Conic Optimization via Operator Splitting and Homogeneous Self-Dual Embedding

B. O'Donoghue E. Chu N. Parikh S. Boyd

Convex Optimization and Beyond, Edinburgh, 27/6/2014

Outline

Cone programming

Homogeneous embedding

Operator splitting

Numerical results

Conclusions

Cone programming

minimize
$$c^{\mathsf{T}}x$$

subject to $Ax + s = b, s \in \mathcal{K}$

- ▶ variables $x \in \mathbf{R}^n$ and (slack) $s \in \mathbf{R}^m$
- \mathcal{K} is a proper convex cone
 - \mathcal{K} nonnegative orthant $\longrightarrow \mathsf{LP}$
 - $\blacktriangleright \hspace{0.1 cm} \mathcal{K} \hspace{0.1 cm} \text{Lorentz cone} \longrightarrow {\sf SOCP}$
 - \mathcal{K} positive semidefinite matrices \longrightarrow SDP
- > the 'modern' canonical form for convex optimization
- popularized by Nesterov, Nemirovsky, others, in 1990s

Cone programming

- parser/solvers like CVX, CVXPY, YALMIP translate or canonicalize to cone problems
- focus has been on symmetric self-dual cones
- for medium scale problems with enough sparsity, interior-point methods reliably attain high accuracy
- but they scale superlinearly in problem size
- ▶ open source software (SDPT3, SeDuMi, ...) widely used

This talk

- a new first order method that
- solves general cone programs
- finds primal and dual solutions, or certificate of primal/dual infeasibility
- obtains modest accuracy quickly
- scales to large problems and is easy parallelized
- ▶ is matrix-free: only requires $z \to Az$, $w \to A^T w$

Some previous work

- projected subgradient type methods (Polyak 1980s)
- primal-dual subgradient methods (Chambelle-Pock 2011)
- matrix-free interior-point methods (Gondzio 2012)
- ▶ can use iterative linear solver (CG) in any interior-point method

Outline

Cone programming

Homogeneous embedding

Operator splitting

Numerical results

Conclusions

Homogeneous embedding

Primal-dual cone problem pair

primal and dual cone problems:

minimize $c^T x$ maximize $-b^T y$ subject toAx + s = bsubject to $-A^T y + r = c$ $(x, s) \in \mathbb{R}^n \times \mathcal{K}$ $(r, y) \in \{0\}^n \times \mathcal{K}^*$

- ▶ primal variables $x \in \mathbb{R}^n$, $s \in \mathbb{R}^m$; dual variables $r \in \mathbb{R}^n$, $y \in \mathbb{R}^m$
- \mathcal{K}^* is dual of closed convex proper cone \mathcal{K}
- note that $\mathbf{R}^n \times \mathcal{K}$ and $\{0\}^n \times \mathcal{K}^*$ are dual cones

Homogeneous embedding

Example cones

 $\mathcal K$ is typically a Cartesian product of smaller cones, e.g.,

- ► **R**, {0}, **R**₊
- ▶ second-order cone $Q = \{(x, t) \in \mathbf{R}^{k+1} \mid ||x||_2 \le t\}$
- ▶ positive semidefinite cone $\{X \in \mathbf{S}^k \mid X \succeq 0\}$
- ▶ exponential cone $cl\{(x, y, z) \in R^3 \mid y > 0, e^{x/y} \le z/y\}$

these cones would handle almost all convex problems that arise in applications

KKT conditions (necessary and sufficient, assuming strong duality):

- primal feasibility: Ax + s = b, $s \in \mathcal{K}$
- dual feasibility: $A^T y + c = r$, r = 0, $y \in \mathcal{K}^*$
- complementary slackness: y^Ts = 0 equivalent to zero duality gap: c^Tx + b^Ty = 0

Primal-dual embedding

KKT conditions as feasibility problem: find

$$(x, s, r, y) \in \mathbf{R}^n \times \mathcal{K} \times \{0\}^n \times \mathcal{K}^*$$

that satisfy

$$\begin{bmatrix} r \\ s \\ 0 \end{bmatrix} = \begin{bmatrix} 0 & A^T \\ -A & 0 \\ c^T & b^T \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} c \\ b \\ 0 \end{bmatrix}$$

- reduces solving cone program to finding point in intersection of cone and affine set
- ▶ no solution if primal or dual problem infeasible/unbounded

Homogeneous self-dual (HSD) embedding

(Ye, Todd, Mizuno, 1994)

find nonzero

 $(x, s, r, y) \in \mathbf{R}^n imes \mathcal{K} imes \{0\}^n imes \mathcal{K}^*, \quad \tau \ge 0, \quad \kappa \ge 0$

that satisfy

$$\begin{bmatrix} r \\ s \\ \kappa \end{bmatrix} = \begin{bmatrix} 0 & A^T & c \\ -A & 0 & b \\ -c^T & -b^T & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ \tau \end{bmatrix}$$

- this feasibility problem is homogeneous and self-dual
- $\tau = 1$, $\kappa = 0$ reduces to primal-dual embedding
- due to skew symmetry, any solution satisfies

$$(x, y, \tau) \perp (r, s, \kappa), \qquad \tau \kappa = 0$$

Homogeneous embedding

Recovering solution or certificates

any HSD solution $(x, s, r, y, \tau, \kappa)$ falls into one of three cases:

1.
$$au > 0$$
, $\kappa = 0$: $(\hat{x}, \hat{y}, \hat{s}) = (x/ au, y/ au, s/ au)$ is a solution

3. $\tau = \kappa = 0$: nothing can be said about original problem (a pathology)

Homogeneous primal-dual embedding

HSD embedding

- obviates need for phase I / phase II solves to handle infeasibility/unboundedness
- is used in all interior-point cone solvers
- is a particularly nice form to solve (for reasons not completely understood)

Notation

► define

$$u = \begin{bmatrix} x \\ y \\ \tau \end{bmatrix}, \quad v = \begin{bmatrix} r \\ s \\ \kappa \end{bmatrix}, \quad Q = \begin{bmatrix} 0 & A^T & c \\ -A & 0 & b \\ -c^T & -b^T & 0 \end{bmatrix}$$

• HSD embedding is: find (u, v) that satisfy

$$v = Qu,$$
 $(u, v) \in \mathcal{C} imes \mathcal{C}^*$

with $\mathcal{C}=\textbf{R}^n\times\mathcal{K}^*\times\textbf{R}_+$

Homogeneous embedding

Cone programming

Homogeneous embedding

Operator splitting

Numerical results

Conclusions

Consensus problem

consensus problem:

minimize f(x) + g(z)subject to x = z

- ▶ f, g convex, not necessarily smooth, can take infinite values
- p* is optimal objective value

Alternating direction method of multipliers

• ADMM is: for $k = 0, \ldots$,

$$\begin{aligned} x^{k+1} &= \operatorname*{argmin}_{x} \left(f(x) + (\rho/2) \| x - z^{k} - \lambda^{k} \|_{2}^{2} \right) \\ z^{k+1} &= \operatorname*{argmin}_{z} \left(g(z) + (\rho/2) \| x^{k+1} - z - \lambda^{k} \|_{2}^{2} \right) \\ \lambda^{k+1} &= \lambda^{k} - x^{k+1} + z^{k+1} \end{aligned}$$

- $\rho > 0$ algorithm parameter
- λ (scaled) dual variable for x = z constraint
- same as many other operator splitting methods for consensus problem, *e.g.*, Douglas-Rachford method

Convergence of ADMM

under benign conditions ADMM guarantees:

•
$$f(x^k) + g(z^k) \rightarrow p^*$$

•
$$\lambda^k \to \lambda^*$$
, an optimal dual variable

►
$$x^k - z^k \to 0$$

ADMM applied to HSD embedding

HSD in consensus form

$$\begin{array}{ll} \text{minimize} & I_{\mathcal{C}\times\mathcal{C}^*}(u,v)+I_{Qu=v}(\tilde{u},\tilde{v})\\ \text{subject to} & (u,v)=(\tilde{u},\tilde{v}) \end{array}$$

 $\mathit{I}_{\mathcal{S}}$ is indicator function of set \mathcal{S}

ADMM is:

$$\begin{aligned} & (\tilde{u}^{k+1}, \tilde{v}^{k+1}) &= & \Pi_{Qu=v}(u^k + \lambda^k, v^k + \mu^k) \\ & u^{k+1} &= & \Pi_{\mathcal{C}}(\tilde{u}^{k+1} - \lambda^k) \\ & v^{k+1} &= & \Pi_{\mathcal{C}^*}(\tilde{v}^{k+1} - \mu^k) \\ & \lambda^{k+1} &= & \lambda^k - \tilde{u}^{k+1} + u^{k+1} \\ & \mu^{k+1} &= & \mu^k - \tilde{v}^{k+1} + v^{k+1} \end{aligned}$$

 $\Pi_{\mathcal{S}}$ is Euclidean projection onto \mathcal{S}

Simplifications

(straightforward, but not immediate)

- if $\lambda^0 = v^0$ and $\mu^0 = u^0$, then $\lambda^k = v^k$ and $\mu^k = u^k$ for all k
- ▶ simplify projection onto Qu = v using $Q^T = -Q$
- nothing depends on \tilde{v}^k , so it can be eliminated

Final algorithm

• for
$$k = 0, \ldots,$$

$$\begin{split} \tilde{u}^{k+1} &= (I+Q)^{-1}(u^k+v^k) \\ u^{k+1} &= \Pi_{\mathcal{C}} \left(\tilde{u}^{k+1}-v^k \right) \\ v^{k+1} &= v^k - \tilde{u}^{k+1} + u^{k+1} \end{split}$$

- ► parameter free
- homogeneous
- same complexity as ADMM applied to primal or dual alone

Variation: Approximate projection

▶ replace exact projection with any \tilde{u}^{k+1} that satisfies

$$\|\tilde{u}^{k+1} - (I+Q)^{-1}(u^k + v^k)\|_2 \le \mu^k,$$

where $\mu^k > \mathbf{0}$ satisfy $\sum_k \mu_k < \infty$

- useful when an iterative method is used to compute \tilde{u}^{k+1}
- implied by the (more easily verified) inequality

$$\|(Q+I)\tilde{u}^{k+1}-(u^k+v^k)\|_2 \le \mu^k$$

by skew-symmetry of Q

Convergence

can show the following (even with approximate projection):

• for all iterations k > 0 we have

$$u^k \in \mathcal{C}, \quad v^k \in \mathcal{C}^*, \quad (u^k)^T v^k = 0$$

 \blacktriangleright as $k \to \infty.$

$$Qu^k - v^k \rightarrow 0$$

• with $\tau^0 = 1$, $\kappa^0 = 1$, (u^k, v^k) bounded away from zero

Solving the linear system

in first step need to solve equations

$$\begin{bmatrix} I & A^T & c \\ -A & I & b \\ -c^T & -b^T & 1 \end{bmatrix} \begin{bmatrix} \tilde{u}_x \\ \tilde{u}_y \\ \tilde{u}_\tau \end{bmatrix} = \begin{bmatrix} w_x \\ w_y \\ w_\tau \end{bmatrix}$$

let

$$M = \begin{bmatrix} I & A^T \\ -A & I \end{bmatrix}, \quad h = \begin{bmatrix} c \\ b \end{bmatrix}$$

SO

$$I + Q = \begin{bmatrix} M & h \\ -h^T & 1 \end{bmatrix}$$

▶ it follows that

$$\begin{bmatrix} \tilde{u}_x \\ \tilde{u}_y \end{bmatrix} = (M + hh^T)^{-1} \left(\begin{bmatrix} w_x \\ w_y \end{bmatrix} - w_\tau h \right)$$

Solving the linear system, contd.

• applying matrix inversion lemma to $(M + hh^T)^{-1}$ yields

$$\begin{bmatrix} \tilde{u}_{x} \\ \tilde{u}_{y} \end{bmatrix} = \left(M^{-1} - \frac{M^{-1}hh^{T}M^{-1}}{(1+h^{T}M^{-1}h)} \right) \left(\begin{bmatrix} w_{x} \\ w_{y} \end{bmatrix} - w_{\tau}h \right)$$

and

$$\tilde{u}_{\tau} = w_{\tau} + c^{T}\tilde{u}_{x} + b^{T}\tilde{u}_{y}$$

- first compute and cache $M^{-1}h$
- so each iteration requires that we compute

$$M^{-1}\begin{bmatrix} w_x\\w_y\end{bmatrix}$$

and perform vector operations with cached quantities

Direct method

to solve

$$\begin{bmatrix} I & -A^T \\ -A & -I \end{bmatrix} \begin{bmatrix} z_x \\ -z_y \end{bmatrix} = \begin{bmatrix} w_x \\ w_y \end{bmatrix}$$

- compute sparse permuted LDL factorization of matrix
- re-use cached factorization for subsequent solves
- factorization guaranteed to exist for all permutations, since matrix is symmetric *quasi-definite*

Indirect method

by elimination

$$z_x = (I + A^T A)^{-1} (w_x - A^T w_y)$$
$$z_y = w_y + A z_x$$

- ▶ solve for *z_x* using *conjugate gradients* (CG)
- requires only matrix-vector multiplies by A and A^T
- terminate CG when residual smaller than μ^k
- easily parallelized; can exploit warm-starting

Scaling / preconditioning

convergence greatly improved by scaling / preconditioning:

- ▶ replace original data A, b, c with $\hat{A} = DAE$, $\hat{b} = Db$, $\hat{c} = Ec$
- ► D and E are diagonal positive; D respects cone boundaries
- ▶ *D* and *E* chosen by equilibrating *A* (details in paper)
- stopping condition retains unscaled (original) data

Outline

Cone programming

Homogeneous embedding

Operator splitting

Numerical results

Conclusions

SCS software package

- source available from https://github.com/cvxgrp/scs
- C with matlab and python hooks
- can be called from CVX and CVXPY
- ▶ solves LPs, SOCPs, SDPs, and ECPs (exp. cone programs)
- includes sparse direct and indirect linear system solvers
- ► can use single or double precision, ints or longs for indices

Portfolio optimization

- ▶ $z \in \mathbf{R}^{p}$ gives weights of (long-only) portfolio with p assets
- maximize risk-adjusted portfolio return:

$$\begin{array}{ll} \text{maximize} & \mu^T z - \gamma(z^T \Sigma z) \\ \text{subject to} & \mathbf{1}^T z = 1, \quad z \geq 0 \end{array}$$

- μ , Σ are return mean, covariance
- $\gamma > 0$ is risk aversion parameter
- Σ given as factor model $\Sigma = FF^T + D$
- $F \in \mathbf{R}^{q \times p}$ is factor loading matrix
- can be transformed to SOCP

Portfolio optimization results

assets p	5000	50000	100000
factors q	50	500	1000
SOCP variables <i>n</i>	5002	50002	100002
SOCP constraints m	10055	100505	201005
nonzeros in A	$3.8 imes10^4$	$2.5 imes10^6$	$1.0 imes10^{-1}$
SDPT3:			
solve time	1.14 sec	17836.7 sec	00M
SCS direct:			
solve time	0.17 sec	4.7 sec	37.1 sec
iterations	420	340	760
SCS indirect:			
1	0.23 sec	12.2 sec	101 sec
solve time	0.25 sec	12.2 360	IUI SEC
solve time average CG iterations	1.62	1.39	1.82

$\ell_1\text{-}\mathsf{regularized}$ logistic regression

- fit logistic model, with ℓ_1 regularization
- ▶ data $z_i \in \mathbf{R}^p$, i = 1, ..., q with labels $y_i \in \{-1, 1\}$

solve

minimize
$$\sum_{i=1}^{q} \log(1 + \exp(y_i w^T z_i)) + \mu \|w\|_1$$

over variable $w \in \mathbf{R}^{p}$; $\mu > 0$ regularization parameter

can be transformed to ECP

$\ell_1\text{-}\mathsf{regularized}$ logistic regression results

	small	medium	large
features p	600	2000	6000
samples <i>q</i>	3000	10000	30000
ECP variables n	10200	34000	102000
ECP constraints m	22200	74000	222000
nonzeros in A	$1.9 imes10^5$	$1.9 imes10^6$	$1.7 imes10^7$
SCS direct:			
solve time	22.1 sec	165 sec	1020 sec
iterations	280	660	1240
	200	000	1240
SCS indirect:	200	000	1240
	24.0 sec	199 sec	1240 1290 sec
SCS indirect:			
SCS indirect: solve time	24.0 sec	199 sec	1290 sec

Large random SOCP

- randomly generated SOCP with known optimal value
- $n = 1.6 \times 10^6$ variables, $m = 4.8 \times 10^6$ constraints
- ▶ 2×10^9 nonzeros in *A*, 22.5Gb memory to store
- indirect solver, tolerance 10^{-3} , parallelized over 32 threads
- results:
 - 740 SCS iterations, about 5000 matrix multiplies
 - 10 hours wall-clock time

•
$$|c^T x - c^T x^*| / |c^T x^*| = 7 \times 10^{-4}$$

•
$$|b^T y - b^T y^*| / |b^T y^*| = 1 \times 10^{-3}$$

Outline

Cone programming

Homogeneous embedding

Operator splitting

Numerical results

Conclusions

Conclusions

Conclusions

- HSD embedding is great for first-order methods
- diagonal preconditioning critical
- matrix-free algorithm: only $z \to Az$, $w \to A^T w$
- SCS is now standard large scale solver in CVXPY

Conclusions