Multi-period Financial Planning Problem

A set of assets $\mathcal{J} = \{1, ..., J\}$ is given (e.g. bonds, stock, real estate). At every stage t = 0, ..., T-1 we can buy or sell different assets. The return of asset j at stage t is uncertain.

We have to make investment decisions: what, when and how much to buy or sell

Objectives:

- maximize the final wealth
- minimize the associated risk

Example: Asset Liability Management problem of crucial importance to pension funds and insurance companies.

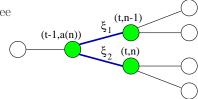
• W. Ziemba and J. Mulvey, Worldwide Asset and Liability Modeling, Cambridge University Press, 1998.

3

J. Gondzio

OOPS: Parallel IPM Solver for NLP

Modelling: use event tree



and decision variables associated with its nodes (t,n).

Let a(t, n) denote the ancestor of node (t, n).

With asset $j \in \mathcal{J}$ at node (t, n) we associate:

 $x_{i,t,n}$ the position in asset j in node (t,n);

 $x_{j,t,n}^b$ the amount of asset j bought in (t,n);

 $x_{i,t,n}^s$ the amount of asset j sold in (t,n).

For any $t: 1 \le t \le T$, we write the *inventory equation* for asset j at node (t, n)

$$x_{j,t,n} = (1 + r_{j,t,n}) \cdot x_{j,t-1,a(t,n)} + x_{j,t,n}^b - x_{j,t,n}^s,$$

where $r_{j,t,n}$ is a return of asset j corresponding to moving from node (t-1,a(t,n)) to node (t,n) in the event tree.

School of Mathematics

Parallel Solution Techniques in Financial Planning Problems

Jacek Gondzio, Andreas Grothey

ISMP, Copenhagen, August 2003

J. Gondzio

OOPS: Parallel IPM Solver for NI

Financial Planning Problems

- dynamics: multiple decision stages
- stochastics: uncertainty of returns
- curse of dimensionality
- very large-scale optimization
 - sparsity
 - nested block-structure

Solution Techniques

- structure exploitation
- decomposition & parallelisation
- where to decompose?
 - the algorithm (nested Benders decomposition), or
 - the linear algebra in the IPM
- OOPS: Object-Oriented Parallel IPM Solver

Decomposition: Yes, but where to decompose?

Decomposing the linear algebra

- Use interior point methods, because:
 - they are predictable (number of iterations $\mathcal{O}(\log n)$)
 - they can take advantage of the problem structure
 - their linear algebra operations are parallelisable
- Object-Oriented Parallel IPM Solver (OOPS):
 - uses abstract Matrix class
 - allows modelling of very complicated structures (including nested ones)
 - uses fast parallel linear algebra
 - reduces memory use
 - runs on any platform which supports MPI

7

J. Gondzio

OOPS: Parallel IPM Solver for NLP

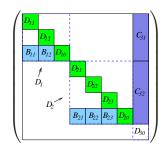
Linear Algebra of IPMs

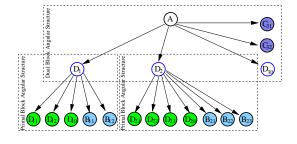
Solve

$$\underbrace{\begin{bmatrix} -Q - \Theta & A^{\top} \\ A & 0 \end{bmatrix}}_{\Phi(QP)} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} r \\ h \end{bmatrix} \quad \text{or} \quad \underbrace{\begin{bmatrix} -Q & A^{\top} \\ A & \Theta \end{bmatrix}}_{\Phi(NLP)} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} r \\ h \end{bmatrix}$$

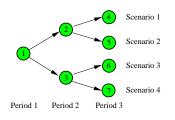
for several right-hand-sides at each iteration

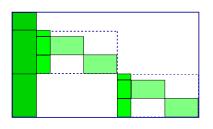
Tree representation of matrices Q and A:





Multistage Stochastic Programming





Scenario Tree

Constraint Matrix

Symmetrical event tree with p realizations at each node and T periods correspond to

$$p^{T-1}$$

scenarios.

J. Gondzio

J. Gondzio

OOPS: Parallel IPM Solver for NI

Solution Approaches: (nonexhaustive list, obviously)

For LPs:

 \bullet Benders decomposition and its extensions:

Benders, Numerische Mathematik 4 (1962).

Van Slyke and Wets, SIAM J on Appl. Maths 17 (1969).

Birge, Operations Research 33 (1985).

Ruszczyński, Mathematical Programming 33 (1985).

Gassmann, Mathematical Programming 47 (1990).

Mulvey and Ruszczyński, Operations Research 43 (1995).

Gondzio and Kouwenberg, Operations Research 49 (2001).

Linderoth and Wright, Computational Opt. and Appl. 24 (2003).

• Interior point methods:

Birge and Qi, Management Science 34 (1988). Jessup, Yang and Zenios, SIAM J on Opt. 4 (1994).

Vladimirou and Zenios, Annals of OR 90 (1999).

For NLPs:

Specialized interior point methods:
 Steinbach, Hierarchical Sparsity ..., Uryasev and Pardalos (eds) 2000.
 Blomvall and Lindberg, A Riccati Solver ..., EJOR 143, OMS 17 (2002)
 Gondzio and Grothey, OOPS: Exploiting structure in QPs and NLPs ...

ALM (continued)

Denote $x_i = (x_{i,1}^s, x_{i,1}^b, x_{i,1}^h, \dots, x_{i,J}^s, x_{i,J}^b, x_{i,J}^h)$, and define matrices

$$A = \begin{pmatrix} 1 & -1 & 1 & & & \\ & & \ddots & & & \\ & & & 1 & -1 & 1 \\ -c_1^s & c_1^b & 0 & \cdots & -c_J^s & c_J^b & 0 \end{pmatrix}, \quad B_i = \begin{pmatrix} 0 & 0 & 1 + r_{i,1} & & & \\ & & & \ddots & & \\ & & & 0 & 0 & 1 + r_{i,J} \\ 0 & 0 & 0 & \cdots & 0 & 0 & 0 \end{pmatrix}$$

$$Q_{i} \in \mathbb{R}^{3J \times 3J} : \begin{cases} (Q_{i})_{3j,3k} = p_{i}(1 - c_{t})^{2}v_{j}v_{k}, \ j, k = 1, \dots, J, & i \in L_{T} \\ Q_{i} = 0, & i \notin L_{T} \end{cases}$$
$$d_{i} \in \mathbb{R}^{1 \times 3J} : (d_{i})_{3j} = (1 - c_{t})p_{i}v_{j},$$

where $c_j^b = (1 + c_t) v_j$, $c_j^s = (1 - c_t) v_j$.

Rewrite ALM problem as

$$\max_{x,y\geq 0} \quad y-\rho[\sum_{i\in L_T} x_i^T Q_i x_i - y^2] \quad \text{s.t. } \sum_{i\in L_T} d_i^T x_i = y \\ B_{a(i)} x_{a(i)} = A x_i \quad \forall i\neq 0 \\ A x_0 = b e_{J+1}.$$

11

J. Gondzio

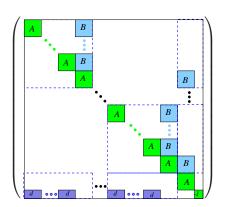
OOPS: Parallel IPM Solver for NLP

ALM (continued)

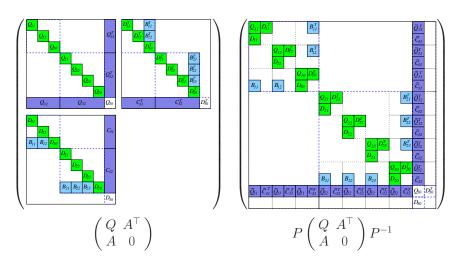
Assemble the vectors $x_i, i \in L$ and y into a vector $x = (x_{\sigma(0)}, x_{\sigma(1)}, \dots, x_{\sigma(|L|-1)}, y)$, where σ is a permutation of the nodes $0, \dots, |L|-1$ in a reverse depth-first order. Nested block-diagonal matrix $Q = \operatorname{diag}(Q_{\sigma(0)}, Q_{\sigma(1)}, \dots, Q_{\sigma(|L|-1)}, -1)$.

Constraint matrix A has the form

$$\begin{pmatrix}
\begin{vmatrix}
A & B_i \\
& \ddots & \vdots \\
& A B_i \\
& A
\end{vmatrix} & & & & \vdots \\
& & & B_i \\
& & & & & \vdots \\
& & & & B_i \\
& & & & \vdots \\
& & & & B_i \\
& & & & & \vdots \\
& & & & B_i \\
& & & & & \vdots \\
& & & & & B_i \\
& & & & & A B_i \\
& & & & & A B_i \\
& & & & & A B_i \\
& & & & & & A B_i \\
& & & & & & A B_i \\
& & & & & & & A B_i \\
& & & & & & & A B_i \\
& & & & & & & & A B_i \\
& & & & & & & & & & A
\end{pmatrix}$$



Structures of A and Q imply structure of Φ :



J. Gondzio

OOPS: Parallel IPM Solver for NI

Asset and Liability Management Problem (ALM)

Final wealth y is the expected value of the final portfolio converted into cash

$$y = \mathbb{E}((1 - c_t) \sum_{j=1}^{J} v_j x_{T,j}^h) = (1 - c_t) \sum_{i \in L_T} p_i \sum_{j=1}^{J} v_j x_{i,j}^h,$$

while risk is expressed as its variance $[Var(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2]$:

$$\operatorname{Var}((1-c_t)\sum_{j=1}^{J} v_j x_{T,j}^h) = \sum_{i \in L_T} p_i (1-c_t)^2 [\sum_j v_j x_{i,j}^h]^2 - y^2.$$

The ALM problem can then be expressed as

$$\max_{x,y\geq 0} \quad y - \rho[\sum_{i\in L_T} p_i[(1-c_t)\sum_j v_j x_{i,j}^h]^2 - y^2]$$
 s.t.
$$(1-c_t)\sum_{i\in L_T} p_i\sum_j v_j x_{i,j}^h = y$$

$$(1+r_{i,j})x_{a(i),j}^h = x_{i,j}^h - x_{i,j}^b + x_{i,j}^s, \ \forall i\neq 0,j$$

$$\sum_j (1+c_t)v_j x_{i,j}^b = \sum_j (1-c_t)v_j x_{i,j}^s, \ \forall i\neq 0$$

$$\sum_j (1+c_t)v_j x_{0,j}^b = b.$$

see, e.g., Steinbach, Markowitz revisited ..., SIAM Review 43 (2001).

ALM: Extensions

Introduce two more (nonnegative) variables per final scenario $i \in L_t$ to model the positive and negative variation from the mean

$$(1 - c_t) \sum_{i=1}^{J} v_j x_{i,j}^h + s_i^+ - s_i^- = y.$$

Since $(s_i^+)^2$, $(s_i^-)^2$ cannot both be positive the variance is expressed as

$$Var(X) = \sum_{i \in L_t} p_i (s_i^+ - s_i^-)^2 = \sum_{i \in L_t} p_i ((s_i^+)^2 + (s_i^-)^2).$$

We model **downside risk** using a semi-variance $\mathbb{E}[(X - \mathbb{E}X)^2]$

$$I\!\!E[(X - I\!\!E X)_{-}^{2}] = \sum_{i \in L_{t}} p_{i}(s_{i}^{+})^{2}.$$

Downside risk can be taken into account

- in the objective, or
- as a constraint.

15

J. Gondzio

OOPS: Parallel IPM Solver for NLP

Extensions $(x_i = (x_{i,1}, ..., x_{i,J})$ denotes the portfolio in node i)

Standard Markowitz formulation:

$$\max y - \sigma \sum_{i \in L_t} p_i (d_i^{\top} x_i - y)^2 \text{ s.t. } (C1) \sum_{i \in L_t} p_i d_i^{\top} x_i - y = 0$$

$$(C2) Bx_{a(i)} - Ax_i = 0, \quad i \neq 0 \quad (QP)$$

$$(C3) Ax_0 = b$$

Risk exposure constrained:

max
$$y$$
 s.t. $\sum_{i \in L_t} p_i (d_i^\top x_i - y)^2 \le \rho$ (NLP)

Downside risk constrained:

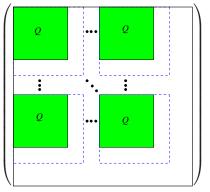
max
$$y$$
 s.t. $\sum_{i \in L_t} p_i(s_i^+)^2 \le \rho$ $d_i^\top x_i + s_i^+ - s_i^- - y = 0, \quad i \in L_t$ (NLP) $(C1) - (C3)$

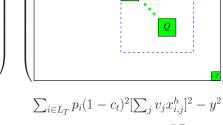
Nonlinear utility function:

$$\max \log (1+y) \qquad \text{s.t.} \quad \frac{\sum_{i \in L_t} p_i(s_i^+)^2 \le \rho}{d_i^\top x_i + s_i^+ - s_i^- - y = 0, \quad i \in L_t \quad \text{(NLP)}}$$

$$(C1) - (C3)$$

Variance representation





$$\sum_{i \in L_T} p_i [(1 - c_t) \sum_j v_j x_{i,j}^h - y]^2$$
dense, convex QP

sparse, nonconvex QP

J. Gondzio

OOPS: Parallel IPM Solver for NI

Results (nonconvex QP formulation):

Problem	Stages	Blocks	Assets	Total Nodes	constraints	variables
ALM1	5	10	5	11111	66.667	166.666
ALM2	6	10	5	111111	666.667	1.666.666
ALM3	6	10	10	111111	1.222.222	3.333.331
ALM4	5	24	5	346201	2.077.207	5.193.016
ALM5	4	64	12	266305	3.461.966	9.586.981
UNS1	5	35	5	360152	2.160.919	5.402.296
ALM6	4	120	5	1742521	10.455.127	26.137.816
ALM7	4	120	10	1742521	19.167.732	52.275.631

Problem		1 proc		2 procs		k procs		
110010111	time (s)	iter	time (s)	speed-up	time (s)	speed-up	k	
ALM1		72.8	12	35.2	2.07	12.2	5.97	6
ALM2		1528	19	758	2.01	309	4.95	5
ALM3		7492	29	3661	2.04	1464	5.12	5
ALM4		5434	31	2717	2.00	905	6.00	6
ALM5		6842	11	3480	1.97	1150	5.95	6
UNS1		5252	15	2823	1.86	1108	4.74	5
ALM6			15			1294	-	16
ALM7			23			7058	-	16

J. Gondzio OOPS: Parallel IPM Solver for NI

Results (NLP formulation): textbook SQP implemented

Semi-variance constrained \rightarrow quadratically constrained problem.

Problem	Stages	Blocks	Assets	Total Nodes	constraints	variables
ALM1	5	10	5	11111	76.668	186.667
ALM2	6	10	5	111111	766.668	1.866.667
ALM4	5	24	5	346201	2.408.984	5.856.569
UNS1	5	35	5	360152	2.503.994	6.088.445

Problem	1 proc		2 p	rocs	k procs		
1 TODICIII	iter	time (s)	time (s)	speed-up	time (s)	speed-up	k
ALM1	36	218	107	2.04	44	4.95	5
ALM2	45	3456	1737	1.98	703	4.92	5
ALM4	67	11744	5902	1.98	1973	5.95	6
UNS1	42	14705	7949	1.85	3109	4.73	5

24 750MHz UltraSparc-III processors, 48GB of shared memory

J. Gondzio

OOPS: Parallel IPM Solver for NI

Conclusions: IPMs for NLP offer:

- flexibility: complicated (nested) structures handled
- efficiency: QPs/NLPs with up to 50 million variables solved
- \bullet parallelism: near perfect speed-ups achieved
- \rightarrow can solve complicated financial planning problems.

Object-Oriented Parallel IPM Solver (OOPS):

http://www.maths.ed.ac.uk/~gondzio/parallel/solver.html

- Gondzio and Sarkissian, Mathematical Programming 96 (2003).
- Gondzio and Grothey, SIAM J. on Optimization 13 (2003).
- Gondzio and Grothey, Parallel IPM solver for structured QPs: application to financial planning problems, Tech. Rep. MS-03-001, School of Math University of Edinburgh, April 2003.

Papers available from:

http://www.maths.ed.ac.uk/~gondzio/