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Why Study Sequence Alignments?

• Where does a finite sequence fit best in a larger finite se-

quence?

gattggatcctagccctgagagatttcccccctaggaaaatttcat . . .

← actg →

• What finite sequence among a finite choice of candidates is

a best fit for a given new sequence?

0100011
?→





0100001110101

11010110

111111011111



How to Align Sequences?

b g ? h o u s e
b i g ? h o s e

b t g ? h o u s e
b i g ? h o t s e

• Allow the introduction of gaps subject to a penalty.

• Assign a similarity score to each pair of aligned letters.

• Maximise total score over the set of possible alignments.



To align x1x2x3 ∈ A3 with y1y2y3y4 ∈ A4:

• Fix a scoring function s : A∗ ×A∗ → R.

• E.g., for the alignment

π : G x1 x2 x3 G

y1 y2 G y3 y4

with gaps G, define the total alignment score by

Sπ(x, y) = s(G, y1)+ s(x1, y2)+ s(x2,G)+ s(x3, y3)+ s(G, y4).

• To find an optimal alignment, solve

Ls(x, y) = max
π

Sπ(x, y),

π∗ = argmax
π

Sπ(x, y)



Example 1. LCS scoring function

s(a, b) = −1 if a 6= b,

s(a, a) = 1 ∀ a ∈ A,
s(G, a) = s(a,G) = 0 ∀ a ∈ A.

• Ls(x, y) is the length of a longest common subsequence of x

and y.

• π∗ identifies a longest common subsequence by dropping let-

ters aligned with a gap in both sequences.



Example 2. BLASTZ scoring function for A = {A, T,C,G}:

A T C G G

A 91 -31 -114 -123 -400
T -31 100 -125 -114 -400
C -114 -125 100 -31 -400
G -123 -114 -31 91 -400
G -400 -400 -400 -400 −∞

• s(a, b) represents log-likelihood that a evolved into b under a stochastic
evolutionary model.

• Ls(x, y) yields the maximum log-likelihood that x and y arose from a
common ancestor via mutation, and the most likely microstructure of
the mutations is exhibited by π∗.

• In reality, the log-likelihood depends on the time since evolutionary di-
vergence.



Algorithm 1 (Dynamic Programming).

1. Ls(∅, ∅) = 0

for i, j ≥ 1

Ls(x[1,i], ∅) =
∑i

`=1 s(x`,G)

Ls(∅, y[1,j]) =
∑j

`=1 s(G, y`)

end

2. for i = 1, . . . length(x)

for j = 1, . . . length(y)

Ls(x[1,i], y[1,j]) = max
(
s(xi, yj) + Ls(x[1,i−1], y[1,j−1]),

s(xi,G) + Ls(x[1,i−1], y[1,j]), s(G, yj) + Ls(x[1,i], y[1,j−1])
)

end

end
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Understanding the Null-Model

To decide on the significance of high scores, compare with scores

achieved by random sequences

Lm,n(s) = Ls(X[1,m], Y[1,n]) = Ls(X1X2 . . . Xm , Y1 . . . Yn).

with i.i.d. letters Xi, Yj : Ω→ A.

When m = n we write Ln(s) = Lm,n(s).

Our understanding of this null-model is still incomplete.



Three broad themes with analogue questions in percolation theory:

• Determine the Chvàtal-Sankoff constant

λ(s, ξ) = lim
n→∞

λn(s, ξ)

where ξ ∈ [0,1] is fixed and

λn(s, ξ) =
1

n
E
[
Lb2nξc,b2n(1−ξ)c(s)

]
.

We write λ(s) = λ(s,1/2), λn(s) = λn(s,1/2), and (ξ1, ξ2) = (ξ,1− ξ).

• Determine the fluctuation order

STD
(
Lb2nξ1c,b2nξ2c(s)

)
.

• Understand the microstructure of optimal alignments.





The Chvàtal-Sankoff Constant

• Subadditivity yields λn(s) ↗ λ(s) and in fact, Ln(s)/n → λ(s) almost
surely.

• However, the convergence is very slow

√
2‖s‖δ

√
lnn√
n

+
2‖s‖∞

n
≤ λ(s)− λn(s) ≤ C

√
lnn√
n

,

where

‖s‖δ = max
c,d,e∈A∗

|s(c, d)− s(c, e)| ,

‖s‖∞ = max
c,d∈A∗

|s(c, d)| .

• Upper bound due to K. Alexander [“The rate of convergence of the
mean length of the longest common subsequence.” Ann. Appl. Prob.
4(4):1074–1082, 1994].



Example 3. For the LCS-scoring function, we have

‖s‖∞ = 1,

‖s‖δ = 2.

• To obtain |λ(s)− λn(s)| ≤ 1 e−2, we would need

n ≈ 1.8 e6.

• To obtain |λ(s)− λn(s)| ≤ 1e− 3, we would need

n ≈ 2.4e8

• The computational cost is O(n2).



Accelerated Montecarlo Simulation for LCS

Parse sequences into pieces with known LCS,

? ? ? ? ? ◦ ◦ ◦ ? ? ? ? ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ . . .
? ? ? ? ◦ ◦ ◦ ◦ ◦ ◦ ? ? ? ? ? ? ? ◦ ◦ . . .

Two sequences x1 = x11 . . . x
1
n1

, x2 = x21 . . . x
2
n2

are an m-match if

Ls(x
1, x2) = m,

Ls(x
1
[1,n1−1], x

2) = m− 1,

Ls(x
1, x2[1,n2−1]) = m− 1,

that is, removing the last character of any of the sequences

reduces the LCS-score.



Lemma 2. Ln(ξ) ≥ qn can only occur if



x11 . . . x

1
b2nξ1c

xr1 . . . x
2
b2nξ2c


 =



x11 . . . x

1
ς1(m)

x21 . . . x
2
ς2(m)


◦· · ·◦



x1
ς1((k−1)m)+1

. . . x1
ς1(km)

x2
ς2((k−1)m)+1

. . . x2
ς2(km)


◦



. . .
...
. . .




is a concatenation of k := bqn/mc m-matches and a remainder.



Corollary 3.

P[Ln(ξ) ≥ nq] ≤
(
νm,2

)∗k
([nq, b2nξ1c]× [nq, b2nξ2c]) ,

where
(
νm,2

)∗k
is the k-fold convolution of the measure νm,2

defined on N
2 by

νm,2(i1, i2) := P
[
(X1

1 . . . X1
i1
, X2

1 . . . X2
i2
) is a m-match

]
.

Let B :=
[
m, 2mξ1/q

]
×

[
m, 2mξ2/q

]
, so that

kB ≈ [nq, b2nξ1c]× [nq, b2nξ2c].



Theorem 4.The following are equivalent,

i) λ(s, ξ) ≤ q,

ii) lim supk→∞
(
(νm,2)∗k(kB)

)1/k
< 1,

iii) inf

{
Λm,2(x)− 2m

q 〈ξ, x〉 : x ∈ R2−
}

< 0, where

Λm,2(x) := log

∫

R2
νm,2(y) e〈y,x〉 dy

is the log-Laplace transform of νm,2.



Example 4 (Durringer-H.-Matzinger, 2008).

• Experiment 1: A = {0,1}, P [Xi = 0] = 1/2, m = 1,000.

• Experiment 2: A = {0,1}, P [Xi = 0] = 0.2, m = 1,000.

• Confidence level 95%.

• m and the confidence level were chosen such that computa-

tional cost equals a single simulation of Ln(s) with n = 1e5.



Experiment 2: Sparsity pattern of ν̂ after 10,000 simulations.
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Estimated confidence intervals for λ(s, ξ) show that the achieved
accuracy is approximately 2 e−3.

This corresponds to a 300’000-fold (!!) reduction in flops in

comparison to brute-force simulation, which would require n ≈
5.4e 7 to achieve the same accuracy.



Steele conjecture [M.J. Steele. “An Effron-Stein inequality for

non-symmetric statistics.” Ann. Stat., 14: 753-758, 1958]: For

LCS with i.i.d. U(A)-distributed variables Xi, Yj,

λ(s,0.5) =
2

1+
√
|A|

.

But e.g. for |A| = 2,

2

1 +
√
|A|

= 0.8284 > 0.8182,

so with high confidence the Steele conjecture is wrong [H.-

Martinez-Matzinger, 2006].



The Order of Fluctuations

Let X = X1 . . . Xn, Y = Y1 . . . Yn with i.i.d. Ber(p) letters.

• Chvàtal-Sankoff [“Longest common subsequence of two ran-

dom sequences”, J. Appl. Prob., 12:306–315, 1975] conjec-

tured that in the case p = 1/2,

VAR(Ln(s)) = o
(
n2/3

)
.

• Steele [“An Effron-Stein inequality for non-symmetric statis-

tics”, Ann. Stat. 14:753–758, 1986] proved

VAR(Ln(s)) ≤ 2p(1− p)n.



• Waterman [“Estimating statistical significance in sequence

alignment”, Phil. Trans. R. Soc. Lond. B, 344:383-390, 1994]

reports simulations that suggest that for p < 0.5,

VAR(Ln(s)) = Θ(n).

• Boutet de Monvel [“Extensive simulations for longest com-

mon subsequences.” Eur. Phys. J. B, 7:293–308, 1999] re-

ports simulations that suggest taht for p = 0.5,

VAR(Ln(s)) = Θ(n).



More recently, H.-Matzinger [2005], Lember-Matzinger [2009],

Amsalu-H.-Matzinger [2012] showed that if

E
[
Ls(X̃[1,n], Ỹ[1,n])− Ls(X[1,n], Y[1,n]) ‖X,Y

]
≥ c

holds with probability 1−O(n−αn), then VAR(Ln(s)) = Θ(n).

• True for arbitrary scoring function s, alphabet A, and distri-

bution of Xi, Yi.

• X̃, Ỹ obtained by selecting one letter of a specified type a

uniformly at random from the realised letters X(ω), Y (ω) and

changing it into a specified other type b.



• Bias analytically provable only in highly assymetric cases.

• Deeply connected with the problem of understanding the mi-

crostructure of optimal alignments.

• Basic tool used is Azuma-Hoeffding Inequality in the form

given by McDiarmid [“On the method of bounded differ-

ences.” Surveys in Combinatorics, 141:148–188, 1989]:



Theorem 5. Let Z1, Z1, . . . , Zm be i.i.d. random variables that

take values in a set D, and let g : Dm → R be a function of m

variables with the property that

max
i=1,...,m

sup
z∈Dm,ẑi∈D

|g(z1, . . . , zm)− g(z1, . . . , ẑi, . . . , zm)| ≤ C.

Thus, changing a single argument of g changes its image by less

than a constant C. Then the following bounds hold,

P [g(Z1, . . . , Zm)−E[g(Z1, . . . , Zm)] ≥ ε×m] ≤ exp

{
−2ε

2m

C2

}
,

P [E [g(Z1, . . . , Zm)]− g(Z1, . . . , Zm) ≥ ε×m] ≤ exp

{
−2ε

2m

C2

}
.



Alignment Microstructure

Let π be an alignment with gaps of two sequences x, y of equal

length n, and let

pc,d =
] pairs (c, d) aligned under π

n
.

Collecting these ratios in a vector ~pπ(x, y) for all pairs (c, d) we

obtain the empirical distribution of aligned letter pairs.

The alignment score is a collapsed version of the information

contained in the vector ~pπ,

S(x, y) = n
∑

(a,b)∈(A∗)2
pa,b s(a, b) = n〈s, ~pπ〉.



Example 5. For π given by

x a a b b

y a b a b,

we find

~pπ(x, y) = (paa, pab, paG, pba, pbb, pbG, pGa, pGb)

= (0.25,0,0.25,0,0.5,0,0.25,0).



Now let X1X2 . . . and Y1Y2 . . . be random sequences with i.i.d.

random letters

Xi, Yi : Ω→ A
with some given distribution, and let Π∗n(s) be an optimal align-

ment of X[1,n] and Y[1,n] under the scoring function s,

Π∗n(s) = argmax
π

Sπ(X[1,n] , Y[1,n]).

Note that since the sequences X1 . . . Xn and Y1 . . . Yn are ran-

dom, Π∗n(s) is random, and furthermore, its choice is generally

nonunique.

The associated empirical distribution ~pΠ∗n(s) is thus a random

vector

~pΠ∗n(s) : Ω→ R
|(A∗)2|
+ .



Theorem 6. For almost all scoring functions s, the empirical

distribution ~pΠ∗n(s) converges almost surely to a unique point

~ps ∈ R
|(A∗)2|
+ .

• In fact,

P
[
‖~pΠ∗n(s) − ~ps‖ ≤ ε for all choices of Π∗n(s)

]
≥ 1− e−Kεn .

• The asymptotic frequencies of the alignment microstructure

are thus well defined.

• This allows for the design of more powerful statistical tests

on the relatedness of sequences.



s



The empirical distribution may not converge when s is not chosen randomly!

• Take A = {0,1}, Xi, Yj i.i.d. Ber(1/2) variables, and LCS scoring function.

• Subdivide the optimally aligned sequences into sections of length 3, e.g.,

1 0 0
1 G G

∣∣∣ 0 1 G
0 1 1

∣∣∣ G 0 0
1 G 0

∣∣∣ 1 1 0
G G G

∣∣∣ 0 0 0
0 0 0

∣∣∣ . . .

• One observes empirically that a positive proportion of triplets is of the
form

0 1 G
G 1 0 ,

G 0 1
1 0 G

, G 1 0
0 1 G

or 1 0 G
G 0 1 .

• The first two correspond to the pattern 0 1 in X being aligned with the
pattern 1 0 in Y , and the last two to the inverted situation.

• The first triplet can be exchanged for the second, and the third for the
fourth without affecting Ln(s).

• Interchange shifts weight from the pairing (1,1) to the pairing (0,0) in
the empirical distribution.



Notes on the proof:

• Azuma-Hoeffding Inequality not applicable to empirical dis-

tribution ~pΠ∗n(s), as changing a single letter in X1 . . . Xn or

Y1 . . . Yn may change the optimal alignment in a nonlocal

fashion!

• However, Azuma-Hoeffiding is applicable to the function

(X1 . . . Xn, Y1 . . . Yn) 7→ 〈s, ~pΠ∗n(s)〉.

• The following is a compact convex set,

SET =
⋂

s

{
x ∈ R

|A∗|2 : 〈s, x〉 ≤ λ(s)

}



• For almost all s (under the Lebesgue measure on S|A
∗|2−1),

x∗ = argmax
x
{〈s, x〉 : x ∈ SET}

is unique.

• ∃ η < 0, points xi ∈ ∂SET , unit normal vectors si ∈ Nxi SET ,

and real numbers ξi > 0, (i = 1, . . . , k), such that

{x : 〈s, x− x∗〉 ≥ η} ∩
k⋂

i=1

{x : 〈si, x− xi〉 ≤ ξi} ⊂ Bε(x
∗).

• By Azuma-Hoeffing, all inequalities are satisfied with high

probability.

• By Borel-Cantelli, almost sure convergence occurs.





Theorem 7. Let s be such that ~ps is unique (e.g., choose s

randomly). If there exist a, b ∈ A such that

∑

c∈A∗
pa,c

(
sb,c − sa,c

)
> 0,

then

VAR(Ln(s)) = Θ(n).

• Close to proving order Θ(n) analytically in the generic case.

• Offers mechanism to verify the order Θ(n) by (non-brute-

force) simulation.



More practical, weaker criterion

• Fix ε > 0, a, b ∈ A.

• Given a scoring function s : A∗ × A∗ → R, define symmetric

difference

ta,c = sb,c − sa,c, if c 6= a,

tc,a = sb,c − sa,c, if c 6= a,

td,c = 0, if c, d 6= a,

ta,a = 2sb,a − 2sa,a.

Theorem 8. If λ(s)− λ(s− εt) > 0, then VAR(Ln(s)) = Θ(n).



Simulation results:

A {0,1} {A,T,C,G}
P[·] p0 = 0.2, p1 = 0.8 pA = 0.4, pT = 0.4, pC = 0.1, pG = 0.1
s LCS BLASTZ

n 105 2× 105

ε 0.5 0.9
Ln(s)−Ln(s−εt)

n 0.0634 15.197

p-value 0.0102 2.4× 10−4
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Thanks for listening!


