
ROBUST TRANSMIT BEAMFORMING BASED ON
PROBABILISTIC CONSTRAINT

Huiqin Du1), Pei-Jung Chung1), Jacek Gondzio2), Bernard Mulgrew1)

1)School of Engineering and Electronics,2)School of Mathematics

The University of Edinburgh, UK

{H.Du, P.Chung, J.Gondzio, B.Mulgrew}@ed.ac.uk

ABSTRACT

Transmit beamforming is a powerful technique for enhancing
performance of wireless communication systems. Most ex-
isting transmit beamforming techniques require perfect chan-
nel state information at the transmitter (CSIT), which is typ-
ically not available in practice. In such situations, the de-
sign should take into account errors in the channel estimates,
so that the beamformers are less sensitive to these errors.
Two robust approaches are widely used. The stochastic ap-
proach optimizes the average performance of the system and
assumes that the statistics, such as mean and covariance, of
the errors are known. The maximin approach assumes that
the errors belong to a worst-case uncertainty region and op-
timizes the worst-case system performance. This type of de-
sign usually leads to conservative results as the worst-case
conditions may occur at a very low probability. In this paper,
we propose a more flexible approach that optimizes the av-
erage beamforming performance and takes the extreme (but
rare) conditions into account proportionally. Simulationre-
sults show that the proposed beamformer offers higher ro-
bustness against errors in CSIT than serval state-of-the-art
beamformers.

1. INTRODUCTION

Multi-antenna diversity is well motivated in wireless com-
munication systems because it offers significant advantages
over single antenna [7]. Perfect or partial knowledge of the
channel state information (CSIT) can provide further perfor-
mance enhancement[10][11].

However, in practical wireless systems, the accuracy of
the CSIT is impossible to know due to errors induced by im-
perfect (quantized, erroneous, or outdated) channel feedback.
In such situations, the transmit beamforming design should
take into account errors in channel estimates. Existing ro-
bust transmit beamforming designs can be categorized into
stochastic and maximin approaches. The stochastic approach
[6] [10] [11] assumes that statistics of errors in CSIT, suchas
mean and covariance, are known and optimizes the average
performance of the system. On the other hand, the maximin
approach considers channel estimation errors as determinis-
tic and optimizes the worst-case system performance [1] [2].
This approach provides robustness against any error in the
worst-case region. However, it is overly conservative as the
worst operational condition is rare. To overcome this prob-
lem, a more flexible probabilistic constraint is introducedin
[9] into the design of adaptive beamformer at the receiver
side.

In this work, we propose a robust transmit beamform-
ing technique that maximizes the average SNR performance
and use probabilistic constraints to keep the worst-case per-
formance at a very low probability. The aforementioned
stochastic approach only optimizes the average performance
without considering the worst-case scenario. On the other
hand, although the maximin approach provides the best per-
formance in the worst case, it is overall too conservative. To
keep balance between the average and the worst-case per-
formance, we take a more flexible approach in which the ex-
treme (but rare) conditions are taken into account proportion-
ally. Our approach maximizes the average SNR performance
and ensures robustness against the CSIT error by keeping the
probability of the worst-case performance at a very low level.
Under the assumption that the CSIT error is Gaussian dis-
tributed, this stochastic optimization problem can be further
simplified to equivalent deterministic forms which can be ef-
ficiently solved by modern convex optimization algorithms
[3]. Simulation results show the proposed approach provides
the best performance among several state-of-the-art beam-
forming techniques.

The paper is organized as follows. The system model is
described in Section 2. We formulate the proposed method
as a stochastic optimization problem in Section 3 and
simplify it to an equivalent convex optimization problem in
Subsection 3.1 and 3.2. Simulation results are presented and
discussed in Section 4. Concluding remarks are given in
Section 5.

Notation: (·)H denotes Hermitian transpose;E [·] stands for
expectation; tr{·} is the trace of a matrix;IK denotes the
identity matrix of sizeK; 0K×P denotes an all-zero matrix of
sizeK ×P; diag{x} stands for a diagonal matrix withx on
its diagonal;{·} j denotes thejth entry of a vector,h j denotes
the jth column of matrixH.

2. SYSTEM MODEL

We consider a single-user wireless communication system
with M transmit antennas and a single receive antenna. The
information-bearing signals is spread by the precoding ma-
trix C and then transmitted through the flat fading channel.
As we focus on symbol-by-symbol detection, the received
signaly in the presence of additive white Gaussian noisew
is given by

y = Chs+w. (1)

In the perfect CSIT case, the estimated channel at the trans-
mitter is error free and the output ˆs of maximum ratio com-
bining (MRC) at the receiver is given by



ŝ = (Ch)Hy = hHCHChs+hHCHw. (2)

The average signal-to-noise ratio (SNR) at MRC receiver
output is

SNR= E

[

(

hHCHChs
)(

hHCHChs
)H

hHCHwwHCh

]

=
Es

N0
hHCHCh,

(3)
whereEs = E

[

|s|2
]

is the average energy of the signal and
N0/2 is the noise variance.

To extend the model to a system withN receive anten-
nas, we assume that the channel vectors observed on differ-
ent receive antennas are mutually uncorrelated. The channel
vector denotes ash j for jth receive antenna, and is arranged
into aM×N matrixH = [h1, . . . ,hN ]. Similar to the single-
receive-antenna case, the received signal at thejth antenna is
y j = Ch js+w j. The total receiver SNR at the output of the
MRC is

SNR=
Es

N0

N

∑
j=1

hH
j CHCh j =

Es

N0
tr{HHCHCH} (4)

which includes (3) as a special case corresponding toN = 1.

3. ROBUST BEAMFORMING BASED ON
PROBABILISTIC-CONSTRAINED OPTIMIZATION

We consider the case in which the transmitter does not have
exact channel state information (CSI) but has an estimateĤ
of the channel matrixH. The CSIT error matrix is given by

E = [e1, . . . ,eN ] = H− Ĥ. (5)

We assume thate j is complex normally distributed and inde-

pendent from the estimate channelĥ j, i.e. E
[

ĥH
j e j

]

= 0. In

the proposed approach, we optimize the average SNR at the
output of MRC receiver and achieve the robustness by keep-
ing the outage probability of the instantaneous SNR below a
pre-specified level. For simplicity, assumingEs/N0 is con-
stant in one symbol interval, we will drop the constant factor
Es/N0 from the SNR expression.

Our objective is to derive the precording matrixC that
maximizes the average SNR and has a low outage probabil-
ity. More specifically, the design of robust beamforming ma-
trix can be achieved by solving the following optimization
problem

max
C

E
[

tr{(Ĥ+E)HCHC(Ĥ+E)}
]

,

subject to

P {tr{(Ĥ+E)HCHC(Ĥ+E)} ≤ γ} ≤ p,

tr{CHC} = 1, (6)

whereγ denotes the SNR threshold,p is a pre-specified
probability value that satisfies quality of service (QoS) re-
quirements, andP {A} stands for the probability of eventA.
Typically we select a low probability valuep and high thresh-
old valueγ . The deterministic constraint tr{CHC} = 1 re-
flects the fact that the total transmitted power is limited by
the system.

To simplify the above problem, we consider the eigen-
decomposition ofCHC

CHC = UcDcU
H
c , (7)

whereUc = [uc1, . . . ,ucM ] consists of eigenvectors ofCHC
andDc = diag{dc1, . . . ,dcM} is a diagonal matrix with corre-
sponding eigenvaluesdc1 ≥ . . .dcM ≥ 0. The precoding ma-
trix C can be viewed as a weight matrix. The error covari-
anceRe is positive definite and can be factorized as

Re = VeV
H
e , (8)

where Ve is a nonsingular matrix. Then the product
VH

e CHCVe can be simplified as follows

VH
e CHCVe = (UH

c Ve)
HDc(U

H
c Ve) = PHDcP, (9)

whereP = UH
c Ve.

Since the average SNR depends on the beamforming ma-
trix C throughCHC, it suffices to optimize the objective
function with respect toUc andDc. DefineH̆ = UH

c Ĥ and
Ĕ = UH

c E. The objective function in (6) can be rewritten as

E
[

tr{(Ĥ+E)HCHC(Ĥ+E)}
]

= E
[

tr{(H̆+ Ĕ)HDc(H̆+ Ĕ)}
]

= tr
{

Dc
[

H̆H̆H +E
[

H̆ĔH]

+E
[

H̆HĔ
]

+E
[

ĔĔH]]}

= tr
{

Dc(R̆+ R̆e)
}

, (10)

whereR̆ = E
[

H̆H̆H
]

andR̆e = E
[

ĔĔH
]

.
The probabilistic constraint in (6) becomes mathemat-

ically tractable if we can find a closed expression for the
distribution of the random variable tr{(Ĥ+E)HCHC(Ĥ+
E)}. Applying a non-singular linear transformation [4], this
random variable can be written as

SNR = tr
{

(Ĥ+E)HCHC(Ĥ+E)
}

= tr
{

(Ĥ+E)H(VH
e )−1VH

e CHCVeV
−1
e (Ĥ+E)

}

= tr

{

[

PV−1
e (Ĥ+E)

]H
Dc

[

PV−1
e (Ĥ+E)

]

}

= tr
{

(H̃+ Ẽ)HDc(H̃+ Ẽ)
}

=
M

∑
i=1

dci

N

∑
j=1

(

h̃i j + ẽi j
)2

, (11)

whereH̃ = PV−1
e Ĥ andẼ = PV−1

e E . The random ma-
trix Ẽ has normal distribution with zero mean and covariance
matrix IM×M.

Using (10) and (11), the proposed approach can be refor-
mulated as follows:

max
Dc

tr{Dc(R̆+ R̆e)}, (12)

subject to

P

{

tr{(H̃+ Ẽ)HDc(H̃+ Ẽ)} ≤ γ
}

≤ p , (13)

tr{Dc} = 1 . (14)

The robust beamformer design is now in the form of a
probabilistic-constrained stochastic optimization problem.



Under the assumption that the error in CSIT is Gaussian,
the stochastic optimization can be converted into a convex
optimization problem which can be efficiently solved using
modern convex optimization methods.

3.1 Relaxation of Convex Constraint

In convex programming, both the objective function and the
constraints are required to be convex. We replace tr{Dc}= 1
with an inequality constraint which is easier to satisfy, that is

tr{Dc} ≤ 1. (15)

This is equivalent to relaxing the constraint (6) to
tr{CHC} ≤ 1.

Theorem The optimization problem defined in (12)-(14)
is equivalent to that with the strict constraint (14) being
replaced by the relaxed constraint (15)

Proof: Suppose the optimal solution̄Dc lies in the region
tr{Dc} < 1. This implies that the maximum of (14) is given
by

tr
{

D̄c
(

R̆+ R̆e
)}

.

However, we can always construct another matrixD∗
c by

multiplying D̄c with a positive constantc = 1/ tr{D̄c} > 1,
so that the constraint tr{Dc} = 1 is satisfied. This leads to
the following inequality:

tr
{

D∗
c

(

R̆+ R̆e
)}

> tr
{

D̄c
(

R̆+ R̆e
)}

. (16)

This inequality (16) contradicts our assumption thatD̄c max-
imizes (12). Thus, a matrix̄Dc satisfying the constraint
tr{D̄c} < 1 can not be the optimal solution. In other words,
the optimal solution always satisfies the original constraint
tr{Dc} = 1. Hence, the objective function (12)-(14) can be
equivalently transformed into a convex optimization problem
by relaxing the constraint tr{Dc} = 1 to tr{Dc} ≤ 1. �

3.2 Reformulation of Probabilistic Constraint

To make the proposed approach tractable, we apply Imhof’s
results [5] to approximate the distribution of the quadratic
form tr{(H̃+Ẽ)HDc(H̃+Ẽ)} and transform the probabilis-
tic constraint into a deterministic constraint.

We consider the quadratic form (11) as a linear combina-
tion of noncentralχ2-distributed random variables

M

∑
i=1

dci

N

∑
j=1

(

h̃i, j + ẽi, j
)2

=
M

∑
i=1

dci χ
2
ni,δ 2

i
, (17)

where χ2
ni,δ 2

i
, i = 1, . . . ,M are independent noncentralχ2-

distributed random variables with degree of freedomni = N
and non-centrality parameterδ 2

i = ∑N
j=1 h̃2

i, j. Imhof has de-
rived an integral form of the cumulative distribution function
for random variables in the form of (17). Based on the results
of [5], the probabilistic constraint can be rewritten as

P {
M

∑
i=1

dci(ni + δi)
2 ≤ γ}

= 1−

(

1
2

+
1
π

∫ ∞

0

sinθ (u)

uρ(u)
du

)

=
1
2
−

1
2π

γ +
1

2π

M

∑
i=1

dci(ni + δ 2
i ) (18)

where

lim
u→0

sinθ (u)

uρ(u)
=

1
2

M

∑
i=1

dci(ni + δ 2
i )−

1
2

γ

lim
u→∞

uρ(u) = +∞

lim
u→∞

θ (u) =







−∞ : if γ > 0
+∞ : if γ < 0
π
4 ∑m

i=1 nidci |dci |
−1 : if γ = 0

With (18), the probabilistic constraint (11) can be trans-
formed into a convex constraint as follows

1
2
−

1
2π

γ +
1

2π

M

∑
i=1

dci(ni + δ 2
i ) ≤ p. (19)

With the relaxation (15) and the expression (19), the orig-
inal stochastic optimization problem (6) is now converted
into the convex optimization problem defined as follows.

max
Dc

tr{Dc(R̆+ R̆e)}, (20)

subject to

1
2
−

1
2π

γ +
1

2π

M

∑
i=1

dci(ni + δ 2
i ) ≤ p,

tr{Dc} ≤ 1

The optimal solution can be efficiently found by modern
convex optimization algorithms, such as CVX [3]. CVX soft-
ware package is a Matlab-based modeling system for convex
optimization that allows constraints and objective functions
to be specified using standard Matlab expression syntax.

4. SIMULATION RESULTS

The proposed beamformer is tested by simulation. We con-
sider a single-user MIMO system withM = 4 transmit an-
tennas andN = 3 receive antennas. A hundred Monte Carlo
trials were performed in each experiment. The proposed
beamformer is compared with existing techniques, such as
the worst-case one-directional, equal-power loading beam-
former and robust beamformer [1]. Without any loss of gen-
erality, we assume the following:
• Channel paraments: Angle of spread∆ is related to the

channel state information. The angle of spread deter-
mines the spatial correlations of the channel. For the
small angle spread, the correlation coefficient between
the pth andqth transmit antenna can be presented as [8]

[R]p,q ≈
1

2π

∫ π

0
exp

[

− j2π(p−q)∆
dt

λ
sinθ

]

dθ ,

whereλ is the wavelength of a narrow-band signal,dt the
antenna spacing and∆ the angle of spread.

• Sample covariance matrix: The channel covariance ma-
trix R̂ is estimated by sampling the instantaneous chan-
nels

R̂ =
1
N

N

∑
i=1

ĤĤH .
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Figure 1: SNR performance under the different parament se-
lection, where∆ = 45◦

• Estimated error at the transmitter: We assume that the
error is Gaussian distributed with zero mean and covari-
ance matrixσ2I, that is,

EM×M ∼ CN (0,σ2I).

In our simulation, the error is varied from 0.01 to 0.9.

Firstly, we compare performances under varies choices
of parametersγ and p , shown in Fig. 1. We set the
spread angle∆ = 45◦. With the same probabilityp = 0.1,
the high-threshold beamformer (γ = 0.9) outperforms the
low-threshold one (γ = 0.4). One the other hand, under the
same SNR thresholdγ = 0.4, the beamformer withp = 0.01
achieves an overall higher SNR thanp = 0.6. This implies
that a low outage probability ensures robustness against er-
rors. In Fig. 1, we can also observe that the proposed trans-
mit beamformer is sensitive to the selection of the outage
probabilityp.

Then we compare the average SNR performance of the
proposed transmit beamformer and four other existing meth-
ods. According to the quality of service (QoS) requirements,
we select a low probability valuep = 0.1 and a high SNR
thresholdγ = 0.9.

In Fig.2, the angle of spread is 5◦ and the correlation be-
tweenpth andqth channel is high. That means less knowl-
edge of CSIT can be obtained and the MRC output of SNR
is more sensitive to the error. In this case, worst-case robust
beamformers [1] [6] and one-directional beamformer [7] pre-
fer to focus all available power on the channel’s strongest di-
rection. And the equal-power-loading beamformer equally
loads the transmit power without considering CSIT. How-
ever, in the proposed beamformer, the instantaneous SNR is
controlled by the probabilistic constraint and the proposed
robust design offers the best performance over other beam-
formers.

In Fig.3, the spread angle is∆ = 25◦ and the channel en-
vironment is better than the channel in the previous experi-
ment. In this case, for the maximum MRC output of SNR,
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Figure 2: SNR performance of one-directional beamformer,
equal-power-loading beamformer, worst-case robust beam-
formers [1] and [6], proposed beamformer versus error:γ =
0.9, p = 0.1, ∆ = 5◦

the transmit power trends to be loaded equally. The perfor-
mances of both worst-case robust beamformers tend to that
of the equal-power-loading robust beamformer. Meanwhile,
the one-directional beamformer offers the worst performance
as the error increases. On the other hand, the proposed beam-
former still offers the highest average SNR in the entire error
range.

5. CONCLUSION

In this work, we propose a novel transmit beamformer
design that maximizes average SNR performance and also
guarantees robustness against the CSIT errors. The robust
transmit beamformer design is formulated as a stochastic
optimization problem. Under the assumption that the CSIT
error is Gaussian distributed, the underlying stochastic opti-
mization problem is transformed into a convex optimization
problem which can be efficiently solved by modern software
packages. Simulation results show that the proposed robust
transmit beamformer is less sensitive to the errors in CSIT
and outperforms several state-of-the-art robust beamforming
algorithms.
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