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Abstract

Multistage stochastic programming is a popular technique to deal with uncertainty
in optimization models. However, the need to adequately capture the underlying
distributions leads to large problems that are usually beyond the scope of general
purpose solvers. Dedicated methods exist but pose restrictions on the type of model
they can be applied to. Parallelism make sthese problems potentially tractable, but
is generally not exploited in todays general purpose solvers.
We apply a structure-exploiting parallel primal-dual interior-point solver for linear,
quadratic and nonlinear programming problems. The solver efficiently exploitats
the structure of these models. Its design relies on object-oriented programming
principles, treating each substructure of the problem as an object carrying its own
dedicated linear algebra routines. We demonstrate its effectiveness on wide range
of financial planning problems, resulting in linear, quadratic or non-linear formu-
lations.
Also coarse grain parallelism is exploited in a generic way that is efficient on any
parallel architecture from ethernet linked PCs to massively parallel computers. On
a 1280-processor machine with a peak performance of 6.2 TFlops we can solve a
quadratic financial planning problem exceeding ���
	 decision variables.
Keywords: asset and liability management, interior point, massive parallelism,
structure exploitation
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1 Introduction

Decision making under uncertainty is an important consideration in financial plan-
ning. A promising approach to the problem is the multistage stochastic program-
ming version of the asset liability management model as reported in [1, 2, 3, 4].
Its advantages include the ability to model the dynamic features of the underlying
decision problem by allowing the rebalancing of the portfolio at different times
as well as capturing possible dynamic effects of the asset distributions. Unfortu-
nately realistic models tend to cause an explosion in dimensionality due to two
factors: firstly the size of the problem grows exponentially with the number of
portfolio rebalancing dates (or stages). Further a considerable number of realiza-
tions are required to capture the conditional distribution of asset returns with a dis-
crete approximation. For � stages and � realizations the dimension of the resulting
problem will be of order ��� .
The last decade has seen a rapid improvement of methods to solve large scale
stochastic programs. However most of these are only applicable in a very special
setting. Nested Benders Decomposition approaches [5, 6] are limited to LP formu-
lations. Linear algebra approaches such as [7, 8] are usually limited to very special
structures resulting for example from constraints on the allowed type of recurrence
relation.
In this paper we discuss our experiences with the modern, general structure exploit-
ing interior point implementation OOPS (Object-Oriented Parallel Solver) [9, 10].
We show that our approach makes the solution of general large nonlinear financial
planning problems feasible. Furthermore it allows for fast computation of efficient
frontiers and can exploit parallel computer architectures.
In the following Section 2 we state the asset liability management model that we
are concerned with and present various nonlinear extensions. In Section 3 we give
a brief description of the Object-Oriented Parallel Solver OOPS, while in Section 4
we report numerical results on the various problem formulations.

2 Asset Liability Management via Stochastic Programming

We are concerned with finding the optimal way of investing into assets ��� ���
	�	�	��
�
over several time-periods ��� ����	�	
	
��� . The returns of the assets at each time-
period are assumed to be uncertain but with a known joint distribution. An initial
amount of cash � is invested at ��� � and the portfolio may be rebalanced at dis-
crete times ��� ����	
	�	
��� . The objective is to maximize the expectation of the final
value of the portfolio at time ��� � while minimizing the associated risk measured
by the variance of the final wealth.
The uncertainty in the process is described by an event tree: each node of the event
tree at depth � corresponds to a possible outcome of events at time � . Associated
with every node � in the event tree are returns ����� ��� � �!�"�#� for each of the
assets and the probability ��� of reaching this node. For every node, children of the
node are chosen in such a way, that their combined probabilities and asset returns
reflect the (known) joint distribution of all assets at the next time period, given the



sequence of events leading to the current node. The question how to best populate
the event tree to capture the characteristics of the joint distribution of asset returns
is an active research area, we refer the reader to [11].
We use the following terminology: Let ��� be the set of nodes in the event tree
corresponding to time stage � . � � is the set of final nodes (leaves) and � ��� � � �
the complete node set. An ����� denotes any node in the tree, with ��� � corre-
sponding to the root and �
	���� denotes the predecessor (parent) of node � . Let 
 � be
the value of asset � , and � � the transaction cost. It is assumed that the value of the
assets will not change throughout time and a unit of asset � can always be bought
for 	 � ��� � ��
 � or sold for 	 ����� � ��
 � . A unit of asset � held in node � (coming from node�
	 ��� ) will generate extra return � ��� � . Denote by ������ � the units of asset � held at node
� and by ������ � ������ � � the transaction volume (buying, selling) of this asset at this node,
respectively. Similarly � �� � � ��� �� � � ��� �� � � are the random variables describing the hold-
ing, buying and selling of asset � at time stage � . The inventory constraints capture
system dynamics: the variables (asset holdings) associated with a particular node
and its parent are related
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We assume that we start with zero holding of all assets but with funds � to invest.
Further we assume that one of the assets represents cash, i.e. the available funds
are always fully invested. Cash balance constraints describe possible buying and
selling actions within a scenario while taking transaction costs into account:(
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� 	 � ���)����
 �/� �0 � � � � � (2)

where + � are liabilities to pay at node � and - � are cash contributions paid at node � .
Further restrictions on the investment policy such as regulatory constraints or asset
mix bounds can be easily expressed in this framework.
Markowitz portfolio optimization problem [12] combines two objectives of the
investor who wants to: (i) maximize the final wealth, and (ii) minimize the associ-
ated risk. The final wealth 1 is expressed as the expected value of the portfolio at
time � converted into cash [13]
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The risk is measured with the variance of return:
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These two objectives are combined into a single concave quadratic function of the
following form O

	?��� �32 4P	RQG�C�TS D
EUF 	HQG�
� (5)



where Q denotes the final portfolio converted into cash (3) and S is a scalar
expressing investor’s attitude to risk. Thus in the classical (multistage) Markowitz
model we would maximize (5) subject to constraints (1), (2) and (3).
The need to well approximate the continuous joint distribution of asset returns
leads to large event trees and subsequently very large problems. These models
however display a regular structure which can be exploited by our solution method-
ology.

2.1 Extensions of Asset Liability Management Problem

There are several disadvantages associated with the standard mean-variance for-
mulation of the asset liability model as described in the previous section. It has
been observed, for example, that the mean-variance model does not satisfy the
second order stochastic dominance condition [14]. Furthermore, by using variance
to measure risk, this model penalizes equally the overperformance and the under-
performance of the portfolio. A portfolio manager is interested in minimizing the
risk of loss hence a semi-variance (downside risk) seems to be a much better mea-
sure of risk.
To allow more flexibility for the modelling we introduce two more (nonnegative)
variables � �

� ������ per scenario � �!� � as the positive and negative variation from
the mean and add the constraint
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to the model. The variance can be expressed asD
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since 	�� �
� � J �,	�� �� � J are not both positive at the same time. Using (6) we can eas-

ily express the semivariance 
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measure downside risk. The standard Markowitz model can be written as
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In this paper we are concerned with its extensions (we implicitly assume con-
straints (1), (2), (3), (6) in all of these):� Downside risk (measured by the semi-variance) is constrained:

� E��
� � ��� ��� 0 1 s.t.
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� Objective in a form of a logarithmic utility function captures risk-adversity:
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� Following Konno et al. [15] objective function takes skewness into account
and captures the investors preference towards positive deviations in the case
of non-symmetric distribution of returns for some assets
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All these extensions have attractive modelling features but they inevitably lead to
nonlinear programming formulations. It is worth noting that to date only a few
algorithms have ever been considered for these formulations [7, 8] and it is not
obvious if they can be extended to the general settings. Our approach can easily
handle all these models.

2.2 Efficient Frontier

The standard Markowitz objective function

O
	H��� � 2 45	HQG� � S D
E�F 	RQG� , uses the

risk-aversion parameter S to trade off the conflicting aims of maximizing return
while minimizing risk. However a risk-aversion parameter is not an intuitive quan-
tity, a better picture of the possible options would be gained from the complete
trajectory 	 D
E�F 	RQ � S�� � 2 4 	RQ � S���� for all values of S , that is knowing how much
extra expected return could be gained from an increase in the still acceptable level
of risk. This 	 D
EUF 	HQ � SI�
��2 4 	HQ � SI��� trajectory is known as the efficient frontier.
The efficient frontier can be calculated by repeatedly solving the ALM model for
different values of S . However it would be desirable if this computation could be
sped up by the use of warm-starts; after all we seek to solve a series of closely
related problems. Unfortunately both proposed solution approaches for multistage
stochastic programming, namely decomposition and interior point methods suffer
from a perceived lack of efficient warmstarting facilities. We will show that OOPS
comes with a warm starting facility that allows a significant decrease in computa-
tional cost when calculating the efficient frontier.

3 Object-Oriented Parallel Solver (OOPS)

Over the years, interior point methods for linear and nonlinear optimization have
proved to be a very powerful technique. We review basic facts of their implemen-
tation in this section and show how OOPS uses the special structure in stochastic
programming problems to enable the efficient (and possible parallel) solution of
very large problem instances.
Consider the nonlinear programming problem

min

O
	H��� s.t. � 	?��� ��� � ������� �

where

O
	�

����
 and � 	�

����

� are assumed sufficiently smooth. Interior

point methods proceeed by replacing the nonnegativity constraints with logarith-



mic barrier terms in the problem objective to get

min
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where � � � is a barrier parameter. First order stationary conditions of this prob-
lem are � O
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	�� � ��� 	 Interior point algorithms for nonlinear program-

ming apply Newton method to solve this system of nonlinear equations and grad-
ually reduce the barrier parameter � to guarantee convergence to the optimal solu-
tion of the original problem. The Newton direction is obtained by solving the sys-
tem of linear equations:���� 	?� ��1 ��� 	?��� � �� 	H��� � 2
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are the Hessian of Lagrangian and the Jacobian of constraints, respectively. After
substituting

�
��� � � � ; � � �	� � �!� � ; � 1 in the second equation we get" � � 	?� ��1 ��� 	H��� �� 	?��� #%$ & " � �� � 1'& � " �

O
	H��� �(� 	?�����61� � 	?��� ��� � � ; � & � (13)

where # $ � �	� � ; is a diagonal matrix. Interior point methods need to solve
several linear systems with this augmented system matrix at every iteration. This
is by far the dominant computational cost in interior point implementations.
In many important applications (such as stochastic programming) the augmented
system matrix displays a nested block structure. Such a structure can be repre-
sented by a matrix tree, that closely resembles the event tree of the corresponding
stochastic program. Every node in the matrix tree represents a particular block-
component of the augmented system matrix. OOPS exploits this structure by asso-
ciating with each node of the event/matrix tree a linear algebra implementation that
exploits the corresponding block matrix structure in operations such as matrix fac-
torizations, backsolves and matrix-vector-products. It also enables the exploitation
of parallelism, should several processors be available to work on a node.
In effect, all linear algebra operations required by an interior point method are
performed in OOPS recursively by traversing the event tree, where several proces-
sors can be assigned to a particular node, if required. More details can be found in
[9, 16, 10].



4 Numerical Results

We will now present the computational results that underpin our claim that very
large nonlinear portfolio optimization problems are now within scope of a modern
structure exploiting implementation of general mathematical programming algo-
rithms like OOPS.
We have used OOPS to solve the three variants (9), (10) and (11) of the Asset and
Liability Management problem. All test problems are randomly generated using a
symmetric scenario tree with � - � periods and between ��� - � � realizations per time
stage (Blocks). The data for the � � - �
� assets used are also generated randomly.
Statistics of the test problems are summarized in Table 1. As can be seen problem
sizes increase to just over 10 million decision variables. Computational results for
the three ALM variants (9), (10), (11) are collected in Table 2. Computations were
done on the SunFire 15K at Edinburgh Parallel Computing Centre (EPCC), with
48 UltraSparc-III processors running at 900MHz and 48GB of shared memory.
Since the parallel implementations relies solely on MPI we expect these results to
generalize to a more loosely linked network of processors such as PCs linked via
Ethernet. We used an optimality tolerance of � � ��� throughout.
All problems can be solved in a reasonable time and with a reasonable amount of
interior point iterations - the largest problem needing just over 7 hours on a single
900MHz processor. OOPS displays good scalability, achieving a parallel efficiency
of up to 0.96 on 8 processors. With the event of multi-core architectures even for
desktop PCs, this shows that large nonlinear portfolio management problems are
tractable even on modest computing hardware.

4.1 Comparison with CPLEX 9.1

We wish to make the point that a structure exploiting solver is an absolute require-
ment to solve very large stochastic nonlinear programming problems. To demon-
strate this we have compared OOPS with the state-of-the-art commercial solver
CPLEX 9.1. Since CPLEX has only the capability to solve QPs and we do not have
a parallel CPLEX license, we compare CPLEX with OOPS for the QP model (8)
on a single 3GHz processor with 2GB of memory. Results are reported in Table 3.
As can bee seen OOPS needs consistently less memory than CPLEX (which actu-
ally fails to solve problem C70 due to running out of memory - the time for
this problem has been extrapolated from the number of nonzeros in the factor-
ization as reported by CPLEX). The smallest problem C33 is solved slightly faster

Problem Stages Blk Assets Total Nodes Constraints Variables
ALM1 3 70 40 4971 208,713 606,322
ALM2 4 24 25 14425 388,876 1,109,525
ALM3 4 55 20 169456 3,724,953 10,500,112

Table 1: Asset and Liability Management Problems: Problem Statistics.



Problem 1 proc 2 procs 4 procs 8 procs
iter time (s) time (s) pe time (s) pe time (s) pe

variant (9): semi-variance
ALM1 35 568 258 1.10 141 1.01 92 0.76
ALM2 30 1073 516 1.04 254 1.05 148 0.91
ALM3 43 18799 9391 1.00 4778 0.98 2459 0.96

variant (10): logarithmic utility
ALM1 25 448 214 1.05 110 1.02 72 0.78
ALM2 31 1287 618 1.04 306 1.05 179 0.90
ALM3 60 24414 12480 0.98 6275 0.97 3338 0.91

variant (11): skewness
ALM1 50 820 390 1.05 208 1.02 130 0.79
ALM2 43 1466 715 1.03 396 0.93 207 0.89
ALM3 62 23664 11963 0.99 6131 0.97 3097 0.96

Table 2: Results for nonlinear ALM variants.

Problem Constraints Variables Blk CPLEX 9.1 OOPS
time memory time memory

C33 57,274 168,451 33 292 497MB 344 156MB
C50 130,153 382,801 50 1361 1.3GB 828 345MB
C70 253,522 745,651 70 (5254) OoM 1627 664MB

Table 3: Comparison of OOPS with CPLEX 9.1.

�
Blk � Scenarios Constraints Variables Iter Time Procs Mach

7 128 6 12,831,873 64,159,366 153,982,477 42 3923 512 BG/L
7 64 14 6,415,937 96,239,056 269,469,355 39 4692 512 BG/L
7 128 13 12,831,873 179,646,223 500,443,048 45 6089 1024 BG/L
7 128 21 16,039,809 352,875,799 1,010,507,968 53 3020 1280 HPCx

Table 4: Dimensions and solution statistics for very large problems.

by CPLEX, while for larger problems OOPS becomes much more efficient than
CPLEX.

4.2 Massively Parallel Architecture

In this section we demonstrate the parallel efficiency of our code running on a
massively parallel environment. We have run the QP model (8) on two supercom-
puters: the BlueGene/L service at Edinburgh Parallel Computing Centre (EPCC) in
co-processor mode, consisting of 1024 IBM-PowerPC-440 processors running at



Procs Mem time Cholesky Solves MatVectProd
16 426MB 2587 (1.00) 1484 (1.00) 956 (1.00) 28.8 (1.00)
32 232MB 1303 (0.99) 743 (1.00) 485 (0.98) 18.0 (0.80)
64 132MB 688 (0.94) 377 (0.98) 270 (0.88) 13.0 (0.55)

128 84MB 348 (0.93) 187 (0.99) 139 (0.86) 9.0 (0.40)
256 56MB 179 (0.90) 93 (0.99) 73 (0.82) 5.8 (0.31)
512 46MB 94 (0.86) 47 (0.98) 39 (0.76) 3.9 (0.23)

Table 5: Parallel efficiency of OOPS.

Constraints Variables Procs 0.001 0.01 0.05 0.1 0.5 1 5 10
533,725 198,525 1 14 14 14 14 15 18 18 17

14 5 5 6 5 5 9 10
5,982,604 16,316,191 32 23 24 23 25 22 24 23 24

24 11 13 11 13 12 12 14
70,575,308 192,478,111 512 52 45 43 44 42 44 46 46

52 13 15 15 16 16 23 25

Table 6: Warmstarting OOPS on efficient frontier problems for a series of S .

700Mhz and 512MB of RAM each. The second machine was the 1600-processor
HPCx service at Daresbury, with 1GB of memory and 1.7GHz for every processor.
Results for these runs are summarized in Table 4. As can be seen OOPS is able
to solve a problem with more than � � 	 variables on HPCx in less than one hour.
Table 5 also gives the parallel efficiency for a smaller problem scaling from 16-
512 processors on BlueGene. OOPS achieves a parallel efficiency of 86% on 512
processors as compared to 16 processors, with the dominant factorization part of
the code even achieving 98% parallel efficiency.

4.3 Efficient Frontier

Finally we have run tests calculating the efficient frontier for several large prob-
lems with up to 192 million decision variables on BlueGene. For every efficient
frontier calculation the mean-variance model was solved for 8 different values of
the risk-aversion parameter S using OOPS’ warmstarting facilities [16]. Results
are gathered in Table 6. For every problem instance, the first line gives iteration
numbers for computing points on the efficient frontier from coldstart, while the
bottom line gives the iteration count for the warmstarted method. The last two
large problems have been solved using 32 and 512 processors (procs), respec-
tively. As can be seen OOPS’ warmstart was able to save 45% - 75% percent of
total iterations across the different problem sizes, demonstrating that warmstarting
capabilities for truly large scale problems are available for interior point methods.



5 Conclusion

We have presented a case for solving nonlinear portfolio optimization problems by
general purpose structure exploiting interior point solver. We have concentrated on
three variations of the classical mean-variance formulations of an Asset and Lia-
bility Management problem each leading to a nonlinear programming problem.
While these variations have been recognized for some time for their theoretical
value, received wisdom is that these models are out of scope for mathematical pro-
gramming methods. We have shown that in the light of recent progress in struc-
ture exploiting interior point solvers, this is no longer true. Indeed nonlinear ALM
problems with several of millions of variables are within grasp of the next genera-
tion of Desktop PCs, while massively parallel machines can tackle problems with
over ��� 	 decision variables.
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