{x}_0, \ i = 1, \dots, N$

- Appears to be dominated by parallelizable
 - Solves $L_i \mathbf{y}_i = \mathbf{b}_i$ and $U_i \mathbf{x}_i = \mathbf{y}_i \widehat{C}_i \mathbf{x}_0$
 - Products $\widehat{R}_i \mathbf{y}_i$ and $\widehat{C}_i \mathbf{x}_0$
- Curse of exploiting hyper-sparsity
 - In simplex, **b**_• is from constraint column Either $\begin{bmatrix} \mathbf{t}_{1q} \\ \vdots \\ \mathbf{t}_{Nq} \end{bmatrix}$ or, more likely, $\begin{bmatrix} \mathbf{0} \\ \mathbf{w}_{iq} \\ \mathbf{0} \end{bmatrix}$ • In latter case, the \mathbf{y}_i inherit structure
 - Only one $L_i \mathbf{y}_i = \mathbf{w}_{iq}$
 - Only one $\widehat{R}_i \mathbf{y}_i$
- Less scope for parallelism than anticipated

BTRAN for $B^T \mathbf{x} = \mathbf{b}$ Solve $\begin{bmatrix} S^T & R^T \\ C^T & V^T \end{bmatrix} \begin{bmatrix} \mathbf{x}_{\bullet} \\ \mathbf{x}_0 \end{bmatrix} = \begin{bmatrix} \mathbf{b}_{\bullet} \\ \mathbf{b}_0 \end{bmatrix}$ as $U_i^{\mathsf{T}} \mathbf{y}_i = \mathbf{b}_i, \ i = 1, \dots, N$ **2** $\mathbf{z}_i = \widehat{C}_i^T \mathbf{v}_i, i = 1, \dots, N$ $\mathbf{3} \ \mathbf{z} = \mathbf{b}_0 - \sum_{i=1}^{N} \mathbf{z}_i$ i-1 $\mathbf{O} \quad M^T \mathbf{x}_0 = \mathbf{z}$ **3** $L_i^T \mathbf{x}_i = \mathbf{y}_i - \widehat{R}_i^T \mathbf{x}_0, i = 1, \dots, N$

BTRAN for $B^T \mathbf{x} = \mathbf{h}$ Solve $\begin{bmatrix} S^T & R^T \\ C^T & V^T \end{bmatrix} \begin{bmatrix} \mathbf{x}_{\bullet} \\ \mathbf{x}_{0} \end{bmatrix} = \begin{bmatrix} \mathbf{b}_{\bullet} \\ \mathbf{b}_{0} \end{bmatrix}$ as $U_i^T \mathbf{y}_i = \mathbf{b}_i, \ i = 1, \dots, N$ **2** $\mathbf{z}_i = \widehat{C}_i^T \mathbf{v}_i, i = 1, \dots, N$ $\mathbf{3} \mathbf{z} = \mathbf{b}_0 - \sum_{i=1}^{N} \mathbf{z}_i$ i-1 $\mathbf{O} \quad M^T \mathbf{x}_0 = \mathbf{z}$ **5** $L_i^T \mathbf{x}_i = \mathbf{v}_i - \widehat{R}_i^T \mathbf{x}_0, i = 1, \dots, N$

- Appears to be dominated by parallelizable
 - Solves $U_i^T \mathbf{y}_i = \mathbf{b}_i$ and $L_i^T \mathbf{x}_i = \mathbf{y}_i \widehat{R}_i^T \mathbf{x}_0$

• Products
$$\widehat{C}_i^T \mathbf{y}_i$$
 and $\widehat{R}_i^T \mathbf{x}_0$

BTRAN for $B^T \mathbf{x} = \mathbf{h}$ Solve $\begin{bmatrix} S^T & R^T \\ C^T & V^T \end{bmatrix} \begin{bmatrix} \mathbf{x}_{\bullet} \\ \mathbf{x}_0 \end{bmatrix} = \begin{bmatrix} \mathbf{b}_{\bullet} \\ \mathbf{b}_0 \end{bmatrix}$ as $U_i^{\mathsf{T}} \mathbf{y}_i = \mathbf{b}_i, \ i = 1, \dots, N$ **2** $\mathbf{z}_i = \widehat{C}_i^T \mathbf{v}_i, i = 1, \dots, N$ $\mathbf{3} \mathbf{z} = \mathbf{b}_0 - \sum_{i=1}^{N} \mathbf{z}_i$ i-1 $\mathbf{O} \quad M^T \mathbf{x}_0 = \mathbf{z}$ $L_i^T \mathbf{x}_i = \mathbf{y}_i - \widehat{R}_i^T \mathbf{x}_0, \ i = 1, \dots, N$

- Appears to be dominated by parallelizable
 - Solves $U_i^T \mathbf{y}_i = \mathbf{b}_i$ and $L_i^T \mathbf{x}_i = \mathbf{y}_i \widehat{R}_i^T \mathbf{x}_0$
 - Products $\widehat{C}_i^T \mathbf{y}_i$ and $\widehat{R}_i^T \mathbf{x}_0$
- Curse of exploiting hyper-sparsity

BTRAN for $B^T \mathbf{x} = \mathbf{h}$ Solve $\begin{bmatrix} S^T & R^T \\ C^T & V^T \end{bmatrix} \begin{bmatrix} \mathbf{x}_{\bullet} \\ \mathbf{x}_{0} \end{bmatrix} = \begin{bmatrix} \mathbf{b}_{\bullet} \\ \mathbf{b}_{0} \end{bmatrix}$ as $U_i^{\mathsf{T}} \mathbf{y}_i = \mathbf{b}_i, \ i = 1, \dots, N$ **2** $\mathbf{z}_i = \widehat{C}_i^T \mathbf{v}_i, i = 1, \dots, N$ $\mathbf{3} \mathbf{z} = \mathbf{b}_0 - \sum_{i=1}^{N} \mathbf{z}_i$ i-1 $\mathbf{O} \quad M^T \mathbf{x}_0 = \mathbf{z}$ $L_i^T \mathbf{x}_i = \mathbf{y}_i - \widehat{R}_i^T \mathbf{x}_0, \ i = 1, \dots, N$

- Appears to be dominated by parallelizable
 - Solves $U_i^T \mathbf{y}_i = \mathbf{b}_i$ and $L_i^T \mathbf{x}_i = \mathbf{y}_i \widehat{R}_i^T \mathbf{x}_0$
 - Products $\widehat{C}_i^T \mathbf{y}_i$ and $\widehat{R}_i^T \mathbf{x}_0$
- Curse of exploiting hyper-sparsity
 - In simplex, $\mathbf{b} = \mathbf{e}_p$
 - At most one solve $U_i^T \mathbf{y}_i = \mathbf{b}_i$
 - At most one $\widehat{C}_i^T \mathbf{y}_i$
- Less scope for parallelism than anticipated

• PRICE forms

$$\begin{bmatrix} \pi_1^T & \pi_2^T & \dots & \pi_N^T & \pi_0^T \end{bmatrix} \begin{bmatrix} W_1^N & & T_1^N \\ & W_2^N & & T_2^N \\ & & \ddots & & \vdots \\ & & & & W_N^N & T_N^N \\ & & & & & A^N \end{bmatrix}$$
$$= \begin{bmatrix} \pi_1^T W_1^N & \pi_2^T W_2^N & \dots & \pi_N^T W_N^N & \pi_0^T A^N + \sum_{i=1}^N \pi_i^T T_i^N \end{bmatrix}$$

• Dominated by parallelizable products $\pi_i^T W_i^N$ and $\pi_i^T T_i^N$

Exploiting problem structure: Update

- Update of the invertible representation of *B* is second major factor in revised simplex efficiency
- Each iteration column \mathbf{a}_q of the constraint matrix replaces column $B\mathbf{e}_p$ of B

$$B' = B[I + (\widehat{\mathbf{a}}_q - \mathbf{e}_p)\mathbf{e}_p^T]$$

Exploiting problem structure: Update

- Update of the invertible representation of *B* is second major factor in revised simplex efficiency
- Each iteration column \mathbf{a}_q of the constraint matrix replaces column $B\mathbf{e}_p$ of B

$$B' = B[I + (\widehat{\mathbf{a}}_q - \mathbf{e}_p)\mathbf{e}_p^T]$$

- Unfortunately, the structure of B is not generally maintained
- PIPS-S uses standard product form update

$${B'}^{-1} = [I + (\widehat{\mathbf{a}}_q - \mathbf{e}_p)\mathbf{e}_p^{\mathcal{T}}]^{-1}B^{-1} = E^{-1}B^{-1}$$
 where $E^{-1} = I - rac{1}{\widehat{a}_{pq}}(\widehat{\mathbf{a}}_q - \mathbf{e}_p)\mathbf{e}_p^{\mathcal{T}}$

• Form
$$\mathbf{x} = E^{-1}\mathbf{b}$$
 as $x_p = -\frac{b_p}{\widehat{a}_{pq}}$ then $\mathbf{x}_{p'} = \mathbf{b}_{p'} + \widehat{\mathbf{a}}_q x_p$

• Form
$$\mathbf{x} = E^{-1}\mathbf{b}$$
 as $x_p = -\frac{b_p}{\widehat{a}_{pq}}$ then $\mathbf{x}_{p'} = \mathbf{b}_{p'} + \widehat{\mathbf{a}}_q x_p$

• Updates $\{E_k\}_{k=1}^K$ of B_0 to B_K require $\{\widehat{\mathbf{a}}_{q_k}\}_{k=1}^K$ and $\mathcal{P} = \{p_k\}_{k=1}^K, |\mathcal{P}| \ll m$

• Form
$$\mathbf{x} = E^{-1}\mathbf{b}$$
 as $x_p = -\frac{b_p}{\widehat{a}_{pq}}$ then $\mathbf{x}_{p'} = \mathbf{b}_{p'} + \widehat{\mathbf{a}}_q x_p$

• Updates $\{E_k\}_{k=1}^K$ of B_0 to B_K require $\{\widehat{\mathbf{a}}_{q_k}\}_{k=1}^K$ and $\mathcal{P} = \{p_k\}_{k=1}^K$, $|\mathcal{P}| \ll m$

- Exploit parallelism when forming $\mathbf{x} = E_{\mathcal{K}}^{-1} \dots E_1^{-1} \mathbf{b}$ thus
 - Compute $\mathbf{x}_{\mathcal{P}}$ serially
 - Compute $\mathbf{x}_{\mathcal{P}'}$ as a parallel matrix-vector product

$$\mathbf{x}_{\mathcal{P}'} = \mathbf{b}_{\mathcal{P}'} + \begin{bmatrix} \widehat{\mathbf{a}}_{q_1} & \dots & \widehat{\mathbf{a}}_{q_K} \end{bmatrix} \mathbf{x}_{\mathcal{P}}$$

• Form
$$\mathbf{x} = E^{-1}\mathbf{b}$$
 as $x_p = -\frac{b_p}{\widehat{a}_{pq}}$ then $\mathbf{x}_{p'} = \mathbf{b}_{p'} + \widehat{\mathbf{a}}_q x_p$

• Updates $\{E_k\}_{k=1}^K$ of B_0 to B_K require $\{\widehat{\mathbf{a}}_{q_k}\}_{k=1}^K$ and $\mathcal{P} = \{p_k\}_{k=1}^K$, $|\mathcal{P}| \ll m$

- Exploit parallelism when forming $\mathbf{x} = E_{\mathcal{K}}^{-1} \dots E_1^{-1} \mathbf{b}$ thus
 - Compute $\mathbf{x}_{\mathcal{P}}$ serially
 - Compute $\mathbf{x}_{\mathcal{P}'}$ as a parallel matrix-vector product

$$\mathbf{x}_{\mathcal{P}'} = \mathbf{b}_{\mathcal{P}'} + egin{bmatrix} \widehat{\mathbf{a}}_{q_1} & \dots & \widehat{\mathbf{a}}_{q_K} \end{bmatrix} \mathbf{x}_{\mathcal{P}'}$$

• Similar trick for parallelising $\mathbf{x}^T = \mathbf{b}^T E_K^{-1} \dots E_1^{-1}$

Lubin, H et al. (2013)

Results

Results: Stochastic LP test problems

Test	1st St	tage	2nd-Stage	Scenario	No	nzero Elem	nents
Problem	<i>n</i> 0	m_0	ni	mi	A	Wi	T_i
Storm	121	185	1,259	528	696	3,220	121
SSN	89	1	706	175	89	2,284	89
UC12	3,132	0	56,532	59,436	0	163,839	3,132
UC24	6,264	0	113,064	118,872	0	327,939	6,264

• Storm and SSN are publicly available

Results: Stochastic LP test problems

Test	1st St	tage	2nd-Stage	e Scenario	No	nzero Elem	nents
Problem	<i>n</i> 0	m_0	ni	mi	A	Wi	T_i
Storm	121	185	1,259	528	696	3,220	121
SSN	89	1	706	175	89	2,284	89
UC12	3,132	0	56,532	59,436	0	163,839	3,132
UC24	6,264	0	113,064	118,872	0	327,939	6,264

- Storm and SSN are publicly available
- UC12 and UC24 are stochastic unit commitment problems developed at Argonne
 - Aim to choose optimal on/off schedules for generators on the power grid of the state of Illinois over a 12-hour and 24-hour horizon
 - In practice each scenario corresponds to a weather simulation Model problem generates scenarios by normal perturbations

Zavala (2011)

Results: Baseline serial performance for large instances

-

Serial performance of PIPS-S and clp

Problem	Dimensions	Solver	Iterations	Time (s)	Iter/sec
Storm	n = 10,313,849	PIPS-S	6,353,593	385,825	16.5
8,192 scen.	m = 4,325,561	clp	6,706,401	133,047	50.4
SSN	n = 5,783,651	PIPS-S	1,025,279	58,425	17.5
8,192 scen.	m = 1,433,601	clp	1,175,282	12,619	93.1
UC12	n = 1,812,156	PIPS-S	1,968,400	236,219	8.3
32 scen.	m = 1,901,952	clp	2,474,175	39,722	62.3
UC24	n = 1,815,288	PIPS-S	2,142,962	543,272	3.9
16 scen.	m = 1,901,952	clp	2,441,374	41,708	58.5

Speed-up of PIPS-S relative to 1-core PIPS-S and 1-core clp

Cores	Storm	SSN	UC12	UC24
1	1.0	1.0	1.0	1.0
4	3.6	3.5	2.7	3.0
8	7.3	7.5	6.1	5.3
16	13.6	15.1	8.5	8.9
32	24.6	30.3	14.5	

Speed-up of PIPS-S relative to 1-core PIPS-S and 1-core clp

Cores	Storm	SSN	UC12	UC24
1	1.0	1.0	1.0	1.0
4	3.6	3.5	2.7	3.0
8	7.3	7.5	6.1	5.3
16	13.6	15.1	8.5	8.9
32	24.6	30.3	14.5	
clp	8.5	6.5	2.4	0.7

	Storm	SSN	UC12	UC24
Scenarios	32,768	32,768	512	256
Variables	41,255,033	23,134,297	28,947,516	28,950,648
Constraints	17,301,689	5,734,401	30,431,232	30,431,232

Speed-up of PIPS-S relative to 1	l-core PIPS-S :	and 1-core clp
----------------------------------	-----------------	----------------

Cores	Storm	SSN	UC12	UC24
1	1	1	1	1
8	15	19	7	6
16	52	45	14	12
32	117	103	26	22
64	152	181	44	41
128	202	289	60	64
256	285	383	70	80

Speed-up of PIPS-S relative to 1	l-core PIPS-S :	and 1-core clp
----------------------------------	-----------------	----------------

Cores	Storm	SSN	UC12	UC24
1	1	1	1	1
8	15	19	7	6
16	52	45	14	12
32	117	103	26	22
64	152	181	44	41
128	202	289	60	64
256	285	383	70	80
clp	299	45	67	68

- Instance of UC12
 - 8,192 scenarios
 - 463,113,276 variables
 - 486,899,712 constraints
- Requires 1 TB of RAM (\geq 1024 Blue Gene cores)
- Runs from an advanced basis

Cores	Iterations	Time (h)	lter/sec
1024	Exceeded	execution	time limit
2048	82,638	6.14	3.74
4096	75,732	5.03	4.18
8192	86,439	4.67	5.14

Parallelising the dual revised simplex method: Conclusions

Parallelising the dual revised simplex method: Conclusions

- Two schemes for general LP problems
 - Meaningful performance improvement
 - Have led to publicised advances in a leading commercial solver
- Two schemes for general LP problems
 - Meaningful performance improvement
 - Have led to publicised advances in a leading commercial solver
- One scheme for stochastic LP problems
 - Demonstrated scalable parallel performance...

- Two schemes for general LP problems
 - Meaningful performance improvement
 - Have led to publicised advances in a leading commercial solver
- One scheme for stochastic LP problems
 - Demonstrated scalable parallel performance... for highly specialised problems...

- Two schemes for general LP problems
 - Meaningful performance improvement
 - Have led to publicised advances in a leading commercial solver
- One scheme for stochastic LP problems
 - Demonstrated scalable parallel performance... for highly specialised problems... on highly specialised machines

- Two schemes for general LP problems
 - Meaningful performance improvement
 - Have led to publicised advances in a leading commercial solver
- One scheme for stochastic LP problems
 - Demonstrated scalable parallel performance... for highly specialised problems... on highly specialised machines
 - Solved problems which would be intractable using commercial serial solvers

- Two schemes for general LP problems
 - Meaningful performance improvement
 - Have led to publicised advances in a leading commercial solver
- One scheme for stochastic LP problems
 - Demonstrated scalable parallel performance... for highly specialised problems... on highly specialised machines
 - Solved problems which would be intractable using commercial serial solvers
- Helped develop two really talented young researchers: Qi Huangfu and Miles Lubin

- Two schemes for general LP problems
 - Meaningful performance improvement
 - Have led to publicised advances in a leading commercial solver
- One scheme for stochastic LP problems
 - Demonstrated scalable parallel performance... for highly specialised problems... on highly specialised machines
 - Solved problems which would be intractable using commercial serial solvers
- Helped develop two really talented young researchers: Qi Huangfu and Miles Lubin

Slides: http://www.maths.ed.ac.uk/hall/COB14/

Paper: M. Lubin, J. A. J. Hall, C. G. Petra, and M. Anitescu Parallel distributed-memory simplex for large-scale stochastic LP problems

Computational Optimization and Applications, 55(3):571–596, 2013

Cup winners: 2013