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Solving Nonlinear Portfolio Optimization Problems with the Primal-Dual

Interior Point Method

Abstract

Stochastic programming is recognized as a powerful tool to help decision making under un-

certainty in financial planning. The deterministic equivalent formulations of these stochastic

programs have huge dimensions even for moderate numbers of assets, time stages and sce-

narios per time stage. So far models treated by mathematical programming approaches have

been limited to simple linear or quadratic models due to the inability of currently available

solvers to solve NLP problems of typical sizes. However stochastic programming problems

are highly structured. The key to the efficient solution of such problems is therefore the abil-

ity to exploit their structure. Interior point methods are well-suited to the solution of very

large nonlinear optimization problems. In this paper we exploit this feature and show how

portfolio optimization problems with sizes measured in millions of constraints and decision

variables, featuring constraints on semi-variance, skewness or nonlinear utility functions in

the objective, can be solved with the state-of-the-art solver.

1 Introduction

Stochastic programming is recognized as an important tool in financial planning. Reformulated

as the deterministic equivalent problems the stochastic programs become treatable by standard

mathematical programming approaches. Unfortunately these deterministic equivalent formu-

lations lead to problems with huge dimensions even for moderate sizes of event trees used to

model the uncertainty. The advances in large scale optimization during the last decade have

made these problems tractable. However current practice of portfolio optimization is still limited

to simple formulations of linear programming (LP) or quadratic programming (QP) type.
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In this paper we show that the mathematical programming methodology is ready to tackle

the huge problems arising from portfolio optimization, even if general nonlinear constraints or

objective terms are present.

Ever since Markowitz [13, 14] put forward the argument for a mean-variance model, different

formulations of the portfolio optimization problems have been suggested by practitioners. How-

ever, the mean-variance model may lead to inferior conclusions, that is some optimal solutions

may be stochastically dominated by other feasible solutions [18, 17]. Ogryczak and Ruszczyn-

ski [18] proved that the standard semideviation (the square root of the semivariance) is, under

some additional conditions, consistent with second degree stochastic dominance. Therefore one

should replace the usual objective in the Markowitz model with a new one composed of mean and

semideviation. Alternatively one can model the risk preference by a constraint on semideviation

(or semivariance). Logarithmic utility functions of the final wealth have been recognized since

the 1950’s for their attractive theoretical properties [10]. The justification for neglecting third

moments have been questioned by Konno et al. [11, 12] because experimental data shows that

stocks are non-symmetrically distributed. They argue to include skewness into the objective

function to express the investors preference for a positive deviation from the mean in the case of

non-symmetric distributions of asset returns. All these modifications require the introduction

of nonlinearities either to the objective function or to the constraints and lead to deterministic

equivalent formulations that are of nonlinear programming (NLP) type.

The last decade has seen a rapid improvement of methods to solve large scale stochastic pro-

grams. However most of these are only applicable in a very special setting. Nested Benders

Decomposition approaches [1, 16, 19] are limited to problems with separable objective func-

tions. Linear algebra approaches such as [2, 20] are usually limited to very special structures
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resulting for example from constraints on the allowed type of recurrence relation. The aim of

this paper is to show that by using a modern general structure exploiting interior point method

such as our Object-Oriented Parallel Solver OOPS [7, 6] the solution of very large, general

nonlinear stochastic programs is feasible. Furthermore this method is not limited to a spe-

cial setting but can be applied to almost any conceivable constraint or objective function in

stochastic programming.

In the following section we recall the standard mean-variance Asset and Liability Management

(ALM) problem to introduce our notation. In Section 3 we discuss several extensions of the basic

model that lead to nonlinear programming problems. In Section 4 we discuss their structure and

comment briefly on how this can be exploited by a modern interior point solver. In Section 5

we present computational evidence that suggest that nonlinear stochastic problems are now

tractable with state-of-the-art implementations. In Section 6 we give our conclusions.

2 Mean-variance Asset Liability Management Problem

We will describe a multi-stage Asset and Liability Management model which uses the mean

to measure the reward and the variance to measure the risk. Our description of the problem

follows those in [8, 21, 22]. We are concerned with finding the optimal way of investing into

assets j = 1, . . . , J . The returns on assets are uncertain. An initial amount of cash b is invested

at t = 0 and the portfolio may be rebalanced at discrete times t = 1, . . . , T . The objective is

to maximize the expectation of the final value of the portfolio at time T + 1 and minimize the

associated risk measured with the variance of the final wealth. We denote the decision variables

at time t by xt.
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Figure 1: The Event tree.

The uncertainty in the process is described by an event tree: discrete random events ωt are

observed at times t = 0, . . . , T ; each of the ωt has only a finite number of possible outcomes.

For each sequence of observed events (ω0, . . . , ωt), we expect one of only finitely many possible

outcomes for the next observation ωt+1. This branching process creates a tree rooted at the

initial event ω0. Let Lt be the set of nodes representing past observations (ω0, . . . , ωt) at time

t, LT the set of final nodes (leaves) and L =
⋃

t Lt the complete node set. In what follows a

variable i ∈ L will denote nodes, with i = 0 corresponding to the root and π(i) denoting the

predecessor (parent) of node i as indicated in Figure 1. π(i) is also a predecessor of node i + 1.

Further pi is the total probability of reaching node i, i.e. on each level set the probabilities sum

up to one.

Let vj be the value of asset j, and ct the transaction cost. It is assumed that the value of the

assets will not change throughout time and a unit of asset j can always be bought for (1+ct)vj or

sold for (1− ct)vj . Instead a unit of asset j held in node i (coming from node π(i)) will generate

extra return ri,j. Denote by xh
i,j the units of asset j held at node i and by xb

i,j, x
s
i,j the transaction

volume (buying, selling) of this asset at this node, respectively. Similarly xh
t,j, x

b
t,j , x

s
t,j are the

random variables describing the holding, buying and selling of asset j at time stage t. We assume

that we start with zero holding of all assets but with funds b to invest. Further we assume that
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one of the assets represents cash, i.e. the available funds are always fully invested.

In reality the amount of asset xh
t,j remains unchanged (unless buying/selling takes place) and the

value of asset vj changes following the market fluctuations. We follow [8] and references therein

and use a modelling convention in which the wealth accumulated in each asset is represented as

a product vjx
h
t,j with constant vj and changing xh

t,j . In other words the return is denominated

in asset units. (Cash is an asset which naturally satisfies this assumption.)

The standard constraints on the investment policy can be expressed as follows: Cash balance

constraints describe possible buying and selling actions within a scenario while taking transaction

costs into account:

∑
j(1 + ct)vjx

b
i,j =

∑
j(1− ct)vjx

s
i,j ∀i 6= 0

∑
j(1 + ct)vjx

b
0,j = b.

(1)

Each scenario is linked to its parent through inventory constraints: these are balance constraints

on asset holdings (taking into account the random return on asset):

(1 + ri,j)xh
π(i),j = xh

i,j − xb
i,j + xs

i,j, ∀i 6= 0, j. (2)

We require all variables to be nonnegative:

xh
i,j ≥ 0, xb

i,j ≥ 0, xs
i,j ≥ 0, ∀i, j. (3)

In the original Markowitz portfolio optimization problem [13, 14] two objectives are considered:

maximization of the final wealth and minimization of the associated risk. In the multistage

context, the final wealth y is simply expressed as the expected value of the final portfolio

converted into cash [21]

y = IE((1 − ct)
J∑

j=1

vjx
h
T,j) = (1− ct)

∑
i∈LT

pi

J∑
j=1

vjx
h
i,j. (4)
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The risk is conventionally expressed as the variance of the return:

Var((1 − ct)
J∑

j=1

vjx
h
T,j) =

∑
i∈LT

pi[(1− ct)
∑

j

vjx
h
i,j − y]2. (5)

In the classical Markowitz portfolio optimization problem these two objectives are combined

into a single one of the following form

f(x) = IE(X)− ρVar(X), (6)

where X denotes the final portfolio converted into cash (4) and ρ is a scalar expressing investor’s

attitude to risk. Thus in the classical model we would maximize (6) subject to constraints (1),

(2) and (4). Such a problem is a convex quadratic program. Indeed, all its constraints are linear

and its objective is a concave quadratic function of x. The variance (5) gathers all xh
T,j (assets

held in the last time period) and thus produces a quadratic form xT Qx with a very large number

of nonzero entries in matrix Q. Gondzio and Grothey [6] proposed a reformulation of the problem

which exploits partial separability of the variance and leads to a non-convex formulation of the

problem but with a much higher degree of sparsity in the quadratic term. The reformulation

exploits another representation of the variance (using Var(X) = IE(X2)− IE(X)2):

Var((1−ct)
J∑

j=1

vjx
h
T,j) = IE((1 − ct)2[

∑
j

vjx
h
T,j]

2)− IE((1− ct)
∑

j

vjx
h
T,j)

2

=
∑
i∈LT

pi(1− ct)2[
∑

j

vjx
h
i,j]

2 − y2.

It is worth noting that our non-convex formulation is actually convex in the space of constraints.

The non-convex formulation uses one additional decision variable y in the objective but produces

better block-sparsity properties in the associated Hessian matrix as displayed in Figure 2.
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
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∑
i∈LT

pi[(1− ct)
∑

j vjx
h
i,j − y]2

∑
i∈LT

pi(1− ct)2[
∑

j vjx
h
i,j]

2 − y2

dense, convexQP sparse, nonconvexQP

Figure 2: Hessian matrices in two formulations of the variance.

3 Extensions of Asset Liability Management Problem

The mean-variance model does not satisfy the second order stochastic dominance condition [18].

This is a serious drawback of the classical Markowitz model. Furthermore, this model penalizes

equally the overperformance and the underperformance of the portfolio which is counter-intuitive

for a portfolio manager. The model presented in the previous section may be easily extended to

take into account only a semi-variance (downside risk).

To allow more flexibility for the modelling we introduce two more variables s+
i , s−i per node

i ∈ LT

s+
i ≥ 0, s−i ≥ 0, ∀i, (7)
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as the positive and negative variation from the mean and add the constraint

(1− ct)
J∑

j=1

vjx
h
i,j + s+

i − s−i = y, i ∈ LT (8)

into the model. These variables might not strictly be needed in all described circumstances.

Their purpose is primarily to show that extensions to the mean-variance model can be easily in-

corporated and lead to structured sparse problems. Using these additional variables the variance

can be expressed much simpler as

Var(X) =
∑
i∈Lt

pi(s+
i − s−i )2 =

∑
i∈Lt

pi((s+
i )2 + (s−i )2), (9)

as long as (s+
i )2, (s−i )2 are not both positive at the solution. The formulation with these slack

variables would further improve the sparsity of the Hessian matrix. Actually, the corresponding

Hessian would be diagonal, that is, the quadratic problem would be separable. However, in

this formulation, a considerable number of linear equality constraints need to be added to the

problem. This new formulation allows an easy extension in which semivariance IE[(X − IEX)2−]

is used to measure downside risk

sVar(X) =
∑
i∈Lt

pi(s+
i )2. (10)

Using the notation introduced above the standard Markowitz model can be expressed as

maxx,y,s≥0 y − ρ[
∑

i∈LT
pi((s+

i )2 + (s−i )2)]

s.t. (1), (2), (3), (4), (7), (8),

(11)

which is a convex quadratic programming problem. We will consider the following variations

which lead to nonlinear problem formulations.

• A constraint on risk (measured by the variance): We capture the investors risk-adversity
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directly in a form of a (nonlinear) constraint, i.e.

maxx,y,s≥0 y

s.t.
∑

i∈Lt
pi((s+

i )2 + (s−i )2) ≤ ρ

(1), (2), (3), (4), (7), (8),

(12)

• A constraint on downside risk (measured by the semi-variance):

maxx,y,s≥0 y

s.t.
∑

i∈Lt
pi(s+

i )2 ≤ ρ

(1), (2), (3), (4), (7), (8),

(13)

• A logarithmic utility function as the objective:

maxx,y,s≥0 (1− ct)
∑

i∈LT
pi log(

∑J
j=1 vjx

h
i,j)

s.t.
∑

i∈Lt
pi(s+

i )2 ≤ ρ

(1), (2), (3), (4), (7), (8),

(14)

• An objective including skewness: Konno et al. [11] suggest using the third moment in

the model to capture the investors preference towards positive deviations in the case of

non-symmetric distribution of returns for some assets

maxx,y,s≥0 y + γ
∑

i∈Lt
pi(s+

i − s−i )3

s.t.
∑

i∈Lt
pi((s+

i )2 + (s−i )2) ≤ ρ

(1), (2), (3), (4), (7), (8).

(15)

All these formulations are nonlinear programming problems. While many of them have been

recognized for their theoretical properties, solving them has not been possible due to the com-

plexities involved with nonlinear programming. The few algorithms that there are, are highly

adapted to a particular problem and not easily applicable to more general settings [2, 20]. We

will show that by using a structure exploiting interior point method, these formulations can now
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be solved by standard optimization software. Unlike other approaches, our general interior point

solver is still applicable after changes to the formulations as long as some general block-structure

properties are present. We will point these out in the next section.

4 Structure of Nonlinear ALM Formulations

To solve the nonlinear ALM variations (12) through (15) we use a textbook sequential quadratic

programming (SQP) method that employs our Object-Oriented Parallel interior point Solver

(OOPS) [7, 6] as the underlying QP solver. We have implemented an SQP procedure following

[3]. The reader interested in more detail in the nonlinear programming algorithms should consult

the classic book of Fletcher [5] or newer books on the subject [4, 15].

An SQP method to solve minx f(x) s.t. g(x) ≤ 0, generates primal and dual iterates x(k), λ(k)

and at each step solves the quadratic programming problem

min∆x ∇f(x(k))T ∆x + 1
2∆xT Q∆x

s.t. A∆x ≤ −g(x(k)),
(16)

where A = ∇g(x(k)) and Q = ∇2f(x(k)) +
∑

i λ(k)∇2gi(x(k)) are the Jacobian of the constraints

and the Hessian of the Lagrangian respectively.

Our interior point based QP solver OOPS can efficiently exploit virtually any nested block-

structure of the system matrices A and Q. We refer the reader to [6] for a detailed description

of exploitable structures and the algorithms used to exploit them. For the purposes of this

discussion a subset of the exploitable structures consists of matrices that are nested combinations

of primal or dual block-angular and bordered block-diagonal matrices. We recall these well-

known sparsity patterns in Figure 3.
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
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,




A1 C1

A2 C2
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...

An Cn




,



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An Cn
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


.

Figure 3: Sparsity patterns of typical exploitable structures.

The matrices Q and A in the asset liability problems display such nested block-sparse structures.

We will start by analysing the structures of matrices A and Q for problem (11) and afterwards

emphasize modifications needed for formulations (12) -(15).

Let us denote by xi = (xs
i,1, x

b
i,1, x

h
i,1, . . . , x

s
i,J , xb

i,J , xh
i,J , s+

i , s−i ) all variables associated with the

i-th scenario, and define matrices

Ã=




−1 1 −1 0 0

. . .
...

...

−1 1 −1 0 0

−cs
1 cb

1 0 · · · −cs
J cb

J 0 0 0

0 0 −cs
1 · · · 0 0 −cs

J −1 1




, Bi =




0 0 1+ri,1 0 0

. . .
...

...

0 0 1+ri,J 0 0

0 0 0 · · · 0 0 0 0 0

0 0 0 · · · 0 0 0 0 0




,

where cb
j = (1 + ct)vj and cs

j = (1 − ct)vj . With this notation, the dynamics of the system

(constraints (1), (2), (8)) are described by the equation

Bixπ(i) + Ãxi = 0,

where π(i) is again the ancestor node of node i in the event tree (see Fig. 1).

Assemble the vectors xi, i ∈ L and y into a vector x = (xσ(0), xσ(1), . . . , xσ(|L|−1), y), where σ

is a permutation of the nodes 0, . . . , |L|−1 in a reverse depth-first order. Below we write this
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permutation explicitly for a 3-period problem (T = 2, that is t = 0, 1, 2). We assume that node

i = 0 has n children: i1, i2, · · · , in (nodes in stage 1). Each node ij has nj children i1j , i
2
j , . . . , i

nj

j

which all belong to stage 2. In this case the permutation σ corresponds to the following ordering

of nodes:

(inn
n , inn−1

n , · · · , i1n︸ ︷︷ ︸
children of in

, in, i
nn−1

n−1 , i
nn−1−1
n−1 , · · · , i1n−1︸ ︷︷ ︸

children of in−1

, in−1, · · · , in1
1 , in1−1

1 , · · · , i11︸ ︷︷ ︸
children of i1

, i1, 0) (17)

The Jacobian matrix A has the form



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ã Binn
n

. . .
...

Ã Bi1n

Ã

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 e

...
...

0 e

Bin

. . .
...∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ã Bi
n1
1

. . .
...

Ã Bi11

Ã

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 e

...
...

0 e

Bi1

Ã

dinn
n

· · · di1n
0 · · · di

n1
1

· · · di11
0 −1




. (18)

The last row in this matrix corresponds to constraint (4) and the entries in the last column

(vectors e) link the expected value y with xi through constraint (8):

di ∈ IR1×(3J+2) : (di)3j = (1− ct)pivj , j = 1, . . . , J

e ∈ IR(3J+2)×1 : eJ+2 = 1, ei = 0, i 6= J + 2.

The Hessian matrix Q has a block-diagonal structure Q = diag(Qσ(0), Qσ(1), . . . , Qσ(|L|−1),−1),
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

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Q

Q

Q


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

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e

e

eA

d

B

B

A

A

B

A
−1

B

dd d

A

A

A

B

B


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Figure 4: Sparsity patterns of Q and A.

where each block Qi ∈ IR(3J+2)×(3J+2) has entries

Qi :




(Qi)3J+1,3J+1 = (Qi)3J+2,3J+2 = −2ρpi i ∈ LT

Qi = 0, i 6∈ LT

Q is therefore a diagonal matrix, but this fact is not explicitly exploited by the solver (except in

the form of general sparsity). Any block-diagonal (or indeed block-bordered diagonal) matrix Q

is supported by the solver. Matrix A displays a complicated structure which is a superposition

of the dual block-angular pattern resulting from dynamics and uncertainty and the row-border

(constraint (4)) which was introduced to allow the exploitation of separability in the variance.

This structure is in the set of structures supported by OOPS as outlined earlier.

The sparsity patterns of Hessian matrix Q and Jacobian matrix A are displayed in Figure 4.

The indices of matrices and vectors have been dropped for ease of the presentation.

The alternative formulations (12)-(15) lead to problems of similar structure. The constraint

on the semivariance in (13) and in (14) or the constraint on the variance in (12) contribute

diagonal elements to Hessian matrix and a row of similar type as (4) to Jacobian matrix. This
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adds an additional row (as the d-row in (18)) linking otherwise independent scenarios. Finally,

the skewness-term in the objective of (15) will result in Qi blocks containing 2x2 block entries

in the positions corresponding to variables s+
i , s−i .

In all cases the formulations result in a block sparse structure of the problem, whose system

matrices A, Q are of nested block-bordered diagonal form. The sparsity patterns of matrices A

and Q in subsequent iterations of the sequential quadratic procedure will not change although the

numerical values in these matrices may change. Such nested block-structures can be exploited

by modern implementations of interior point methods such as OOPS [6].

5 Numerical Results

We will now present the computational results that underpin our claim that very large nonlinear

portfolio optimization problems are now within scope of modern structure exploiting implemen-

tations of general mathematical programming algorithms. To perform these tests we have used

the NLP extension of our object-oriented interior point solver OOPS [6].

We have tried this solver on the three variants (13), (14) and (15) of the Asset and Liability

Management problem discussed in the previous sections. All test problems are randomly gener-

ated using symmetric scenario tree with 3-4 periods and between 24-70 realizations per period

(Blocks). The data for the 20-50 assets used are also generated randomly. However we draw

the reader’s attention to the important issue of scenario tree generation [9]. The statistics of

test problems are summarized in Table 1. As can be seen problem sizes increase to just over 10

million decision variables.

The computational results of OOPS for the three variants of the ALM problem are collected
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Problem Stages Blocks Assets Total Nodes constraints variables

ALM1 3 70 40 4971 208.713 606.322

ALM2 4 24 25 14425 388.876 1.109.525

ALM3 4 40 50 65641 3.411.693 9.974.152

ALM4 4 55 20 169456 3.724.953 10.500.112

Table 1: Asset and Liability Management Problems: Problem Statistics.

in Tables 2, 3 and 4. All computations were done on the SunFire 15K machine at Edinburgh

Parallel Computing Centre (EPCC). This machine features 48 UltraSparc-III processors running

at 900MHz and 48GB of shared memory. Since communication between processors is made with

MPI we expect these results to generalise to a more loosely linked network of processors such

as PCs linked via Ethernet. All problems were solved to an optimality tolerance of 10−5.

All problems can be solved in a reasonable time and with a reasonable amount of interior point

iterations - the largest problem needing just over 7 hours on a single 900MHz processor. The

good parallel efficiency of OOPS carries over to these nonlinear problems, achieving a speed-up

of up to 7.64 on 8 processors (that is a parallel efficiency of 95.5%). While we recognize that not

many institutions will be able to solve ALM problems on a dedicated parallel machine, we expect

these results to carry over to a network of Ethernet linked PCs which is certainly an affordable

computing platform - keeping in mind that such a parallel environment can be installed at the

fraction of the cost of a parallel machine with similar characteristics.

The solution statistics obtained with the parallel implementation are reported in Tables 2, 3 and

4. For runs on one processor we report the total number of interior point iterations (Newton

steps) when solving all quadratic programs in the sequential quadratic programming scheme and

the CPU time. For parallel runs we report the solution times and the speed-ups. On occasions
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Problem 1 proc 2 procs 4 procs 8 procs

iter time (s) time (s) speed-up time (s) speed-up time (s) speed-up

ALM1 35 568 258 2.20 141 4.02 92 6.11

ALM2 30 1073 516 2.08 254 4.21 148 7.27

ALM3 41 17764 9028 1.97 4545 3.91 2390 7.43

ALM4 43 18799 9391 2.00 4778 3.93 2459 7.64

Table 2: Results for variant involving semi-variance.

Problem 1 proc 2 procs 4 procs 8 procs

iter time (s) time (s) speed-up time (s) speed-up time (s) speed-up

ALM1 33 995 521 1.91 259 3.84 126 7.89

ALM2 34 1613 815 1.98 409 3.94 209 7.71

ALM3 37 39686 20466 1.94 10197 3.89 5408 7.34

ALM4 42 18012 9237 1.95 4598 3.92 2475 7.28

Table 3: Results for logarithmic utility function.

superlinear speed-ups have been recorded. We believe that this is due to avoiding the memory

paging when more processors are used.

5.1 Comparison with CPLEX

We wish to make the point that a structure exploiting solver is an absolute requirement to

attempt solving very large stochastic nonlinear programming problems. To demonstrate this we

have compared OOPS with the barrier code of CPLEX 7.0. CPLEX on its own has only the

capability to solve QPs, however it is possible to use the CPLEX library rather than OOPS to

solve the individual QPs arising within the SQP method. The solution statistics for CPLEX
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Problem 1 proc 2 procs 4 procs 8 procs

iter time (s) time (s) speed-up time (s) speed-up time (s) speed-up

ALM1 50 820 390 2.10 208 3.94 130 6.31

ALM2 43 1466 715 2.05 396 3.70 207 7.08

ALM3 65 28678 14393 1.99 7144 4.01 3845 7.46

ALM4 62 23664 11963 1.98 6131 3.86 3097 7.64

Table 4: Results for variant involving skewness.

Problem Stages Blocks Assets Total Nodes constraints variables

QP-ALM5 4 24 12 14425 201.351 546.950

QP-ALM6 3 60 20 3661 80.483 226.862

QP-ALM7 3 80 20 6481 142.503 401.662

QP-ALM1 3 70 40 4971 208.713 606.322

Table 5: Statistics of quadratic programs used for comparison with CPLEX.

and OOPS on the first QP that has to be solved for problem formulation (13) are reported

in Table 6. The statistics of these problems are collected in Table 5. Unfortunately we do

not posses a CPLEX license for the SunFire machine, so these results were obtained on a

smaller SunEnterprise Server featuring a 400MHz UltraSparc-II CPU with 2GB of memory.

Consequently problem sizes are smaller than those reported earlier. (Solvers do not exploit

parallelism in these runs.) As can be seen from the statistics of these runs the QP solution times

of OOPS are significantly smaller than those for CPLEX. Also the peak memory requirements

of OOPS are up to about a factor of 5 smaller than those of CPLEX. Noticably the advantage

of OOPS is more pronounced on problems with a large number of blocks. We believe this is

due to the structure exploiting features of OOPS which are a must when attempting to solve
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Problem CPLEX 7.0 OOPS

time (s) iter mem (Mb) time (s) iter mem (Mb)

QP-ALM5 615 28 369 406 14 325

QP-ALM6 955 16 340 159 15 136

QP-ALM7 2616 16 736 283 13 238

QP-ALM1 12236 18 1731 531 17 365

Table 6: Comparison with CPLEX 7.0.

problems of the sizes presented.

6 Conclusion

We have presented a case for solving nonlinear portfolio optimization problems by general pur-

pose structure exploiting interior point solver. We have concentrated on three variations of the

classical mean-variance formulations of an Asset and Liability Management problem each lead-

ing to a nonlinear programming problem. While these variations have been recognized for some

time for their theoretical value, received wisdom is that these models are out of scope for math-

ematical programming methods. We have shown that in the light of recent progress in structure

exploiting interior point solvers, this is no longer true. Indeed nonlinear ALM problems with

several millions of variables can now be solved by a general solver in a reasonable time.
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