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Multi-period Financial Planning Problem

A set of assets J = {1, ..., J} is given (e.g. bonds, stock, real estate).
At every stage t = 0, ...,7"—1 we can buy or sell different assets.
The return of asset j at stage t is uncertain.

We have to make investment decisions:
what, when and how much to buy or sell

Objectives:
e maximize the final wealth

e minimize the associated risk

Example: Asset Liability Management
problem of crucial importance to pension funds and insurance companies.

e W. Ziemba and J. Mulvey, Worldwide Asset and Liability Modeling,
Cambridge University Press, 1998.
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Modelling: use event tree

(t-La(m)

and decision variables associated with its nodes (¢, n).

Let a(t,n) denote the ancestor of node (¢, n).

With asset j € J at node (¢, n) we associate:

x4, the position in asset j in node (¢,n);

xé’tn the amount of asset j bought in (¢, n);

5, the amount of asset j sold in (t,m).

Forany ¢t : 1 <t < T, we write the inventory equation for asset j at node (¢, n)
Ljtn = (1 + TjJ,n) * Ljt—1,a(t,n) + x?‘_]t,n - x;,t,n’

where 7, is a return of asset j corresponding to moving from node (t —1, a(t, n))

to node (¢, n) in the event tree.
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Financial Planning Problems

e dynamics: multiple decision stages
e stochastics: uncertainty of returns
e curse of dimensionality
e very large-scale optimization

— sparsity

— nested block-structure

Solution Techniques

e structure exploitation
e decomposition & parallelisation
e where to decompose?

— the algorithm (nested Benders decomposition), or
— the linear algebra in the IPM

e OOPS: Object-Oriented Parallel IPM Solver
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Decomposition: Yes, but where to decompose?

Decomposing the linear algebra
e Use interior point methods, because:

— they are predictable (number of iterations O(logn))
— they can take advantage of the problem structure
— their linear algebra operations are parallelisable

e Object-Oriented Parallel IPM Solver (OOPS):

— uses abstract Matrix class

— allows modelling of very complicated structures (including nested ones)
— uses fast parallel linear algebra

— reduces memory use

— runs on any platform which supports MPT
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Linear Algebra of IPMs
Solve

~Q-0 AT [Az] [r —Q AT [Az] [r
A 0 ||Aay| TR or A o ||ay| " |n
| S | S
O (QP) O(NLP)
for several right-hand-sides at each iteration

Tree representation of matrices () and A:
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Multistage Stochastic Programming

/. Scenario 1
\~. Scenario 2
Scenario 3

_—®
.\A. Scenario 4

Period1  Period 2 Period 3

Scenario Tree Constraint Matrix

Symmetrical event tree with p realizations at each node and T periods correspon:
to

prl

scenarios.
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Solution Approaches: (nonexhaustive list, obviously)
For LPs:
e Benders decomposition and its extensions:
Benders, Numerische Mathematik 4 (1962).
Van Slyke and Wets, STAM J on Appl. Maths 17 (1969).
Birge, Operations Research 33 (1985).
Ruszezynski, Mathematical Programming 33 (1985).
Gassmann, Mathematical Programming 47 (1990).
Mulvey and Ruszczyniski, Operations Research 43 (1995).
Gondzio and Kouwenberg, Operations Research 49 (2001).
Linderoth and Wright, Computational Opt. and Appl. 24 (2003).
e Interior point methods:
Birge and Qi, Management Science 34 (1988).
Jessup, Yang and Zenios, STAM J on Opt. 4 (1994).
Vladimirou and Zenios, Annals of OR 90 (1999).
For NLPs:
e Specialized interior point methods:
Steinbach, Hierarchical Sparsity ..., Uryasev and Pardalos (eds) 2000.
Blomvall and Lindberg, A Riccati Solver ..., EJOR 143, OMS 17 (2002)
Gondzio and Grothey, OOPS: Exploiting structure in QPs and NLPs .
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ALM (continued)

Denote @; = (5,201, xf', . .. T g, xﬁ-’“], xZJ)7 and define matrices
1 —11 00 1+Ti,1

A= S R 00147
—c; &0 =5 &0 00 0 00 0

b __ ) s
where ¢; = (14 ¢;) vj, ¢

Rewrite ALM problem as

max g — P[Z ol Qiri — ] st Yo dle =y
= i€Ly Baiyxaiy = Az;  Vi#0
ALL’O = b€J+1.
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ALM (continued)
Assemble the vectors z;,7 € L and y into a vector x=(Zq(0), To(1); - - - » To(|L|-1): Y),
where o is a permutation of the nodes 0, ..., |L|—1 in a reverse depth-first order.

Nested block-diagonal matrix @ = diag(Qy(0), Qu(1): - - - » Qu(1£|-1)> —1)-
Constraint matrix A has the form

A B; 0 . M :
AB 0 e

0
Al B
A
di---d; 0 di---d; 0 —1
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Structures of A and Q imply structure of ¢:
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Asset and Liability Management Problem (ALM)
Final wealth y is the expected value of the final portfolio converted into cash

J
y=E(1-c)) vah,)=(1-c)d p Zv]
j=1

i€l J=1

while risk is expressed as its variance [Var(X) = F(X?) — (IE(X))?:

J
Var(( l—ctz vzt ;) Zpll—ct ZUJ )

j=1 i€Lp
The ALM problem can then be expressed as
2 9
maxy—p[>_pilll =) Y vl [~y
ZGLT J
st (1—a) ZieLTPY Z v xzj =Y
(1+TU) a(L)J:fL"h —at +3;'”, Vi#£0,j
>+ ey 5] =>,(1- ct)v] P Vi#Q
Zj(l + Ct)UjIOJ‘ =0
see, e.g., Steinbach, Markowitz revisited ..., SITAM Review 43 (2001).
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ALM: Extensions
Introduce two more (nonnegative) variables per final scenario ¢ € L; to model the
positive and negative variation from the mean

J
h + —
(1—¢) g vy + s — s =y
J=1

+

)2, (s7)? cannot both be positive the variance is expressed as

Var(X) =Y pilsi = s7)° = Yol + (7))

i€l i€l

Since (s

We model downside risk using a semi-variance F[(X — FX)?]
E[(X — EX)2] = 3 pilsi)
€Ly
Downside risk can be taken into account
e in the objective, or

e as a constraint.
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Extensions (z; = (z;1,...,x; s) denotes the portfolio in node )

Standard Markowitz formulation:

max y — UZieLtpi(dszi_y)Q s.t. (Cl) ZieLtpidszi_y 0
(CQ) Bma(i) —AIZ- = 0, Z#O (QP)
(03) Axo =b

Risk exposure constrained:
max y st Y er,Pildfwi—y)? < p
(1) (C3) (NLP)

Downside risk constrained:

max y s.t. Dier, Dilsi ) < p
dizi+s—s;—y =0, ieL  (NLP)
(C1) — (C3)
Nonlinear utility function:
max  log (1 +y) st Yiern, pilsi)? < p
dlz;+sf—s;—y =0, ieL, (NLP)
(C1) — (C3)
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Variance representation

Yty Pil(l =) 3o vl =y

dense, convex QP

ZieLTpi(l - Ct)Q[Ej ij?,j]? -y’

sparse, nonconvex QP

J. Gondzio
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Results (nonconvex QP formulation):

Problem | Stages Blocks Assets Total Nodes | constraints — variables
ALM1 5 10 5 11111 66.667 166.666
ALM2 6 10 5 111111 666.667  1.666.666
ALM3 6 10 10 111111 1.222.222  3.333.331
ALM4 5 24 5 346201 | 2.077.207  5.193.016
ALMS5 4 64 12 266305 | 3.461.966 9.586.981
UNS1 5 35 5 360152 | 2.160.919  5.402.296
ALM6 4 120 5 1742521 | 10.455.127 26.137.816
ALM7 4 120 10 1742521 | 19.167.732 52.275.631
Problem 1 proc 2 procs k procs
time (s) iter | time (s) speed-up | time (s) speed-up k
ALM1 728 12 35.2 2.07 12.2 597 6
ALM2 1528 19 758 2.01 309 495 5
ALM3 7492 29 3661 2.04 1464 512 5
ALM4 5434 31 2717 2.00 905 6.00 6
ALM5 6842 11 3480 1.97 1150 595 6
UNS1 5252 15 2823 1.86 1108 4.74 5
ALM6 15 1294 - 16
ALM7 23 7058 - 16

24 750MHz UltraSparc-IIT processors, 48GB of shared memory
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Results (NLP formulation): textbook SQP implemented

Semi-variance constrained — quadratically constrained problem.

Problen1|Stages Blocks Assets Total Nodes‘constraints variables

ALM1 5 10 5 11111 76.668  186.667
ALM2 6 10 5 111111 766.668 1.866.667
ALM4 5 24 5 346201 | 2.408.984 5.856.569
UNS1 5 35 5 360152 | 2.503.994 6.088.445
Problem 1 proc 2 procs k procs
iter time (s) | time (s) speed-up |time (s) speed-up k
ALM1 36 218 107 2.04 44 495 5
ALM?2 45 3456 1737 1.98 703 492 5
ALM4 67 11744 5902 1.98 1973 595 6
UNSI1 42 14705 7949 1.85 3109 473 5
24 750MHz UltraSparc-III processors, 48GB of shared memory
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Conclusions: IPMs for NLP offer:

o flexibility: complicated (nested) structures handled
e cfficiency: QPs/NLPs with up to 50 million variables solved
e parallelism: near perfect speed-ups achieved

— can solve complicated financial planning problems.

Object-Oriented Parallel IPM Solver (OOPS):

http://www.maths.ed.ac.uk/ “gondzio/parallel/solver.html
e Gondzio and Sarkissian, Mathematical Programming 96 (2003).
e Gondzio and Grothey, STAM J. on Optmization 13 (2003).

e Gondzio and Grothey, Parallel IPM solver for structured QQPs: applicatic
to financial planning problems, Tech. Rep. MS-03-001, School of Matl
University of Edinburgh, April 2003.

Papers available from:
http://www.maths.ed.ac.uk/ gondzio/




