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Further Development of Multiple Centrality Correctors
for Interior Point Methods

Abstract

This paper addresses the role of centrality in the implementation of interior point meth-
ods. We provide theoretical arguments to justify the use of a symmetric neighbourhood,
and translate them into computational practice leading to a new insight into the role of re-
centering in the implementation of interior point methods. Second-order correctors, such as
Mehrotra’s predictor—corrector, can occasionally fail: we derive a remedy to such difficulties
from a new interpretation of multiple centrality correctors. Through extensive numerical ex-
perience we show that the proposed centrality correcting scheme leads to noteworthy savings
over second-order predictor—corrector technique and previous implementations of multiple
centrality correctors.

1 Introduction

Interior point methods (IPMs for short) are well-suited to solving very large scale optimization
problems. Their theory is well understood [19] and the techniques used in their implementation
are documented in extensive literature (see, for example, [1] and the references therein). Interior
point methods require the computation of the Newton direction for the associated barrier prob-
lem and make a step along this direction, thus usually reducing primal and dual infeasibilities
and complementarity gap; eventually, after a number of iterations, they reach optimality. Since
finding the Newton direction is usually a major computational task, a large effort in the theory
and practice of IPMs concentrates on reducing the number of Newton steps.

Theoretical developments aim at lowering the upper bound on the number of needed steps.
The results provided by such worst-case complexity analysis are informative but exceedingly
pessimistic. A common complexity result states that interior point methods (for linear and
quadratic programming) converge arbitrarily close to an optimal solution in a number of iter-
ations which is proportional to the problem dimension or to the square root of it. In practice,
convergence is much faster: optimality is reached in a number of iterations which is proportional
to the logarithm of the problem dimension. Practical developments aim to reduce this number
even further. Two techniques have proved particularly successful in this respect: Mehrotra’s
predictor—corrector algorithm [12] and multiple centrality correctors [8]. These techniques have
been implemented in most of commercial and academic interior point solvers for linear and
quadratic programming such as BPMPD, Cplex, HOPDM, Mosek, OOPS, OOQP, PCx and
Xpress. They have also been used with success in semidefinite programming with IPMs [9].

Both correcting techniques originate from the observation that (when direct methods of linear
algebra are used) the computation of the Newton direction requires factoring a sparse sym-
metric matrix, followed by a backsolve which uses this factorization. The cost of computing
the factors is usually significantly larger than that of backsolving: in some cases the ratio be-
tween these two computational efforts may even exceed 1000. Consequently, it is worth adding
more (cheap) backsolves if this reduces the number of (expensive) factorizations. Mehrotra’s
predictor—corrector technique [12] uses two backsolves per factorization; the multiple centrality
correctors technique [8] allows recursive corrections: a larger number of backsolves per iteration is
possible, leading to a further reduction in the number of factorizations. Since these two methods
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were developed, there have been a number of attempts to investigate their behaviour rigorously
and thus understand them better. Such objectives are difficult to achieve because correctors
use heuristics which are successful in practice but hard to analyse theoretically. Besides, both
correcting techniques are applied to long-step and infeasible algorithms which have very little
in common with the short-step and feasible algorithms that display the best known theoretical
complexity. Nevertheless, we would like to mention several of such theoretical attempts as they
shed light on some issues which are important in efficient implementations of TPMs.

Mizuno, Todd and Ye [14] analysed the short-step predictor—corrector method. Their algorithm
uses two nested neighbourhoods Ny(62) and Ny(6), @ € (0,1), and exploits the quadratic con-
vergence property of Newton’s method in this type of neighbourhood. The predictor direction
gains optimality, possibly at the expense of worsening the centrality, keeping the iterate in a
larger neighbourhood N5 (@) of the central path. It is then followed with a pure re-centering step
which throws the iterate back into a tighter N9(#?) neighbourhood. Hence, every second step
the algorithm produces a point in Ny(62). This is a clever approach, but the use of the very
restrictive Ny neighbourhood makes it unattractive for practical applications.

Jarre and Wechs [10] took a more pragmatic view and looked for an implementable technique
for generating efficient higher-order search directions in a primal-dual interior-point framework.
In the Newton system, while it is clear what to consider as right-hand side for primal and
dual feasibility constraints (the residual at the current point), the complementarity component
leaves more freedom in choosing a target ¢ in the right-hand side. They argue that there exists
an optimal choice for which the corresponding Newton system would produce immediately the
optimizer; however, it is not obvious how to find it. Therefore, they propose to search a subspace
spanned by k different directions Awy, Aws, ..., Awy generated from some affinely independent
targets t1,%o,...,t;. As the quality of a search direction can be measured by the length of the
stepsize and the reduction in complementarity gap, they aim to find the combination

Aw = Aw(p) = prAwy + poAws + ... + pprAwy

that maximizes these measures. This can be formulated as a small linear subproblem which
can be solved approximately to produce a search direction Aw that is generally better than
Mehrotra’s predictor—corrector direction.

Tapia et al. [17] interpreted the Newton step produced by Mehrotra’s predictor—corrector algo-
rithm as a perturbed composite Newton method and gave results on the order of convergence.
They proved that a level-1 composite Newton method, when applied to the perturbed Karush-
Kuhn-Tucker system, produces the same sequence of iterates as Mehrotra’s predictor—corrector
algorithm. While, in general, a level-m composite Newton method has a QQ-convergence rate of
m+ 2 [15], the same result does not hold if the stepsize has to be damped to keep non-negativity
of the iterates, as is necessary in an interior-point setting. However, under the additional assump-
tions of strict complementarity and nondegeneracy of the solution and feasibility of the starting
point, Mehrotra’s predictor—corrector method can be shown to have Q-cubic convergence [17].

Mehrotra’s predictor—corrector as it is implemented in optimization solvers [11, 12] is a very ag-
gressive technique. In the vast majority of cases this approach yields excellent results. However,
practitioners noticed that this technique may sometimes behave erratically, especially when used
for a predictor direction applied from highly infeasible and not well-centered points. This obser-
vation was one of the arguments that led to the development of multiple centrality correctors [8].
These correctors are less ambitious: instead of attempting to correct for the whole second-order
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error, they concentrate on improving the complementarity pairs which really seem to hinder the
progress of the algorithm.

In a recent study, Cartis [3] provided a readable example that Mehrotra’s technique may produce
a corrector which is larger in magnitude than the predictor and points in the wrong direction,
possibly causing the algorithm to fail. We realised that such a failure is less likely to happen
when multiple centrality correctors are used because corrector terms are generally smaller in
magnitude. This motivated us to revisit this technique and led to a number of changes in the
way centrality is treated in the interior point algorithm implemented in the HOPDM solver [7]
for linear and quadratic programming.

This paper is organised as follows. In Section 2 we recall the key features of Mehrotra’s predictor—
corrector algorithm [12], multiple centrality correctors [8], and the recently proposed Krylov
subspace searches [13]. In Section 3 we introduce the symmetric neighbourhood and analyse a
variant of the feasible long-step path following algorithm based on it. Our analysis, which follows
very closely that of Chapter 5 in [19], reveals the surprising property that the presence of the
upper bound on the size of complementarity products does not seem to affect the complexity
result. In Section 4 we present an algorithm which uses the symmetric neighbourhood and new
strategies for computing centrality correctors. In Section 5 we illustrate the performance of the
proposed algorithm by applying it to a wide class of linear and quadratic problems reaching tens
and hundreds of thousand of variables. Finally, in Section 6 we give our conclusions.

2 Primal-dual methods for linear programming

Consider the following primal-dual pair of linear programming problems in standard form

Primal Dual
min 'z max bTy
s.t. Axr =0b, st. ATy+s=c,
x > 0; y free, s >0,

where A € R™*" z,s,¢ € R™ and y,b € R™. The first-order optimality conditions (Karush-
Kuhn-Tucker conditions) are

Azx =

ATy +s =

XSe

(z,5)

where X and S are diagonal matrices with elements x; and s; respectively, and e is a vector

of ones. In other words, a solution is characterised by primal feasibility, dual feasibility and

complementarity. Path-following interior point methods [19] perturb the above conditions by
asking the complementarity pairs to align to a specific barrier parameter p,

(1)

AV
o oo o

?

XSe = pue,

while enforcing (z, s) > 0. As p is decreased iteration after iteration, the solution of the perturbed
Karush-Kuhn-Tucker conditions traces a unique path toward the optimal set. Path-following
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interior point methods seek a solution to the nonlinear system of equations

Az —b
F(z,y,s)= | ATy+s—c | =0,
XSe — pe

where the nonlinearity derives from the complementarity conditions. We use Newton’s method
to linearise the system according to VF(z,y,s)A(z,y,s) = —F(z,y, s), and obtain the so-called

step equations
A 0 O Az

0 AT 1 Ay | =7 (2)
S 0 X As

with
b— Az
r=|c—ATy—s |, (3)
—XSe+ pe

which need to be solved with a specified y for a search direction (Az, Ay, As).

2.1 Mehrotra’s predictor—corrector technique

A number of advantages can be obtained by splitting the computation of the Newton direction
into two steps, corresponding to solving the linear system (2) independently for the two right-
hand sides

b— Az 0
ri=|c—ATy—s and ro=1| 0 |. (4)
—XSe ue

First, we can postpone the choice of i and base it on the assessment of the quality of the affine-
scaling direction; second, the error made by the affine-scaling direction may be taken into account
and corrected. Mehrotra’s predictor—corrector technique [12] translates these observations into
a powerful computational method. We recall its key features.

The affine-scaling predictor direction A, = (Ayz, Ayy, Ags) is obtained by solving system (2)
with right-hand side r; defined above. This direction is used to evaluate a predicted complemen-
tarity gap after maximum feasible step

9a = (-’E+C¥PAa:L‘)T(S+aDAa3),

The ratio g,/z’s measures the quality of the predictor. If it is close to one then very little
progress is achievable in direction A, and a strong centering component should be used. Oth-
erwise, if the ratio is small then less centering is needed and a more aggressive optimization is
possible. In [12] the following choice of the new barrier parameter is suggested

u:<ga>29_a:(9a)337_Ts’ (5)

zTs) n zTs n

corresponding to the choice of o = (g,/x”'s)? for the centering parameter.
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If a full step in the affine-scaling direction is made, then the new complementarity products are
equal to

(X + A X)(S+ AgS)e = XSe+ (SAgz + XAgs) + AgXAySe = AgXA,Se,

as the third equation in the Newton system satisfies SA,z+X Ags = —X Se. The term A, XA, Se
corresponds to the error introduced by Newton’s method in linearising the perturbed comple-
mentarity condition. Ideally, we would like the new complementarity products to be equal to ue.
Mehrotra’s second-order corrector is obtained by solving the system (2) with right-hand side

0
r = 0 (6)
pe — Ay XAy Se

for the direction A.. Such corrector direction does not only add the centrality term but corrects
for the error made by the predictor as well. Once the predictor and corrector terms are computed
they are added to produce the final direction

A=A, +A,.

The cost of a single iteration in the predictor—corrector method is only slightly larger than
that of the standard method because two backsolves per iteration have to be executed, one for
the predictor and one for the corrector. The use of the predictor—corrector technique leads to
significant savings in the number of IPM iterations and, for all non-trivial problems, translate
into significant CPU time savings [11, 12]. Indeed, Mehrotra’s predictor—corrector technique
is advantageous in all interior point implementations which use direct solvers to compute the
Newton direction.

2.2 Multiple centrality correctors

Mehrotra’s predictor—corrector technique is based on the optimistic assumption that a full step
in the corrected direction will be possible. Moreover, an attempt to correct all complementarity
products to the same value p is also very demanding and occasionally too aggressive. Finally,
Mehrotra’s corrector does not provide CPU time savings when used recursively [2]. The multiple
centrality correctors technique [8] removes these drawbacks.

Assume that a predictor direction A, is given and the corresponding feasible stepsizes ap and
ap in the primal and dual spaces are determined. We look for a centrality corrector A,, such
that larger steps will be made in the composite direction A = A, + A,,. We want to enlarge the
stepsizes to

ap = min(ap+d, 1) and &p = min(ap+d, 1),
for some aspiration level ¢ € (0,1). We compute a trial point
T=x+apApz, 35=s+aplys,
and the corresponding complementarity products v = XSe e R".

The complementarity products © are very unlikely to align to the same value u. Some of them
are significantly smaller than u, including cases of negative components in 9, and some exceed
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u. Instead of trying to correct them all to the value of u, we correct only the outliers. Namely,
we try to move small products (#;5; < yp) to yu and move large products (#;5; > v~ 1) to
v 1w, where v € (0,1); complementarity products which satisfy yu < zjsj < v 1y are already
reasonably close to their target values, and do not need to be changed.

Therefore, the corrector term A, is computed by solving the usual system of equations (2) for
a special right-hand side (0, 0, ¢)7, where the target ¢ is defined as follows:

YU — Ci‘jgj if Ifijgj < YU
t; = ’)’_1[1, — ;8 if Z;8; > 7_1u (7)
0 otherwise.

The computational experience presented in [8] confirmed that this strategy is effective and
the stepsizes in the primal and dual spaces computed for the composite direction are larger
than those corresponding to the predictor direction. Moreover, this technique can be applied
recursively on the direction A, := A, + Ay,. Indeed, we use it as long as the stepsizes increase
at least by a fraction of the aspiration level §, up to a maximum number of times determined at
the beginning of the solution of the problem according to the ratio between factorization cost
and backsolve cost, as detailed in Section 3.3 of [8].

2.3 Krylov subspace searches

While the approach presented above generates a series of correctors that are evaluated and
applied recursively, Mehrotra and Li [13] propose a scheme in which a collection of linearly
independent directions is combined through a small linear subproblem.

Following the approach explored by Jarre and Wechs [10], they express the requirements for
a good search direction as a linear program. In particular, they impose conditions aimed at
ensuring global convergence of the algorithm when using generic search directions. The directions
considered in the subspace search can include all sorts of linearly independent directions: affine-
scaling direction, Mehrotra’s corrector, multiple centrality correctors, Jarre-Wechs directions.
In the recently proposed approach, Mehrotra and Li [13] generate directions using a Krylov
subspace mechanism.

At the k-th iteration of interior point method we have to solve the Newton system HpAy = &,
where
b— Azt
b= | cm ATYE — b
pe — XkSke

is the right-hand side evaluated at the current iterate and Hj is the corresponding Jacobian
matrix. The direction Ay is used to compute a trial point:

F=a"+apArz, §=vy"+apAyy, §=s"+apAys.

At the trial point (%, 7, §), a usual interior point method would have to solve the system HA = £
in order to find the next search direction. Instead, Mehrotra and Li [13] generate a Krylov
subspace for HA = £. The Krylov subspace of dimension j is defined as

Kj (Hk, FI’ g) = span{{H, GéHa GQfHa ceey Gj_lgH}’
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where g = H,- 15 yand G =1—-H LA . Note that for stability reasons H is preconditioned with
Hy,, the factors of which have already been computed. The subspace thus generated contains j
linearly independent directions.

In the algorithm of [13], the affine-scaling direction A,, Mehrotra’s corrector Ay, the first j
directions A1, Ag,...,A; from K;(Hy, H,€) and, but only under some circumstances, a pure
recentering direction A, are combined with appropriate weights p:

J
A(p) = paAa + Z piAi + pcenAcen-
=0

The choice of the best set of weights p in the combined search direction is obtained by solving
an auxiliary linear programming subproblem. The subproblem maximizes the rate of decrease
in duality gap whilst satisfying a series of requirements: non-negativity of the new iterate, upper
bounds on the magnitude of the search direction, upper bounds on infeasibilities, decrease in
the average complementarity gap, and closeness to the central path.

3 Symmetric neighbourhood

Practical experience with the primal-dual algorithm in HOPDM [7] suggests that one of the
features responsible for its efficiency is the way in which the quality of centrality is assessed. By
“centrality” we understand here the spread of complementarity products x;s;,7 = 1,...,n. Large
discrepancies within the complementarity pairs, and therefore bad centering, create problems
for the search directions: an unsuccessful iteration is caused not only by small complementarity
products, but also by very large ones. This can be explained by the fact that Newton’s direction
tries to compensate for very large products, as they provide the largest gain in complementarity
gap when a full step is taken. However, the direction thus generated may not properly consider
the presence of very small products, which then become blocking components when the stepsizes
are computed.

The notion of spread in complementarity products is not well characterised by either of the two
neighbourhoods Ny or N_,, commonly used in theoretical developments of IPMs. To overcome
this disadvantage, here we formalise a variation on the usual N_4 () neighbourhood, in which
we introduce an upper bound on the complementary pairs. This neighbourhood was implicitly
used in the previous section to define an achievable target for multiple centrality correctors. We
define the symmetric neighbourhood to be the set

r .
Ns(v) ={(z,y,5) € Fiqp < mis; < ;u, i=1,...,n},

where F0 = {(z,vy,s) : Az = b, ATy +s = ¢, (x,5) > 0} is the set of strictly feasible primal-dual
points, 4 = z”'s/n, and v € (0,1).

While the N_o neighbourhood ensures that some products do not approach zero too early,
it does not prevent products from becoming too large with respect to the average. In other
words, it does not provide a complete picture of the centrality of the iterate. The symmetric
neighbourhood N, on the other hand, promotes the decrease of complementarity pairs which
are too large, thus taking better care of centrality.
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The analysis is done for the long-step feasible path-following algorithm and follows closely the
presentation of [19, Chapter 5]. In this context, the search direction (Az, Ay, As) is found by
solving system (2) with 7 = (0, 0, —XSe + oue)?, o € (0,1), p = z7s/n.

First we need a technical result, the proof of which can be found in [19, Lemma 5.10] and is
unchanged by the use of N rather than N_.

1
Lemma 1 If (z,y,s) € Nis(v), then |[AXASe| < 23/2 (1 + ;) .

Our main result is presented in Theorem 2. We prove that it is possible to find a strictly positive
stepsize a such that the new iterate (z(a),y(a),s(a)) = (z,v, s) + a(Az, Ay, As) will not leave
the symmetric neighbourhood, and thus this neighbourhood is well defined. This result extends
Theorem 5.11 in [19].

Theorem 2 If (z,y,s) € Ns(7), then (z(a),y(a), s(a)) € Ns(v) for all

1—vo
0,232y — 121 .
ae[, 71+’yn

Proof: Let us express the complementarity product in terms of the stepsize « along the
direction (Az, Ay, As):

zi(a)si(a) = (z; + aAz;)(s; + als;)
= x5 + a(z;As; + s;Ax;) + o® Az As; (8)
= (1-a)zis; + aop + o?Az;As;.

We need to study what happens to this complementarity product with respect to both bounds of
the symmetric neighbourhood. Let us first consider the bound z;s; < % 4. By Lemma 1, equation
(8) implies

1 1
zi(a)si(a) < (1— Oé);u + aop + a?273/? (1 4 ;> ny.

At the new point (z(a),y(c), s()), the duality gap is z(a)?'s(a) = nu(a) = n(l — a + ao)u, as
can be obtained by summing up both sides of equation (8) and remembering that ), Az;As; = 0
in a feasible algorithm. The relation z;(a)s;(«) < %Y p(a) holds provided that

1 1 1
(1-a)=p+ aop+ a?273/? (1 + ;) np < ;(1 —a+ao)y,
Y

from which we derive a first bound on the stepsize:

a < 23/21__72 = ay.
- 1+9n

Considering now the bound z;s; > yu and proceeding as before, we derive a second bound on
the stepsize:
l—~vo

<932y 1
*= 71+'yn

= a.
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Therefore, we satisfy both bounds and guarantee that (z(a),y(a), s(a)) € Ns(v) if
a € [0, min(ay, )],

which proves the claim, as v € (0,1). [ ]

It is interesting to note that the introduction of the upper bound on the complementarity
pairs does not change the polynomial complexity result proved for the N_. () neighbourhood
(Theorem 5.12 in [19]). Therefore, the symmetric neighbourhood provides a better practical
environment without any theoretical loss. This understanding provides some additional insight
into the desired characteristics of a well-behaved iterate. With this theoretical guidance, in the
next section we will proceed to discuss the practical implications derived from here.

4 Weighted correctors

Newton’s method applied to the primal-dual path-following algorithm provides a first-order
approximation of the central path, in which the nonlinear KKT system corresponding to the
barrier problem is linearised around the current point (z*,4*, s*). Consistently with the standard
analysis of Newton’s method, this linear approximation is valid locally, in a small neighbourhood
of the point where it is computed. Depending on the specific characteristics of the point, such
an approximation may not be a good direction at all if used outside this neighbourhood.

Mehrotra’s algorithm adds a second-order correction to the search direction in order to con-
struct a quadratic approximation of the central path. This technique works extremely well, and
the practical superiority of a second-order algorithm over a first-order one is broadly recognised
[8, 11, 12]. However, the central path is a highly nonlinear curve that, according to Vavasis
and Ye [18], is composed by O(n?) turns of a high degree and segments in which it is approxi-
mately straight. Given the complexity of this curve, it is unrealistic to be able to approximate
it everywhere with a second-order curve.

Failures of Mehrotra’s corrector have been known by practitioners since its introduction. In
practical implementations, it was noticed that Mehrotra’s corrector would sporadically produce
a stepsize shorter than the one obtained in the predictor direction. In such situations, it is
common to reject the corrector, then try to use some multiple centrality correctors or move
along the predictor direction alone. This issue has recently been analysed by Cartis [3], who
provided an example in which the second-order corrector does not behave well. Cartis’ analysis
is based on an algorithm that combines a standard primal-dual path-following method with
a second-order correction. Despite not being exactly Mehrotra’s predictor—corrector algorithm,
both are very close in spirit. The example shows that for certain starting points the corrector
is always orders of magnitude larger than the predictor, in both primal and dual spaces. Whilst
the predictor points towards the optimum, the second-order corrector points away from it. As
the final direction is given by
A=A+ Aca

the combined direction is influenced almost exclusively by the corrector, hence it is not accurate.
The solution outlined by Cartis in [3], and then further developed in [4], is to reduce the influence
exerted by the corrector by weighting it by the square of the stepsize. In a similar way, Salahi
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et al. [16] propose to find the corrector by weighting the term A, XA,Se in (6) by the allowed
stepsize for the affine-scaling direction.

The theoretical findings outlined above give rise to the following generalisation
A=A, +wA,,
where we weight the corrector by a parameter w € (0, 1] independent of a.

In our implementation the weight is chosen independently at each iteration such that the stepsize
in the composite direction is maximized. This gives us the freedom to find the optimal weight @
in the interval (0,1]. This generalisation allows for the possibility of using Mehrotra’s corrector
with a small weight, if that helps in producing a better stepsize; on the other hand, the choice
@ = 1 yields Mehrotra’s corrector again.

We have applied the weighting strategy to multiple centrality correctors as well. The justification
in this case comes from the following argument. In Section 2.2 we have seen that the target point
in the multiple centrality correctors technique depends on a parameter ¢ which measures the
greediness of the centrality corrector. In the previous implementations, this parameter was fixed
at coding time to a value determined after tuning to a series of representative test problems.
However, for a specific problem such a value may be too conservative or too aggressive; moreover,
the same value may not be optimal throughout a problem. Hence, it makes sense to provide a
mechanism to adaptively change these correctors in order to increase their effectiveness.

Below we formalize the weighted correctors algorithm.
Given an initial iterate (z°,7°,5s%) such that (z°,s°) > 0, and the number M of corrections
allowed at each iteration;

Repeat for £ =0,1,2,... until some convergence criteria are met:

e}

Solve system (2) with right-hand side r; (4) for a predictor direction A,.

O

Set u according to (5) and find Mehrothra’s corrector direction A, by solving system
(2) with right-hand side (6).

Do a linesearch to find the optimal @ that maximizes the stepsize o in AY = A, +wA..
Set A, = Ag + WA,

Do — Solve system (2) with right-hand side (0,0,%), ¢ given by (7) for a centrality
corrector direction A,,.

o

O

— Perform a linesearch to find the optimal & that maximizes the stepsize « in
AY = Ap + whAy,.
— Set Ap = Ap + WA,.
While the maximum number of correctors M has not been reached and the stepsize
has increased by at least a fraction of the aspiration level §;

o Update the iterate (%1 yF+1, sk+1) = (zF oF sF) + ap A, (2F, yF, ).

End
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5 Numerical results

We have implemented our proposal within the HOPDM interior point solver [7]. In our imple-
mentation we generate a sequence of multiple centrality correctors, and for each of them we
choose the optimal weight & which maximizes the stepsizes in primal and dual spaces for a
combined direction of form

A=Ay +wA..

The composite direction A = A, + @A, becomes a predictor for the next centrality corrector,
hence the correcting process is recursive, and can be interrupted at any stage.

We use v = 0.1 in the definition of symmetric neighbourhood and define aspiration levels for
the stepsizes using the rule

ap =min(l.5ap+0.3,1) and ap = min(l.5ap+0.3, 1).

These values are larger than the ones suggested in [8], @ = min(a+0.1, 1), because the weighting
mechanism allows us to control the contribution of the corrector in an adaptive way. Centrality
correctors are accepted in the primal and/or dual space if " > 1.0lap and/or oy* > 1.01lap,
respectively.

Concerning the choice of w, we implemented a linesearch in the interval [win, wmax] = [@pap, 1].
There are two reasons for using wpin = apap. First, using the stepsizes ap and ap for the
predictor direction gives

(X + apAX)(S+ apAS)e = XSe+ apSAXe+ apXASe+ apapAXASe,

and the term apap appears with the second-order error. Secondly, the study of Cartis [3]
suggests squaring the stepsize for the corrector. Qur computational experience indicates that
the straight use of w = wmin = apap is too conservative. Still, such wpi, is a reliable lower
bound for attractive weights w.

In our crude linesearch procedure we choose 9 points uniformly distributed in the interval
[apap,1] and evaluate, for each of these points, the stepsizes in both spaces. When a larger
stepsize ap or ap is obtained, the corresponding w is stored as wp or wp respectively. Hence,
we allow two different weightings for directions in the primal and dual spaces.

The ultimate objective in choosing w is to increase the stepsizes ap and ap. These stepsizes
depend on w in a complex way. Examples corresponding to a common behaviour are given
in Figure 1, where we show how the product apap varies depending on the choice of w for
Mehrotra’s corrector at two different iterations of problem capri of the Netlib set. On the left,
w € [0.4,1] and @ = 0.475 gives a product apap = 0.583, better than a value of 0.477 that would
have been obtained by using a full weight on Mehrotra’s corrector. On the right, w € [0.178, 1]
and the choice of w € (0.6,0.7) leads to the best product apap of about 0.375.

We tested our implementation in a series of computational experiments using test problems from
different collections. Computations were performed on a Linux PC with a 3GHz Intel Pentium
processor and 1GB of RAM. For the purpose of consistency, we decided to implement in HOPDM
the criteria used in the study performed by Mehrotra and Li [13]. Therefore, optimal termination
occurs when the following conditions are met:

u < 10-10 |6 — Ax|

— L <10719, <1078,
1+ |cTx| — L+ o] —

le = ATy — 5| 8
le= 2 ¥~ 5l <908, 9)
1+ [|c]]
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Figure 1: Relationship between w and apap in two iterations of problem capri.

5.1 Mehrotra-Li test collection

First we considered the test set used in [13]: it contains 101 problems from both Netlib and
Kennington collections. We present our results in terms of number of iterations and number of
backsolve operations. The rationale behind this decision is that the multiple centrality correc-
tors technique determines the number of allowed correctors on the basis of the ratio between
factorization cost and backsolve cost [8]. This ratio can be very different across implementations
and is mainly influenced by the linear algebra routines used. For example, HOPDM [7] comes
with an in-house linear algebra implementation, while PCx [5] relies on the more sophisticated
sparse Cholesky solver of Ng and Peyton. Therefore, the PCx code tends to use less correctors
per iteration.

In Table 1, column HO displays the results obtained by the previous implementation, while
column dHO reports the results obtained by the current implementation of weighted correctors.
The last column presents the relative change between the two versions of HOPDM tested. As a
reference, we also report in this table the overall statistics of PCx (release 1.1) on these problems.
Also for PCx we adopted the termination criteria (9). We found the number of backsolves by
counting the number of calls to the functions TRSOLV() and EnhanceSolve (), for HOPDM and
PCx respectively.

PCx || HO | dHO | Change
Iterations 2114 || 1871 | 1445 | -22.77%
Backsolves 4849 | 6043 | 5717 -5.39%
Backsolves/iter. | 2.29 | 3.23 | 3.95 | +22.29%

Table 1: Overall results obtained on Mehrotra and Li’s test collection.

From Table 1 we first observe the very small number of backsolves per iteration needed by PCx.
This is due to the fact that PCx allows the use of Gondzio’s multiple centrality correctors only
in 4 problems: df1001, maros-r7, pds-10 and pds-20. Also we notice that when we allow an
adaptive weighting of the correctors there is a tendency to use more correctors per iteration
than previously. This happens because the weighting mechanism makes it more likely to accept
some correctors that otherwise would have been rejected as too aggressive. While this usually
leads to a decrease in iteration count, it also makes each iteration more expensive.
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In Table 2 we detail the problems for which we obtained savings in computational time. Given
the small dimension of most of the problems in the Netlib collection, we did not expect major
savings. However, as the problem sizes increase, we can see that the proposed way of evaluating
and weighting the correctors becomes effective. This led us to investigate further the perfor-
mance of the proposed implementation, which we will discuss in Section 5.2.

Problem | HO dHO Problem | HO dHO
bnll 0.36 0.25 pilot87 12.62 | 11.88
dflo01 150.63 | 114.80 pds-06 24.59 | 21.31
maros-r7 7.76 7.52 pds-10 96.57 | 79.29
pilot 5.23 4.35 pds-20 923.71 | 633.64

Table 2: Problems that showed time savings (times are in seconds).

We were particularly interested in comparing the results produced by our weighted correctors
approach with those published in [13]. The computation of Krylov subspace directions in Mehro-
tra and Li’s approach does involve considerable computational cost, as the computation of each
Krylov direction requires a backsolve operation. This can be seen from the definition of the
power basis matrix ~
G=I-H;'H,

which involves an inverse matrix. In fact, calling u the starting vector in the Krylov sequence,
the computation of the vector H, ' Hu requires first to compute v = Hu (matrix-vector multi-
plication) and then to determine ¢ = H, 'v (backsolve on the Cholesky factors).

In the tables of results presented in [13], the best performance in terms of iteration count is
obtained by PCx4, which uses 4 Krylov subspace vectors. These directions are combined with an
affine-scaling predictor direction and Mehrotra’s second-order correction, leading to 6 backsolves
per iteration. This number increases when the linear subproblem produces an optimal objective
value smaller than a specified threshold or the new iterate fails to satisfy some neighbourhood
condition: in these cases the pure centering direction A, also needs to be computed, and a
seventh backsolve is performed.

Table 4 in the Appendix presents a full comparison, in terms of iterations (Its) and backsolves
(Bks), between the results obtained in [13] and the weighted correctors technique proposed in
this paper. Again, we compare the two strategies according to the number of iterations and
backsolves, as we do not have access to this version of PCx and therefore we cannot report CPU
times. Columns PCx0, PCx2 and PCx4 repeat the results reported in [13] for 0, 2 and 4 Krylov
directions, respectively. As we understand the paper [13], PCx0 uses exactly 2 backsolves per
iteration: one to compute the affine-scaling direction, another to compute Mehrotra’s corrector;
PCx2 and PCx4 compute two and four additional Krylov vectors, hence they use 4 and 6
backsolves per iteration, respectively. In columns HO-0, HO-2 and HO-4, we present the results
obtained by HOPDM when forcing the use of 0, 2 and 4 multiple centrality correctors. In the
column called HO-o© we report the results obtained when an unlimited number of correctors
is allowed (in practice we allow no more than 20 correctors). The last column, labelled dHO,
presents the results obtained by choosing the number of correctors allowed according to [8].

Consequently, up to 2, 4 and 6 backsolves per iteration are allowed in PCx(0, PCx2 and PCx4
and in HO-0, HO-2 and HO-4 runs, respectively. The number of backsolves reported for HOPDM
includes two needed by the initialisation procedure: the number of backsolves should not exceed
2 xIts+ 2, 4 x Its + 2 and 6 x Its + 2 respectively for HO-0, HO-2 and H0-4. The observed
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number of backsolves is often much smaller than these bounds because the correcting mechanism
switches off when the stepsizes are equal to 1 or when the corrector does not improve the stepsize.
Problem afiro solved by HO-4 needs 24 backsolves, 22 of which compute different components of
directions, hence the average number of backsolves per iteration is only 22/6 and is much smaller
than 6. Occasionally, as a consequence of numerical errors, certain components of direction are
rejected on the grounds of insufficient accuracy: in such case the number of backsolves may
exceed the stated upper bounds. The reader may observe for example that pilot4 is solved by
HO-4 in 16 iterations, but the number of backsolves is equal to 100 and exceeds 6 X 16 +2 = 98.

The results presented in Table 4 allow us to conclude that the new implementation of multiple
centrality correctors leads to significant savings in the number of iterations compared with
Mehrotra and Li’s approach. HO-2 needs 1418 iterations as opposed to 1752 needed by PCx2, a
saving of 334 iterations, that is 19%. HO-4 saves 149 iterations (10%) over PCxA4.

The version HO-00 requires 1139 iterations to solve the collection of 101 problems, an average of
just above 11 iterations per problem. This version has only an academic interest, yet it reveals
a spectacular efficiency of interior point methods which can solve difficult linear programs of
medium sizes (reaching a couple of hundred thousand variables) in just a few iterations. In
particular, it suggests that if we had a cheap way of generating search directions, then it would
be beneficial to have as many as possible.

5.2 Beyond Netlib

We have applied our algorithm to examples from other test collections besides Netlib. These
include other medium to large linear programming problems, stochastic problems and quadratic
programming problems.

We used a collection of medium to large problems taken from different sources: problems
CH through C09 are MARKAL (Market Allocation) models; mod2 through worldl are agri-
cultural models used earlier in [8]; problems route through rlfdual can be retrieved from
http://www.sztaki.hu/"meszaros/public ftp/lptestset/misc/, problems neosl through
fomel3 can be retrieved from ftp://plato.asu.edu/pub/lptestset/. Complete statistics can
be found in Table 5 in the Appendix, where we compare the performance of different versions
of the algorithm when forcing a specified number of multiple centrality corrector directions.

In Table 3 we provide a time comparison between our previous implementation (shown in column
HO), and the current one based on weighted correctors (column dHO). This test collection
contains problems large enough to show a consistent improvement in CPU time: in only 4
problems (mod2, dbcl, watson-1, sgpf5y6) we recorded a degradation of the performance by
more than 1 second. The improvements are significant on problems with a large number of
nonzero elements. In these cases, dHO produces savings from about 10% to 30%, with the
remarkable results in rail2586 and rail4284, for which the relative savings reach 45% and
65%, respectively.

In Figure 2, we show the CPU-time based performance profile [6] for the two algorithms. This
graph shows the proportion of problems that each algorithm has solved within 7 times of the
best. Hence, for 7 = 1 it indicates that dHO has been the best solver on 72% of the problems,
against 28% for HO. For larger values of 7, the performance profile for dHO stays above the one
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Problem HO dHO | Change Problem HO dHO | Change
CH 1.03 1.23 19.4% dbir2 208.93 | 156.11 | -25.3%
GE 5.72 5.46 -4.5% dbicl 72.96 77.31 5.9%
NL 4.37 3.95 | -9.6% pcb1000 0.26 0.33 | 26.9%
BL 2.15 2.14 -0.5% pcb3000 1.13 1.16 2.7%
BL2 2.35 2.31 -1.7% rlfprim 15.63 15.08 -3.5%
UK 2.48 3.21 | 29.4% rlifdual 71.17 49.79 | -30.0%
CQ5 2.54 2.60 2.4% neosl 169.11 141.89 | -16.1%
cQ9 9.67 8.84 -8.6% neos2 113.86 86.13 | -24.4%
CO5 3.16 3.99 13.6% neos3 132.02 | 120.59 -8.7%
CO9 21.10 | 15.35 | -27.3% neos 1785.80 | 1386.58 | -22.4%
mod2 20.59 | 21.68 5.3% watson-1 138.60 | 166.21 | 19.9%
world 26.35 | 23.41 | -11.2% sgpfby6 49.58 64.45 30.0%
world3 31.13 | 27.49 | -11.7% storm-1000 | 1661.54 | 1623.19 -2.3%
world4 73.21 | 56.14 | -23.3% railb07 9.77 10.10 3.4%
world6 39.33 | 32.79 | -16.6% rail516 7.59 5.89 | -22.4%
world7 43.14 | 36.02 | -16.5% rail582 9.67 9.60 -0.7%
worldl 43.95 | 36.82 | -16.2% rail2586 1029.36 | 566.82 | -44.9%
route 40.92 | 33.78 | -17.4% rail4284 2779.63 | 978.48 | -64.8%
ulevi 9.04 9.55 5.6% fomell 407.20 | 265.21 | -34.9%
ulevimin 16.52 | 16.46 -0.4% fome12 766.96 | 508.61 | -33.7%
dbirl 162.18 | 146.51 -9.7% fomel3 1545.05 | 990.62 | -35.9%
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Table 3: Time comparison on large problems (times are in seconds).

for HO, thus confirming its superiority. In particular, it solves all problems within 1.3 times of
the best.

The collection of stochastic programming problems contains 119 examples and comes from
http://www.sztaki.hu/ "meszaros/public ftp/lptestset/stochlp/. The full set of results
on these problems is shown in Table 6 in the Appendix. We see again that the dHO version
solves this set of problems in 1468 iterations as opposed to HO-0 which needs 2098 iterations.
The HO-00 version (of academic interest only) solves this set of problems in 1181 iterations,
which gives an astonishing average of merely 10 iterations per problem.

We have also tested the implementation on a collection of 29 quadratic programming problems,
available from http://www.sztaki.hu/ meszaros/public_ftp/gpdata/. Normally, HOPDM
automatically chooses between direct and iterative approaches for computing directions. A
higher-order correcting scheme makes much more sense with a direct method when the back-
solve is significantly less expensive than the factorization. In order to maintain consistency, we
forced HOPDM to use a direct approach rather than an iterative scheme when solving this class
of problems. Complete results are presented in Table 7. The analysis of these results confirms
that the use of multiple centrality correctors applied to quadratic programs leads to remarkable
savings in the number of iterations. It is often the case that due to the presence of complicated
sparsity structure in the quadratic terms, the factorizations in quadratic programming get very
expensive. Such a situation favours the use of many correctors, and the good performance of
dHO can be noticed on large instances such as aug3dc, aug3dcqgp and boyd2.
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Figure 2: Performance profile for HO and dHO on the set of problems of Table 3.
6 Conclusions

In this paper we have revisited the technique of multiple centrality correctors [8] and added a
new degree of freedom to it. Instead of computing the corrected direction from A = A, + A,
where A, and A, are the predictor and corrector terms, we allow a choice of weight w € (0, 1]
for the corrector term and compute A = A, + wA.. We combined this modification with the
use of a symmetric neighbourhood of the central path. We have shown that the use of this
neighbourhood does not cause any loss in the worst-case complexity of the algorithm.

The computational results presented for different classes of problems demonstrate the potential of
the proposed scheme. The use of new centrality correctors reduces the number of IPM iterations
needed to solve a standard set of 101 small to medium scale linear problems from 1871 iterations
to 1445, and similar savings are produced for other classes of problems including quadratic
programs. Further savings of the number of iterations are possible after adding more correctors:
the number of iterations on the same test set is reduced to 1139. Tested on a collection of 220
problems, this version needs 2320 iterations, an average of 11 iterations per problem. It should
be noted, however, that the use of too many correctors does not minimize the CPU time.

We have compared our algorithm against the recently introduced Krylov subspace scheme [13].
The two approaches have similarities: they look for a set of attractive independent terms from
which the final direction is constructed. Mehrotra and Li’s approach uses the first few elements
from the basis of the Krylov space; our approach generates direction terms using centrality
correctors of [8]. Mehrotra and Li’s approach solves an auxiliary linear program to find an
optimal combination of all available direction terms; our approach repeatedly chooses the best
weight for each newly constructed corrector term (and switches off if the use of the corrector
does not offer sufficient improvement). Eventually, after adding &k corrector terms, the directions
used in our approach have form

A:Aa+wlA1+---+kaka
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and the affine-scaling term A, contributes to it without any reduction. Hence, the larger the
stepsize, the more progress we make towards the optimizer.

The comparison presented in Section 5.1 shows a clear advantage of our scheme over that of
[13]. Indeed, with the same number of direction terms allowed, our scheme outperforms Krylov
subspace correctors by a wide margin. Multiple centrality correctors show consistent excellent
performance on other classes of problems including medium to large scale linear programs beyond
the Netlib collection and medium scale quadratic programs.

A Tables of results

Problem PCx0 HO-0 PCx2 HO-2 PCx4 HO-4 HO-00 dHO

Its Its Bks Its Its Bks Its Its Bks Its Bks Its Bks
25fv47 25 27 55 18 18 75 15 15 95 14 184 18 76
80bau3b 36 31 64 26 19 79 22 15 93 13 195 18 78
adlittle 11 12 25 10 9 33 8 9 47 9 91 10 29
afiro 7 8 13 6 6 18 6 6 24 6 35 7 15
agg 18 21 43 15 14 57 10 13 79 12 143 14 57
agg2 22 22 46 18 15 61 15 14 86 12 151 15 61
agg3 21 20 41 17 15 62 14 15 84 14 147 15 62
bandm 17 14 30 13 10 40 11 10 58 9 106 11 34
beaconfd 10 10 19 9 8 30 7 8 40 9 82 8 23
blend 9 10 20 8 8 30 7 8 42 8 61 8 23
bnll 36 39 80 35 22 93 27 17 107 17 162 25 91
bnl2 32 25 51 24 16 67 19 16 93 13 171 16 93
boeingl 20 20 40 16 14 61 12 13 76 11 142 15 47
boeing2 12 14 28 11 11 41 10 11 61 10 117 12 34
bore3d 15 15 28 12 12 48 11 11 60 10 102 12 33
brandy 19 19 38 16 14 58 13 14 82 12 160 17 50
capri 18 19 38 15 13 49 12 11 63 11 121 14 43
cycle 23 27 55 15 19 81 13 18 104 15 165 19 83
czprob 27 23 46 17 17 67 16 14 82 13 176 19 60
d2q06¢ 29 31 64 22 20 83 18 17 105 14 201 17 106
d6cube 19 17 35 14 14 54 11 12 64 11 139 12 64
degen2 12 14 29 10 11 44 8 10 62 9 100 11 44
degen3 16 20 42 12 14 57 10 14 84 11 121 14 84
dfl001 47 46 97 39 31 125 31 26 152 25 329 22 222
€226 17 19 40 14 15 64 11 14 87 12 132 16 49
etamacro 23 20 42 17 13 52 14 12 73 12 141 13 52
ffff800 27 30 62 19 20 84 16 17 108 17 244 19 84
finnis 23 21 42 18 18 60 14 29 169 17 197 26 81
fitld 17 16 34 13 14 60 11 12 75 11 148 15 47
fitlp 17 18 38 13 13 56 12 12 72 11 156 15 47
fit2d 22 29 60 14 16 66 12 17 107 12 160 24 83
fit2p 20 24 49 15 16 66 12 15 90 12 150 17 54
forplan 22 19 39 16 16 66 13 13 80 13 145 15 46
ganges 19 12 26 13 9 40 11 8 50 8 93 10 32
gfrd-pnc 18 14 27 12 10 36 11 9 53 8 91 11 32
greenbea, 36 37 76 32 23 94 28 23 146 20 263 22 98
greenbeb 32 41 84 28 26 108 25 22 139 19 242 28 99
growlh 18 11 22 19 9 33 13 8 50 7 94 9 26

Table 4: Comparison with Mehrotra and Li’s algorithm.
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Problem PCx0 HO-0 PCx2 HO-2 PCx4 HO-4 HO-o© dHO
Its| Its Bks Its| Its Bks Its| Its Bks Its  Bks Its Bks
grow22 21 11 22 21 9 36 15 8 49 7 66 9 28
grow7 15 11 22 15 8 29 11 8 46 7 57 9 26
israel 19 21 44 15 14 59 12 13 81 11 135 16 52
kb2 12 12 24 9 10 37 8 9 47 8 75 10 29
lotfi 14 14 28 11 10 38 9 9 47 9 77 11 31
maros-r7 17 15 30 13 11 43 11 11 62 9 114 10 68
maros 19 20 41 15 15 64 12 13 79 11 136 16 51
nesm 25 27 56 20 17 70 17 14 87 12 153 17 72
perold 32 24 49 25 17 70 21 14 87 13 172 16 69
pilot 36 27 56 25 19 78 22 15 95 14 170 15 95
pilot4 68 30 62 61 19 79 53 16 100 17 228 19 84
pilotja 29 30 62 23 18 7 21 15 95 14 179 16 84
pilotnov 17 15 30 14 10 39 11 10 53 9 87 10 46
pilotwe 48 30 62 31 19 79 27 15 94 15 204 19 83
pilot87 34 31 64 25 18 76 19 16 99 14 220 15 125
recipe 9 8 15 8 7 25 7 7 35 7 49 7 18
scagr2d 16 16 32 13 10 40 11 9 52 8 92 11 35
scagr? 14 12 23 11 10 40 9 10 56 9 82 11 32
scfxml 18 17 35 14 12 51 11 10 63 9 112 14 43
scfxm?2 19 19 40 15 13 55 12 11 70 10 140 15 46
scfxm3 21 19 40 15 13 54 12 12 73 10 128 15 47
scrs8 21 17 35 15 12 48 13 11 72 10 112 13 40
scsdl 9 8 15 8 8 25 7 7 30 7 54 7 18
scsd6 12 10 20 10 9 29 9 8 41 8 68 9 24
scsd8 12 11 21 10 8 28 8 7 33 7 60 9 23
sctapl 16 17 33 12 12 44 9 11 58 11 114 13 37
sctap2 13 15 29 10 11 38 9 10 51 8 86 12 33
sctap3 13 15 30 11 11 34 10 11 51 8 87 12 33
seba, 14 9 15 11 7 23 9 7 33 7 114 8 19
sharelb 19 21 43 15 15 61 12 13 82 12 129 17 54
share2b 17 15 29 14 11 41 12 9 43 8 72 12 35
shell 20 21 42 16 12 50 13 12 73 10 128 14 44
ship041 12 11 24 10 10 40 8 8 49 8 118 10 31
ship04s 13 12 26 10 9 41 8 9 53 8 104 10 31
ship12l 14 13 28 13 9 36 11 8 47 8 103 11 34
ship12s 12 14 29 10 10 41 8 9 51 8 102 11 34
sierra 19 18 38 15 12 48 11 11 66 10 104 14 43
stair 14 18 36 12 12 46 11 16 91 11 145 12 46
standata 13 16 30 10 12 43 8 12 61 10 117 13 35
standmps 22 21 40 20 16 63 16 14 78 13 147 16 46
stocforl 11 12 22 9 9 32 7 8 43 8 77 9 26
stocfor2 20 19 38 15 14 58 13 12 74 10 151 15 46
truss 20 17 35 15 11 46 12 10 61 9 113 11 46
tuff 19 15 30 15 10 39 12 9 51 9 98 10 39
vtpbase 11| 11 20 9 9 34 7 9 40 8 103 9 25
woodlp 19 22 43 16 16 65 14 14 85 13 162 16 65
woodw 300 29 59 21| 18 74 19 16 99 14 167 18 77
cre-a 24 25 52 18 18 74 15 15 97 12 143 18 59
cre-b 40 42 86 28 23 96 23 24 148 16 219 22 99
cre-c 25 28 57 19 19 80 15 16 98 14 184 19 63
cre-d 39 43 88 29 23 96 26 22 137 17 233 22 100
ken-07 15 12 25 12 10 39 10 8 48 7 107 10 31

Table 4: Comparison with Mehrotra and Li’s algorithm.
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PCx0 HO-0 PCx2 HO-2 PCx4 HO-4 HO-o© dHO
Problem =R RIS Tis| Tis Bks| Tes| Ts Bks| Tis  Bks|| Tis Bks
ken-11 21 15 32 15 11 47 13 10 63 9 133 13 40
ken-13 28 19 40 21 13 55 16 11 69 11 138 15 47
ken-18 30 24 49 23 15 63 21 13 78 9 139 15 63
osa-07 18 23 47 20 12 52 12 13 73 11 111 13 41
osa-14 19 19 39 21 15 61 18 12 73 11 106 15 47
0sa-30 24 20 40 24 17 73 18 15 93 13 147 17 60
0sa-60 22 20 41 30 18 76 15 12 70 11 118 14 46
pds-02 25 19 38 19 15 60 15 14 7 11 124 15 60
pds-06 35 27 56 27 19 78 23 17 100 15 177 17 118
pds-10 41 32 66 31 24 100 27 20 120 18 199 18 155
pds-20 58 48 98 42 26 105 34 23 136 21 253 21 198
Totals 2194 | 2047 4169 || 1752|1418 5719 || 1438 | 1289 7608 || 1139 13699 || 1445 5717

Table 4: Comparison with Mehrotra and Li’s algorithm.
Problem HO-0 HO-2 HO-4 HO-o0 dHO
Its Bks| Its Bks| Its Bks| Its Bks| Its Bks

CH 26 54 17 70| 15 94| 12 155 | 16 83

GE 39 80 24 100 20 127| 23 307 20 133

NL 32 66 19 79| 15 93| 13 192 15 93

BL 28 58 17 70| 15 93| 13 182 16 85

BL2 32 66 17 70 15 94| 13 189 | 16 85

UK 30 62 19 781 15 93| 14 191 19 82

CQ5 41 84 26 107| 22 135| 18 253 24 109

CQ9 49 100 29 119| 24 154| 22 299 | 26 152

CO5 50 102 31 128| 28 179| 36 472 | 30 142

CcO9 58 118 44 147 62 357| 52 627 41 237

mod2 38 78 25 102| 21 128| 15 248 | 22 121

world 42 86 24 98| 21 128 16 230 22 121

world3 52 106 35 144| 28 172| 19 201| 28 158

world4 51 104 31 128| 27 164| 21 281 26 170

world6 44 90 29 120| 23 144| 19 261 | 22 145

world7 40 82 28 115| 22 135| 17 267 | 21 137

worldl 52 106 34 139| 25 156| 20 282 | 24 157

route 21 42 14 56| 14 80| 11 114 14 80

ulevi 26 51 18 65| 17 103| 15 185 | 17 103

ulevimin 68 138 35 146| 27 172| 22 306 | 27 186

dbirl 22 44 15 61| 13 80 9 112 12 104

dbir2 25 52 15 60| 13 81| 12 167 11 104

dbicl 54 109 26 108 | 20 128 17 213 24 109

pcb1000 20 42 15 62| 12 74| 11 138 15 62

pcb3000 23 48 15 63| 13 80| 12 165 | 15 63

rlfprim 13 25 8 30 8 40 7 65 8 40

rlfdual 13 25 10 37 9 49 9 80 9 63

neosl 56 111 33 139| 29 179| 21 275 24 195

neos2 40 81 24 103| 24 140| 19 210 19 125

neos3 49 98 32 183| 35 191 30 326 | 28 195

neos 109 220 48 196| 41 260 | 41 591 49 430

watson-1 112 226 45 187 30 192| 46 655 49 195

sgpf5y6 45 92| 26 112| 24 157| 19 214 30 109

stormG2-1000 | 130 261 78 331| 66 398| 53 687 73 316

rail507 35 71 20 82| 15 91| 14 199 19 81

Table 5: Comparison on large problems.
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Problem HO-0 HO-2 HO-4 HO-o00 dHO
Its Bks| Its Bks| Its Bks| Its Bks | Its Bks
rail516 30 61 15 56| 12 67| 10 142 15 56
rail582 45 92 20 84| 16 102| 19 229 19 84
rail2586 99 200 30 125| 24 147| 20 287 24 149
rail4284 65 132 30 122| 25 158| 22 361 19 213
fomell 44 92 31 129| 25 150| 23 204 | 24 224
fomel2 44 91 29 125| 25 147| 20 286 | 22 215
fomel3 43 91 29 123| 24 145| 20 289 | 20 215
Totals 1934 3937 | 1110 4599 | 959 5857 | 845 11317 | 974 5926
Table 5: Comparison on large problems.
Problem HO-0 HO-2 HO-4 HO-oc0 dHO
Its Bks| Its Bks| Its Bks| Its Bks| Its Bks
aircraft 10 19 7 28 7 36 7 47 8 21
cepl 18 37 14 54 12 69 10 125 14 43
deter0 16 33 11 46 11 67 10 115 11 46
deterl 20 40 12 48 11 68 9 120 11 68
deter2 18 38 12 49 10 60 9 121 9 64
deter3 18 37 14 54 12 75 10 129 11 73
deter4 16 33 11 44 10 62 9 108 9 68
deterb 18 37 14 56 12 71 11 116 12 71
deter6 17 34 12 48 10 59 9 116 10 59
deter7 18 37 13 56 12 72 11 112 11 77
deter8 19 38 12 49 12 71 10 135 12 71
fxm2-16 24 50 17 71 15 94 12 182 17 73
fxm2-6 22 45 14 59 13 81 11 128 16 52
fxm3-16 40 82 22 91 20 124 18 244 26 97
fxm3-6 27 56 17 70 16 100 14 205 21 72
fxm4-6 30 62 18 75 17 104 15 176 22 75
pgp2 25 52 16 67 14 85 13 157 18 59
pltexpA2-16 17 34 11 43 11 62 11 133 11 62
pltexpA2-6 15 30 12 46 11 62 10 110 12 46
pltexpA3-16 36 74 21 89 19 119 16 203 19 124
pltexpA3-6 23 47 16 69 15 90 12 147 16 69
pltexpA4-6 40 82 25 105 20 126 19 270 23 105
$¢205-2r-100 13 25 10 38 9 47 8 56 11 30
sc205-2r-16 10 20 8 30 8 40 7 79 9 24
s¢205-2r-1600 17 34 17 65 11 48 11 79 14 44
s¢205-2r-200 11 21 11 40 9 43 8 62 11 30
sc205-2r-27 11 20 8 26 7 31 7 54 8 26
sc205-2r-32 14 27 9 31 8 38 8 117 9 31
sc205-2r-4 9 17 7 24 7 32 7 69 7 18
s¢205-2r-400 15 29 11 42 10 49 10 70 12 35
sc205-2r-50 18 36 10 38 9 50 9 78 13 38
sc205-2r-64 13 26 9 36 8 45 8 74 10 28
sc205-2r-8 9 17 7 25 7 37 7 51 8 20
$¢205-2r-800 17 35 11 40 10 48 11 86 12 37
scagr7-2b-16 13 28 12 49 10 59 10 106 14 43
scagr7-2b-4 13 25 11 45 11 63 10 118 11 32
scagr7-2b-64 23 48 15 60 12 71 12 141 16 50
scagr7-2c-16 14 29 12 49 11 60 12 186 13 38
scagr7-2c-4 12 24 13 55 11 67 10 108 10 30

Table 6: Comparison on stochastic programming problems.
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Problem HO-0 HO-2 HO-4 HO-o© dHO

Its Bks| Its Bks| Its Bks| Its Bks| Its Bks
scagr7-2c-64 19 40 13 53 12 67 13 144 13 39
scagr7-2r-108 20 42 14 57 13 78 11 132 16 51
scagr7-2r-16 14 29 12 48 10 61 10 94 13 40
scagr7-2r-216 20 42 15 61 14 83 11 116 15 46
scagr7-2r-27 19 40 12 48 11 69 11 137 13 40
scagr7-2r-32 18 38 11 46 12 68 11 109 12 37
scagr7-2r-4 13 27 10 43 10 58 10 108 10 31
scagr7-2r-432 23 48 16 65 13 79 14 170 17 54
scagr7-2r-54 18 38 12 49 11 65 10 114 14 43
scagr7-2r-64 20 42 12 48 13 75 11 128 14 43
scagr7-2r-8 13 27 11 47 10 60 11 127 11 34
scagr7-2r-864 25 52 16 65 14 85 12 155 18 58
scfxm1-2b-16 25 51 15 61 15 86 14 152 15 61
scfxm1-2b-4 20 40 13 52 14 80 11 124 15 44
scfxm1-2b-64 37 75 25 103 20 118 17 175 25 89
scfxm1-2¢-4 20 40 13 50 13 72 12 121 15 44
scfxm1-2r-128 34 69 26 108 22 137 16 176 25 89
scfxm1-2r-16 25 51 17 66 15 89 13 144 17 67
scfxm1-2r-256 | 49 99 27 114 28 181 21 230 27 99
scfxm1-2r-27 29 60 19 75 16 92 14 176 18 76
scfxm1-2r-32 30 61 18 73 16 93 16 159 17 71
scfxm1-2r-4 20 41 13 50 13 76 12 145 15 45
scfxm1-2r-64 33 67 19 Vi 18 110 16 168 22 7
scfxm1-2r-8 22 45 15 60 13 7 13 132 17 52
scfxm1-2r-96 37 75 22 90 18 116 17 187 25 91
scrs8-2b-16 7 11 7 17 7 17 6 35 7 13
scrs8-2b-4 8 12 6 15 6 17 6 50 6 12
scrs8-2b-64 10 18 8 28 8 37 7 72 8 21
scrs8-2c-16 8 13 6 16 6 18 6 35 6 13
scrs8-2c-32 7 12 6 21 6 26 6 56 6 15
scrs8-2c¢-4 8 12 6 15 6 17 6 52 6 12
scrs8-2c-64 8 16 6 28 6 34 6 61 6 19
scrs8-2c-8 8 12 6 15 6 17 6 38 7 13
scrs8-2r-128 10 20 8 33 8 38 7 60 9 25
scrs8-2r-16 7 12 6 17 6 19 6 34 6 16
scrs8-2r-256 10 21 8 34 8 39 7 80 9 26
scrs8-2r-27 8 14 6 20 6 32 6 56 6 15
scrs8-2r-32 6 11 6 13 6 15 6 31 6 14
scrs8-2r-4 7 11 6 15 6 17 6 32 6 12
scrs8-2r-512 13 27 9 36 8 45 7 81 9 26
scrs8-2r-64 6 11 6 15 6 17 6 33 6 14
scrs8-2r-64b 9 18 8 30 7 32 7 73 8 24
scrs8-2r-8 9 16 8 25 8 35 7 61 8 20
scsd8-2b-16 7 13 6 17 6 23 5 49 6 17
scsd8-2b-4 7 12 6 18 6 22 5 48 6 14
scsd8-2b-64 7 13 5 17 5 26 5 38 5 14
scsd8-2c-16 6 11 5 14 5 18 5 34 5 14
scsd8-2c¢-4 7 12 6 19 6 25 6 53 6 14
scsd8-2c¢-64 6 12 5 19 5 26 5 37 5 14
scsd8-2r-108 12 25 8 35 7T 42 7 83 10 33
scsd8-2r-16 7 13 6 20 6 23 5 37 6 20
scsd8-2r-216 13 27 8 34 7 43 7 89 10 33

Table 6: Comparison on stochastic programming problems.
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Problem HO-0 HO-2 HO-4 HO-00 dHO

Its Bks| Its Bks| Its Bks| Its Bks| Its Bks
scsd8-2r-27 11 23 8 35 7 42 7 79 7 36
scsd8-2r-32 7 13 6 20 5 22 5 37 6 20
scsd8-2r-4 7 12 6 19 6 25 5 52 6 14
scsd8-2r-432 13 26 8 34 7 43 6 69 10 31
scsd8-2r-54 11 22 8 32 7 42 6 71 9 27
scsd8-2r-64 7 13 5 16 5 22 5 38 6 15
scsd8-2r-8 7 13 6 17 6 23 5 34 6 15
scsd8-2r-8b 7 13 6 17 6 23 5 34 6 15
sctap1-2b-16 14 28 10 35 9 44 9 90 9 37
sctapl-2b-4 12 23 9 32 9 37 8 88 10 27
sctapl-2b-64 23 46 14 58 12 67 12 139 17 53
sctapl-2c-16 15 30 10 38 9 44 9 102 10 42
sctapl-2c-4 12 23 9 30 9 42 8 88 10 27
sctapl-2c-64 18 36 12 45 10 53 10 109 13 38
sctapl-2r-108 19 38 13 52 11 69 10 113 13 41
sctapl-2r-16 12 24 10 38 9 49 8 76 10 42
sctapl-2r-216 20 40 14 56 12 72 11 121 13 40
sctap1-2r-27 15 30 10 39 10 53 9 98 10 53
sctap1-2r-32 15 29 10 39 10 57 8 107 9 54
sctap1-2r-4 12 22 9 33 9 41 8 81 10 26
sctap1-2r-480 24 48 17 70 11 70 12 143 17 52
sctapl-2r-54 18 36 11 44 10 57 9 118 13 38
sctapl-2r-64 15 30 10 37 9 48 9 107 12 35
sctapl-2r-8 12 23 9 33 8 38 8 83 9 33
sctapl-2r-8b 13 24 10 38 9 43 8 7 10 38
stormG2-125 93 188 58 240 43 263 34 459 53 218
stormG2-27 76 154 40 170 32 198 26 350 31 267
stormG2-8 47 95 27 112 23 142 19 275 23 127
Totals 2098 4204 | 1440 5634 | 1298 7209 | 1181 13002 | 1468 5414

Table 6: Comparison on stochastic programming problems.

Problem HO-0 HO-2 HO-4 HO-o0 dHO
Its Bks| Its Bks| Its Bks| Its Bks| Its Bks
qp500-1 13 25| 12 48| 13 75| 11 142 13 93
qp500-2 18 35| 16 65| 15 95| 12 133| 15 116
qp500-3 8 12 7 22 7 24 6 50 7 27
qpl000-1 | 14 27| 12 43| 14 81| 10 128| 10 58
sqp2500-1| 15 24| 12 39| 12 55| 12 145| 12 71
sqp2500-2| 20 38| 15 58| 14 781 12 179| 14 128
sqp2500-3| 19 35| 14 55| 13 66| 13 186| 13 119
aug2d 12 21| 10 41| 10 62 9 93| 11 54
aug2dc 13 22| 11 45| 10 57 9 87| 10 52
aug2dcqp 7 12 8 25 8 31 7 107 7 26
aug2dqp 8 12 8 12 8 12 8 65 8 12
aug3d 10 15 9 27 9 38 9 108 9 53
aug3dc 35 71| 37 149| 39 234| 29 408| 23 161
augddcqp | 41 81| 34 154| 24 150| 17 219| 20 184
aug3dgp 10 13| 10 15| 10 17| 10 52| 10 20
powell20 9 18 9 35 7 38 7 53 9 36
yao 15 28| 14 571 15 791 22 179| 24 103
cvxgpl 11 20 7 31 7 43 7 96 7 69

Table 7: Comparison on quadratic programming problems.
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HO-0 | HO-2 704 | HOo | dHo

Problem  — s Bks | Tts Bks| Tts Bks| Tts Bks
oxqp2 | 12 20| 7 31| 7 43| 7 92| 7 52
cvxgp3 22 45| 14 57 11 67| 11 134| 13 125
boydl 27 53| 25 93| 23 129| 18 327| 24 100
boyd2 56 113| 37 155| 40 243| 25 268| 32 156
cont-100 | 12 23| 20 74| 19 102| 20 228| 19 122
cont-101 | 9 17| 8 26| 9 43| 10 116| 9 50
cont-200 | 11 22| 19 71| 19 100| 19 187| 19 117
cont-201 | 10 19| 9 32| 8 45| 8 67| 8 45
cont-300 | 10 20| 10 42| 8 43| 9 88| 7 49
exdata | 11 21| 9 40| 9 49| 8 69| 9 61
selfqmin | 22 46| 14 58| 13 80| 11 137| 12 110
Totals | 480 9008|417 1600|401 2179|356 4152|381 2369

Table 7: Comparison on quadratic programming problems.
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