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ABSTRACT

Transmit beamforming is a powerful technique for enhanc-
ing performance of wireless communication systems. Most
existing transmit beamforming techniques require perfect
channel state information at the transmitter (CSIT), which
is typically not available in practice. In such situations,
the design should take errors in CSIT into account to
avoid performance degradation. Among two popular robust
designs, the stochastic approach exploits channel statistics
and optimizes the average system performance. The
maximin approach considers errors as deterministic and
optimizes the worst-case performance. The latter usually
leads to conservative results as the extreme (but rare)
conditions may occur at a very low probability. In this
work, we propose a more flexible approach that maximizes
the average signal-to-noise ratio (SNR) and takes the
extreme conditions into account proportionally. Simulation
results show that the proposed beamformer offers higher
robustness against channel estimation errors than several
popular transmit beamformers.

1. INTRODUCTION

Multi-antenna diversity is well motivated in wireless com-
munication systems because it offers significant advantages
over single antenna [1]. Perfect or partial knowledge of
the channel state information at transmitter (CSIT) can
provide further performance enhancement.

However, in practical wireless systems, accurate chan-
nel estimates are not available due to errors induced
by imperfect channel feedback, estimation/quantization
errors or outdated channels. It is well known that the
performance of several nonrobust designs for multi-antenna
diversity degrades rapidly with increasing error levels. This
has motivated many works that take imperfect channel
information into account.

Existing robust transmit beamforming (or precoder)
designs can be categorized into the stochastic and the max-
imin approaches. The stochastic approach [2] [3] exploits
channel statistics such as mean or covariance and optimizes
the average system performance. On the other hand, the
maximin approach considers channel estimation errors as
deterministic and optimizes the worst-case performance [4]
[5]. While the stochastic approach focuses on the average
performance without paying attention to the extreme error
level, the worst-case approach is overall too conservative as
the worst operational condition is rare.

To overcome this problem, we proposed a more flexible
design based on probabilistic constraint using channel
covariance in [6]. In this work, we apply this approach
to transmit beamforming design under consideration of

imperfect channel estimates. Note that a similar strategy
was introduced into the design of adaptive beamformer at
the receiver side in [7].

Our approach maximizes the average Signal-to-Noise
Ratio (SNR) and ensures robustness against the CSIT error
by keeping the probability of the worst-case performance
at a very low level. Under the assumption that the CSIT
error is complex Gaussian distributed, this stochastic opti-
mization problem can be further simplified to an equivalent
deterministic form which can be efficiently solved by modern
convex optimization algorithms [8]. Simulation results show
that the proposed approach provides the best performance
and highest robustness among several standard transmit
beamformers.

In the following section, we give a brief description of
the system model. The proposed approach is formulated as
a stochastic optimization problem in Section 3. Section 4
is devoted to transformation of the probabilistic constraint
to a deterministic, convex constraint. Simulation results are
presented in Section 5. Finally, Section 6 concludes this pa-
per.

2. SYSTEM MODEL

Consider a single-user wireless communication system with
Nt transmit antennas and Nr receive antennas. The en-
coded signal s ∈ C

P×1 is spread by the precoding matrix
C ∈ C

Nt×P and then transmitted through a flat fading chan-
nel. The received signal y in the presence of additive white
Gaussian noise w is given by

y = HCs + w. (1)

The (i, j) element of the channel matrix H = [h1, · · · ,hNt ]
∈ C

Nr×Nt represents the response between the ith receive
antenna and the jth transmit antenna. Assuming perfect
channel knowledge at the receiver, the average signal-to
noise-ratio (SNR) obtained from maximum ratio combining
(MRC) is given by

SNR =
Es

N0
tr{CHHHHC}, (2)

where Es = E
�‖s‖2

�
is the average energy of the signal and

N0 is the noise power.

When perfect channel knowledge is available at transmit-
ter, maximization of the average SNR leads to the conven-
tional one directional beamforming which allocates all power
on the strongest eigen mode of the channel correlation ma-
trix HHH. In practice, one has only access to an imperfect

estimate for the channel matrix Ĥ ∈ C
Nr×Nt , which is re-

lated to H as follows:



H = Ĥ + E, (3)

where the error matrix E ∈ C
Nr×Nt consists of i.i.d.

complex normally distributed entries with variance σ2
e . The

goal of this work is to design a transmit beamformer C
that maximizes SNR under consideration of inaccuracy in
channel estimates.

3. ROBUST DESIGN BASED ON
PROBABILISTIC CONSTRAINED

OPTIMIZATION

To tackle performance degradation caused by imperfect
channel estimates, we consider a probabilistic constraint
approach. The proposed algorithm maximizes the average
SNR while keeping the probability for SNR being below
a pre-specified threshold γth low. It has the advantage
of achieving optimal overall performance while providing
quality control for the worst case. In contrast to the mini-
max approach that focuses on the worst-case performance,
the probability constraint takes the errors into account
proportionally. On the other hand, the worst case scenario
ignored by the stochastic approach is considered in our
approach.

Assuming the error model (3), the average SNR (2) be-

comes a function of the channel estimate Ĥ and the random
error E

f(Ĥ,E) =
Es

N0
tr{CH(Ĥ + E)H(Ĥ + E)C}. (4)

To simplify the expression (4), we consider the eigen-

decomposition of CCH = UcDcU
H
c and ĤHĤ =

UhDhU
H
h . The diagonal matrix Dc = diag(d1, d2, · · · , dNt)

where d1 ≥ · · · ≥ dNt ≥ 0 are eigenvalues of CCH . The
corresponding eigenvectors are summarized in the unitary
matrix Uc. The matrices Dh = diag(D1, · · · , DNt) and Uh

are similarly defined.

3.1 Objective function

Given the channel estimate Ĥ,we obtain the objective func-

tion by taking the expectation of f(Ĥ,E) with respect to
the random error E

E

�
f(Ĥ,E)

�
=

Es

N0
tr{UcDcU

H
c UhDhU

H
h + σ2

eNrINt}. (5)

It is well established in the literature [4] that a function with
a structure similar to (5) can be maximized over Uc and Dc

separately. Inserting the optimal solution for Uc so that
UH

c Uh = I, we obtain the following objective function

f̄(Dc) =
Es

N0
tr{Dc(Dh + σ2

eNrINt)}. (6)

Note that f̄(Dc) depends on CCH only through its
eigenvalues. Hence, the design of the beamforming matrix
becomes a power allocation problem.

3.2 Probabilistic constraint

To mitigate the impact of large errors, we guarantee the
system performance by keeping the probability that SNR
becomes smaller than an acceptable level γth to be low. More
precisely, given an acceptable SNR level γth and the outage
probability pout, f(Ĥ,E) satisfies the following probabilistic
constraint

Pr{f(Ĥ,E) ≤ γth} ≤ pout, (7)

where Pr{A} denotes the probability of the event A.

As shown in (7), the distribution of f(Ĥ,E) is crucial to
the implementation of our algorithm. Applying the eigen-
decomposition of CCH = UcDcU

H
c and permutation prop-

erty of the trace operation, (7) can be simplified to a mixture
of independent noncentral χ2-distributed random variables
Zi, i = 1, · · · , Nt

f(Ĥ,E) =
Es

N0

Nt�
i=1

diσ
2
eZi, (8)

where the noncentrality parameter δi = 1
σ2

e
h̃H

i h̃i and the

degree of freedom ni = 2Nr. The vector h̃i ∈ C
Nr×1 is the

ith column of the matrix H̃ = ĤUc.

3.3 Probabilistic constrained optimization

Having derived the average SNR (5) and the compact ex-

pression (8) for f(Ĥ,E), our design can be formulated as
the following constrained optimization problem:

max
Dc

tr{Dc(Dh + σ2
eNrINt)},

subject to

Pr{
Nt�
i=1

diZi ≤ γ̄} ≤ pout, (9)

tr{Dc} ≤ 1, (10)

di ≥ 0, i = 1, · · · , Nt (11)

where γ̄ = γth( Es
N0

σ2
e)−1 and (10) is a convex constraint

derived from the power constraint tr{CCH} ≤ 1.

4. REFORMULATION OF PROBABILISTIC
CONSTRAINT

The major challenge in our approach is to convert the
probabilistic constraint (9) into a deterministic one so
that the solution can be efficiently computed by standard
tools of mathematical programming. When the chance
constraint involves linear combination of normally dis-
tributed random variables, it can be reformulated as a
convex constraint [9]. However, (9) involves a mixture of
noncentral χ2-distributions. The following result shows
that the probabilistic constraint (9) can be replaced by a
deterministic convex constraint.

Proposition The probabilistic constraint (9) can be re-
placed by the following convex constraint

Nt�
i=1

�
1

d i

�
γ̄/2

1 + δi/ni

	
ni/2

≤ pout, (12)



where γ̄ = γth( Es
N0

σ2
e)−1, δi = 1

σ2
e

h̃H
i h̃i and ni = 2Nr. If

(12) holds, then (9) holds.

Proof : To decouple the design parameter di, we exploit the
independence of Zi, i = 1, · · · , Nt. Define the event

Ai = {diZi ≤ γ̄} (13)

and

A = {
Nt�
i=1

diZi ≤ γ̄}. (14)

By definition, A is a subset of the intersection of Ai, i =
1, . . . , Nt,

A ⊂ B = A1 ∩ A2 ∩ · · · ∩ ANt (15)

which leads to the following inequality

Pr{A} ≤ Pr{B} =

Nt�
i=1

Pr{Ai}. (16)

The above expression has the advantage that the event Ai

depends only on the noncentral χ2
ni

(δi)-distribution.

According to [10], the distribution of noncentral
χ2-distribution can be approximated by a central χ2-
distribution. Application of this result leads to the following
approximation

Pr{χ2
ni

(δi) ≤ γ̄

di
} ≈ Pr{χ2

ni
≤ γ̄/di

1 + δi/ni
}. (17)

To transform (17) to a deterministic form, we apply the

sharp upper bound on the integral 1
Γ(1+1/u)

�∞
x

e−tu

dt de-

rived in [11] to obtain the following inequality

Pr{χ2
ni

≤ γ̄/di

1 + δi/ni
} <

�
1 − exp(− γ̄/di

2(1 + δi/ni)
)


ni
2

.

(18)

Due to limited space, details about the derivation of (18)
will be given in a future publication.

To achieve a convex constraint, we apply the following
inequality to the right hand side of (18)

�
1 − exp

�
− γ̄/di

2(1 + δi/ni)



ni
2

≤
�

γ̄/di

2(1 + δi/ni)


ni
2

.

(19)

Eq (19) follows immediately from the inequality

(1 − e−u)x ≤ ux for u = γ̄/di
2(1+δi/ni)

≥ 0 and x = ni
2

> 0.

Moreover, it is easy to verify that for positive ni
2

and
γ̄/di

2(1+δi/ni)
, (12) is a convex set in dis.

Combing the inequalities (16),(17),(18) and (19), we
conclude that the probabilistic constraint (9) is guaranteed
by the convex constraint (12). �

Replacing the probabilistic constraint (9) with the deter-
ministic constraint (12), the original problem is transformed
to the following convex optimization problem

max
Dc

tr{Dc(Dh + σ2
eNrINt)},

subject to
Nt�
i=1

�
1

d i

�
γ̄/2

1 + δi/ni

	
ni/2

≤ pout,

tr{Dc} ≤ 1,

di ≥ 0, i = 1, · · · , Nt,

that can be efficiently solved by standard tools of mathe-
matical programming.

5. SIMULATION

In this section, we present simulation results to demonstrate
robustness of the proposed beamformer in various scenarios.
Here a single-user MIMO system with Nt = 4 transmit
antennas and Nr = 3 receive antennas is considered.
We also compare the proposed beamformer with existing
techniques, such as the conventional one-directional beam-
former, two-directional, equal-power loading beamformer
[1] and the robust minimax beamformer [4]. We choose [4]
for comparison because it uses the same type of channel
information. The outage probability pout is 10% and the
normalized SNR threshold γ̄ is 0.9 in all experiments.

In the first experiment, the proposed ap-
proach is applied to a well conditioned channel
Dh = diag(0.8064, 0.1901, 0.0035, 0) with the first eigen-
value much larger than the remaining eigenvalues. The
error variance σ2

e varies from 0 to 1. The SNR averaged
over 104 Monte Carlo trials is plotted in Fig 1. With
increasing error levels, the performance of all beamforming
techniques degrade. For σ2

e between 0 and 0.4, the proposed
approach, the maximin approach [4] and the one directional
beamformer perform similarly. For σ2

e > 0.4, our approach
has a much slower decline in SNR than other beamformers.
The equal power loading beamformer has a significantly
lower SNR than other three beamformers because channel
information is not fully incorporated in its design.

In the second experiment, we consider the channel
condition Dh = diag(0.4676, 0.4104, 0.1220, 0) with two
closely spread eigenvalues. This indicates a larger correla-
tion between antennas. Fig 2 shows that the probabilistic
constraint beamformer still outperforms other three
beamformers. For large error region 0.5 < σ2

e < 1, the
performance of all beamformers degrade more rapidly than
in the previous experiment. However, our approach shows
least sensitivity to channel errors.

In Fig 2, we also observe that when σ2
e increases from 0

to 0.8, the decrease in SNR associated with our approach
is ΔSNR = −0.38 dB and other beamformers lead to a
decrease of more than ΔSNR = −1.83 dB. This is 4.8
times as high as that caused by the probabilistic constraint
approach. On the other hand, given a target SNR level, for
example, −0.8 dB, the probabilistic constraint beamformer
has the largest error tolerance range, σ2

e ∈ [0 0.78], while
the worst case design achieves the desired performance only
for σ2

e ∈ [0 0.63].

To summarize, the probabilistic constraint approach
outperforms the worst case design and other classical
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Figure 1: Average SNR versus σ2
e . Channel condition Dh =

diag(0.8064, 0.1901, 0.0035, 0), pout = 10%, γ̄ = 0.9.

beamformers over the entire error range. The gain in SNR
is most significant at high error levels. In other words,
our approach has the broadest tolerance range for channel
errors. Since the original stochastic optimization problem
has been transformed to a convex optimization problem,
the computational complexity is similar to the worst-case
approach such as [4].

6. CONCLUSION

We proposed a novel transmit beamforming design that
maximizes the average SNR performance and also guar-
antees robustness against channel estimation errors. Our
approach was formulated as a probabilistic constrained
optimization problem. Under the assumption that the
channel estimation error is complex Gaussian distributed,
the underlying problem was transformed into a convex
optimization problem which can be efficiently solved by
modern software packages. The resulting computational
cost is similar to many state-of-the-art robust transmit
beamformers. Simulation results show that the proposed
beamformer achieves higher robustness than the maximin
approach and leads to a much broader tolerance range
for channel estimation errors. It provides a promising
alternative to existing robust beamforming techniques.
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