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Abstract

Solving large-scale optimization economic models such as markal-macro models
proves to be di�cult or even out of reach for state-of-the-art solvers. We propose an
optimizer which takes advantage of their possible special structure: a large dynamic linear
block on one side, a small nonlinear convex block on the other one. This framework favors
the use of interior point methods which are e�cient for large-scale linear programs and
which can handle convex programs. nlphopdm is an implementation of an interior point
method built upon the hopdm code for linear and convex quadratic optimization [18].
The method combines ideas of a globally convergent algorithm [3, 31] and the extension
of multiple centrality correctors technique [19] to nonlinear convex programming. It is
designed for being hooked to modeling languages such as gams and ampl.
We present in this paper preliminary results relative to our research code nlphopdm and
to commercial nonlinear solvers. Our approach achieves a signi�cant computational speed-
up. This is performed via the use of a library which computes exact second derivatives.
(Interior Point Method; Economic Model; Smooth Convex Optimization)
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1 Introduction

markal-macro [24] is a regional planning model for the energy sector that is frequently used
to support energy policy assessment in climate change analysis. The model is formulated as a
mathematical programming problem, involving a large set of linear constraints and a smaller
component of smooth convex constraints. The main users are economists. They are mostly
interested in scenario analyses; sometimes they also embed the model in a larger framework
involving several countries to trace the economic impact of climate change. The tool they
need and favor is an algebraic modeling language that makes it easy to de�ne equations and
modify data, and which is linked to an e�cient and robust optimizer.

Presently, the existing markal-macro models are all written in gams [7], a popular
modeling language that is well-suited to the formulation of economic models. gams is linked to
four general nonlinear solvers, namely conopt and conopt2 [11], minos [26] and snopt [17].
Currently, the row and column sizes of existing markal-macro models range from 2; 000�
3; 000 to 10; 000� 15; 000, depending on the time mesh and the level of technological details.
Even though the sizes are very reasonable by modern optimization standards, solving the
larger markal-macro problems on personal computers with the above software technology
is still a challenge. This is particularly true when the model needs to be solved repeatedly, as
it is the case when several independent markal-macro models are components of a larger
model solved by a decomposition scheme [5, 6, 8].

In this paper we present an alternative to the combinations gams/conopt or conopt2,
gams/minos or gams/snopt. Namely, we have developed a new optimizer for smooth convex
programming problems, and we have linked it to gams, to preserve ease of implementation
for end-users. The algorithm requires the computation of exact �rst and second derivatives.
Unfortunately, gams does not compute Hessian components, but other modeling languages,
e.g., ampl [15], o�er this possibility. Since the users may not be eager to translate the
gams models into ampl, we propose a hybrid solution, mixing gams for the main linear part
and ampl for the more restricted nonlinear part. From the user point of view, the added
complication of using ampl to model the nonlinear part is very modest, all the more that the
syntax in ampl and gams is very similar.

The �eld of interior point methods for nonlinear programming has been rapidly growing
in the recent past [2, 4, 9, 16, 30], giving rise to new solvers such as intopt [16], loqo
[30], mosek [2], nitro [9] and opinel [4]. Our code may be viewed as one such proposal.
nlphopdm is built upon the primal-dual interior point code hopdm for linear and convex
quadratic optimization [18] (http://www.maths.ed.ac.uk/~gondzio/software/hopdm.html)
and extends the technique of [31]. It incorporates the linesearch of [31] and the higher-order
predictor-corrector technique, initially implemented in [1, 19] for linear and convex quadratic
problems. We name it nlphopdm thereafter, an acronym for Non-Linear Higher Order
Primal-Dual Method. Our code is particularly well suited for problems with a large block
of linear constraints. We exploit the two-components structure of markal-macro mod-
els by di�erentiating perturbations of the linear and nonlinear components. This approach
achieves a signi�cant computational speed-up. markal-macro models are currently solved
by nlphopdm approximately from 3 to 5 times faster than by minos, from 4 to 70 times
faster than by snopt, from 20 to 90 times faster than by conopt2 and from 50 to 370 times
faster than by conopt. However, the code applies to more general smooth convex problems
provided that it is supplied with second derivative values, an option that ampl o�ers.

Our interior point implementation nlphopdm is briey presented in section 2. markal-
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macro and related economic models are described in section 3. The linking of nlphopdm
with modeling languages, namely ampl and gams, is dealt with in section 4. Lastly, numerical
results are presented in section 5, followed by our conclusions.

2 NLPHOPDM: an implementation of an interior point method

nlphopdm applies to problems of the following type

min f(x) (1a)

s.t. Ax = b; (1b)

g(x) � 0; (1c)

x � 0; (1d)

where x 2 Rn; b 2 Rm; A 2 Rm�n, f : Rn ! R and g : Rn ! Rl. We assume that f and
gi, i = 1; : : : l, are convex twice continuously di�erentiable functions. We further assume that
the problem has a solution and that a constraint quali�cation holds at the optimum.

nlphopdm is a primal-dual infeasible interior point method for nonlinear convex pro-
grams. It aims at solving the �rst order optimality conditions:

Ax = b; (2a)

g(x) � 0; (2b)

rf(x) +ATw +

�
@g

@x
(x)

�T
y � 0; (2c)

X(rf(x) +ATw +

�
@g

@x
(x)

�T
y) = 0; x � 0; (2d)

Y g(x) = 0; y � 0; (2e)

where w 2 Rm and y 2 Rl are Lagrange multipliers associated with linear and nonlinear
constraints, respectively. X and Y are diagonal matrices with main diagonals x and y,
respectively.
Actually, nlphopdm introduces slack variables x and z and aims at solving the following
system of equations:

Ax = b; (3a)

g(x) + s = 0; (3b)

rf(x) +ATw +

�
@g

@x
(x)

�T
y � z = 0; (3c)

Xz = 0; x � 0; z � 0; (3d)

Y s = 0; y � 0; s � 0: (3e)

For this purpose, nlphopdm tracks the solution of a perturbed system, in which (3a), (3d)
and (3e) are replaced by the equations

Ax = b+ r; (4a)

Xz = �1; x � 0; z � 0; (4b)

Y s = �2; y � 0; s � 0: (4c)

3



There r 2 Rm is a perturbation, and �1 2 Rn and �2 2 Rl are positive vectors. Conditions
(4a){(4c), together with (3b){(3c), form the �rst order optimality condition of the perturbed
barrier problem

(P�; r) min f(x)�
nX
i=1

�1i lnxi �
lX

j=1

�2j ln sj (5a)

s.t. Ax = b+ r; (5b)

g(x) + s = 0; (5c)

x > 0; s > 0:

nlphopdm drives the parameters r; �1; �2 to zero to yield an approximate solution of (3)
of the desired precision. In classical barrier methods [13], one has r = 0, and the vectors �j ,
j = 1; 2 have equal components.

The basic step computes the Newton direction associated with (3b){(3c) and (4). At the
current iterate (xk; sk) in the primal space and (yk; zk; wk) in the dual space, nlphopdm
solves the linear system2

6666664

A 0 0 0 0
@g
@x I 0 0 0

H 0 @g
@x

T �I AT

Zk 0 0 Xk 0
0 Y k Sk 0 0

3
7777775

2
666664

�xk+1

�sk+1

�yk+1

�zk+1

�wk+1

3
777775
=

2
6666664

b+ r �Axk

�sk � g(xk)

�rf(xk)�ATwk � @g
@x

T
yk + zk

�1 �Xkzk

�2 � Y ksk

3
7777775
; (6)

where the �rst derivatives @g
@x and second derivatives H = r2f(x)+

P
yir2gi(x) are evaluated

at x = xk and y = yk. The symbols Sk;Xk; Y k and Zk represent diagonal matrices built on
corresponding vectors.

The algorithm can be shortly paraphrased as follows.

1- Check optimality within the specified tolerances.

2- Set new target values for r and �.

3- Solve the Newton system associated with these targets.

4- Perform a damped Newton step along the Newton direction with possibly

different step lengths in the primal and dual spaces.

The main features of nlphopdm are the following.

� The system (6) is dynamically scaled to cope with poorly scaled formulation.

� The system (6) is reduced to a quasi-de�nite system and is solved using the Cholesky-like
factorization of [1]. The routine exploits sparsity and applies a primal-dual regulariza-
tion scheme to cope with ill-conditioning.

� The perturbation vector r in the early iterations is such that Axk = b+ rk, making the
current iterate feasible for the primal linear constraint. Thus, the algorithm focuses on
solving the nonlinear equations in the beginning. One should notice that once rk = 0,
i.e., xk is primal feasible, then the search direction preserves the feasibility of the primal
linear constraints.
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� The vector parameters �j, j = 1; 2, are changed according to a strategy that proved
successful in linear and quadratic programming [19]. Its theoretical background goes
back to a target-following strategy [20]. The target-following strategy is extended to
handle the parameter r in the linear equations.

� The iterative step is of the predictor-corrector type [25], with the multiple corrections
technique of [19].

nlphopdm is well-suited to handle convex problems such as markal-macro that mix
many sparse linear constraints and smooth convex constraints. The convergence result of [31]
was studied in [3]. The algorithm we propose relies on these developments. nlphopdm can
be accessed directly through ampl or a combination of gams and ampl, which makes its use
possible by nonspecialists.

3 Application to environmental-energy-economic models

nlphopdm was �rst developed with the aim of solvingmarkal-macro [24], an environmental-
energy-economic model currently used at the Paul Scherrer Institute.

markal-macro links together a model derived from Ramsey macroeconomic growth
model [28], called macro, and markal [14], a general energy model developed in the late
70's in the framework of the Environmental Technology System Analysis Program, a project
initiated by the International Energy Agency. markal-macro is used to analyze the coupling
between economic growth, the level of energy demands and the evolution of an energy system
to supply these demands. markal-macro is nowadays used as a common kernel in many
countries around the world, each country setting up its own database and model re�nements.
This section briey presents markal-macro. It also presents a discretized version of the
Ramsey model and a 2-goods merge model [23], which are economic models closely related to
markal-macro and which are interesting from the benchmarking point of view. Numerical
results are given for all three models in section 5.

3.1 MARKAL-MACRO

Next subsections present markal-macro model de�nition (3.1.1) as well as di�erent formu-
lations with the help of a modeling language and the associated standard solution algorithms
(3.1.2).

3.1.1 Model de�nition

In markal-macro, a single agent is representative of all economic agents; this agent has
perfect foresight and is motivated by the maximization of a welfare function, which is an
additive function in consumptions.
Mathematically, markal-macro is expressed as the following dynamic optimization problem
over T periods:

max
C;I;K;D;EC;x�0

U =
TX
t=1

�t logCt

subject to: 8 t 2 f1; : : : ; Tg

[aK��
t L

�(1��)
t +

X
bmD

�
mt]

1=� = Ct + It +ECt; (7a)
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Kt+1 = cKt + dIt + eIt+1; (7b)

Atxt = Dt; (7c)

Mtxt = ECt; (7d)

Ftxt = 0; (7e)

Etxt � Bt; (7f)

Utxt � Rt; (7g)

and to: IT � fKT : (7h)

where :

� variables Ct, Kt and It are respectively macroeconomic consumption, capital and in-
vestment at period t;

� variable ECt stands for energy costs at period t and variables Dmt stand for the corre-
sponding energy demand for each sector m;

� variables xt are investments and activity levels in the energy sector at period t;

� the aggregated output of economy is a concave function in capital, labour and energy
services, which is invested or consumed, the energy part of those investments and con-
sumptions being accounted for separately (constraints (7a));

� there is an intertemporal accumulation of capital (constraints (7b));

� activities Atxt in the energy sector meet energy demand (constraints (7c));

� cost Mtxt of investments and activities in the energy sector at period t is accounted for
in ECt (constraints (7d));

� ows Ftxt of investments and energy fuels are balanced (constraints (7e));

� emissions Etxt induced by activities in the energy sector are upper bounded by envi-
ronmental constraints (constraints (7f));

� use Utxt of resources by activities in the energy sector cannot exceed available resources
(constraints (7g));

� in�nite time horizon is approximated by a lower bound over last period investment
(constraint (7h)).

3.1.2 Formulation and standard solution algorithms

Variables ECt and Dmt link together the nonlinear submodel macro and the linear submodel
markal. Typically, the linear part consists of several thousands of constraints, whereas the
nonlinear part involves between 5 and 10 constraints, depending on the time mesh.

markal-macro can be reformulated as a nonlinearly constrained convex program by
changing nonlinear constraints (7a) as follows:

[aK��
t L

�(1��)
t +

X
bmD

�
mt]

1=� � Ct + It +ECt: (8)

6



This reformulation yields the same optimum as the original formulation (7) because any
solution with a strictly positive slack cannot be optimal, since it could be allocated to variable
Ct and thus the objective function would be improved.

markal-macro can also be formulated as a linearly constrained convex program just by
substituting variables Ct involved in constraints (7a) for variables Ct involved in the objective
function in this way:

max
I;K;D;EC;x�0

TX
t=1

�t log( [aK
��
t L

�(1��)
t +

X
bmD

�
mt]

1=� � It �ECt): (9)

Note that this latter formulation imposes that the arguments in the logarithms in the objective
function be positive, though no constraints expresses it explicitly. This is incompatible with
the use of nlphopdm because the algorithm used in it requires such implicit constraints to
be explicit.

Summing up, markal-macro can be formulated as a convex program, linearly con-
strained or not. Besides, it can be shown that constraints quali�cation holds at optimality [8].
In the end, all the convexity and constraint quali�cation assumptions required for the use of
nlphopdm are satis�ed.

markal-macro is written in gams [7] algebraic modeling language. gams is a very ex-
ible general-purpose language which enables the modeling of a variety of economic and engi-
neering problems. Implementation of large models such as markal-macro is not tractable
unless such a modeling language is used.

On the solution side, as far as nonlinear optimization is concerned, gams is hooked to
four solvers: conopt and conopt2 [11], minos [26] and snopt [17]. For problems with
nonlinear constraints, minos uses a projected Lagrangian method, whereas problems with
linear constraints are solved by a reduced-gradient method with quasi-Newton approximations
to the reduced Hessian. snopt employs a sparse sequential quadratic programming algorithm
with limited-memory quasi-Newton approximations to the Hessian of Lagrangian. If the
constraints are highly nonlinear, or the functions and gradients are expensive to evaluate,
then snopt may be more e�ective than minos. conopt and conopt2 are feasible path
methods based on the generalized reduced gradient algorithm. They are particularly well
suited for very nonlinear models with few degrees of freedom, i.e., the number of variables
is approximately the same as the number of constraints, which is not the case of markal-
macro.

markal-macro users usually choose minos rather than conopt, conopt2 or snopt
because markal-macro can be formulated as a linearly constrained program that minos
handles e�ciently. Besides, minos is all the more e�cient that only some of the variables
enter nonlinearly, as it is the case in markal-macro. Experience shows that the algorithms
behavior strongly depends on the problem instance, sometimes in an unpredictable way. For
this reason, the users appreciate having more than one solver at their disposal, so that if one
fails, there are still chances that another one succeeds. In this respect, nlphopdm adds to the
existing collection of available software. From a practical point of view, the use of nlphopdm
requires the nonlinearly constrained convex formulation (8) of markal-macro to be used,
and a code which computes second derivatives must be supplied. Section 4 shows how this
can be achieved in a modest amount of work.
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3.2 Ramsey model

A version of the discrete model studied by Ramsey [28] is as follows:

maximize
T�1X
t=1

�t logCt +
�T

1� �
logCT

subject to:

�L1�b
t Kb

t = Ct + It 8 t; (10a)

Kt+1 � Kt + It 8 t > 1; (10b)

IT � � KT : (10c)

Variables are macroeconomic consumption Ct, capital Kt and investment It for each
period t; Labour Lt s an exogenous parameter. A convex formulation can be obtained by
replacing the equality in (10a) by an appropriate inequality.

This model is interesting in that markal-macro macroeconomic submodel is based on
it. But in contrast to markal-macro, the Ramsey model includes as many linear constraints
as nonlinear constraints. However, a linearly constrained convex formulation can be obtained
by eliminating variables Ct.

3.3 SMERGE

merge [23] is a multi-regional optimization problem formulated as a Negishi-welfare problem.
In smerge (standing for Small merge), two goods g, namely numeraire, denoted num, and
carbon emission rights, denoted crt, are exchanged by regions r = 1; : : : ; R over t = 1; : : : ; T
periods. The model is formulated as follows:

max
RX
r=1

�r
X
t

logCr;t

subject to:X
r

Xr;g;t = 0 8 t 8 g; (11a)

Zr;t +Xr;crt;t = sharer;t � ZGt 8 r 8 t; (11b)

ZCt = ZCt�1 + 0:5 � nyper� (ZGt�1 + ZGt) 8 t > 1; (11c)

Kr;t = ksurr;t �Kr;t�1 + 0:5� (ksurr;t�1 + Ir;t�1) + Ir;t 8 r 8 t > 1; (11d)

Ir;T � (growr;T + deprr)�Kr;T 8 r; (11e)

Yr;t = ar �K
kpvs

r

r;t � L
lpvs

r

r;t 8 r 8 t; (11f)

Yr;t = Cr;t + Ir;t +Xr;num;t + acqr;t �AQ2
r;t + acbr;t �ABr;t 8 r 8 t; (11g)

ABr;t � 0:01 � zbaser;t + 2�ABr;t�1 8 r 8 t > 1; (11h)

Zr;t = zbaser;t �AQr;t �ABr;t 8 r 8 t: (11i)

At each iteration of the so-called Negishi loop, coe�cients �r of regional utilities are updated
by the following formula which involves primal and dual solution � of the current formulation:

�r :=
X
t

�(11a)t;num
�(11a)T;num

� Cr;t +
X
t;g

�(11a)t;g
�(11a)T;num

�Xr;g;t:

Variables of the model are as follows:
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� K;C and I, de�ned in the same way as in markal-macro, Y , conventional gross
national product and X, net exports of tradeable goods;

� AQ, quadratic abatement level, and AB, backstop abatement level;

� Z;ZG and ZC, which stand for regional, global and global cumulative CO2 emissions.

Trade balance equations (11a), global emissions sharing equations (11b) and cumulative
global carbon emissions equations (11c) are central constraints. Equations (11d)-(11i) are re-
gional constraints. A nonlinearly convex formulation of smerge can be obtained by replacing
the equalities in (11f) and (11g) by appropriate inequalities. A linearly constrained convex
formulation can be obtained by eliminating variables Ct.

4 Interface with modeling languages

nlphopdm is designed to be hooked to a modeling environment. The interest in linking
solvers to modeling languages is that solvers can be used by nonspecialist in optimization.
Subsection 4.1 describes the basic interface between nlphopdm and ampl. The interested
reader can refer to [12] for a detailed description. Subsection 4.2 presents the hybrid interface
with gams and ampl that feeds nlphopdm with the �rst and second order derivatives.

4.1 Basic interface

Starting from a model formulation, a modeling language generates a formatted output �le
which can be handled by an optimization code. The translation of the model formulation into
a formatted output depends upon whether equations are linear or not. Linear equations are
translated once and for all into a matrix containing constant coe�cients. In most economic
models, the matrix is usually sparse; it is stored in a format which is handled e�ciently
by solution algorithms. Nonlinear equations are processed so that routines included in the
modeling language software can e�ciently compute values and derivatives of equations at
a given point. During the solve process, these routines are iteratively called by solution
algorithms in due course of time. nlphopdm is hooked to ampl in this way, because this
modeling environment provides routines which compute �rst and second derivatives, both
being used in nlphopdm algorithm, as it appears in Figure 1.

Formatted
Results

Model

Solver
Modeling Model
language

compiler / parser constants

xk

f; g; rf; rg; r2f; r2g at xk

Figure 1: Basic interface.
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4.2 Hybrid interface

Since gams cannot compute second derivatives, the basic interface between nlphopdm and
gams cannot be used stand alone to solve a model formulated in gams. Well-known tech-
niques exist in order to approximate second derivatives from �rst derivatives, but this leads to
a less e�cient behavior of algorithms. If such a technique is useful in the case of nonanalytic
functions, an analytical solution is preferable in the case of markal-macro since the model
equations are explicitly formulated. However, developing computer routines for computing
exact second derivatives would be far too demanding on the users: this task is time-consuming
and prone to errors. From the modeler point of view, it is clearly much more convenient and
e�cient to remain within their preferred modeling environment as usual, and to use routines
already developed for this purpose.
It is an easy task to write the nonlinear equations (7) in ampl, and retrieve from this library
the second order information. The challenge is to have the two environments work together
without imposing much extra work on the user, which is allowed by the hybrid interface
described in Figure 2:

NLPHOPDM

GAMSAMPL

xk

A; b
minf(x)minf(x)minf(x)

s.t.s.t.
s.t.

minimization
Ax = b

Ax = b

g(x) � 0
g(x) � 0

g(x) � 0

f; g; rf; rg; r2f; r2g at xk

Figure 2: Hybrid interface.

5 Numerical results

In this section, problems presented in section 3 are used to compare conopt, conopt2,
minos, nlphopdm and snopt in terms of runtime. All problems written in gams modeling
language are run by nlphopdm via the hybrid interface with ampl described in section 4.
We also compare nlphopdm and loqo in terms of iterations for problems written in ampl.

5.1 Problems characteristics

Models under study are Ramsey, smerge and markal-macro models:

� ram200 and ram400 denote Ramsey models for respectively 200 and 400 time periods;

� smerge denotes a -2 goods, 5 regions, 7 time periods- version of merge [23];
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� mm-ch5, mm-ch9, mm-col, mm-swe and mm-us denote markal-macro models re-
spectively for Switzerland [6, 21, 22] over 5 and 9 time periods, for Colombia [10] over 7
time periods, for Sweden [27] over 9 time periods and for US [29] over 8 time periods. All
markal-macro models are based on the same set of equations (except for Colombia
which slightly departs from it) but rely on di�erent databases.

Problems sizes are not only proportional to the number of time periods but also depend on the
description level of the economy under study. Problems sizes range from small to medium and
can be described by the number of nonzero elements, denoted nzJ, in the Jacobian matrix:

Problems rows columns nzJ

ram200 400 600 1,400
ram400 800 1,200 2,800
smerge 450 600 1,600
mm-ch5 2,000 3,000 22,000
mm-ch9 3,500 5,500 44,000
mm-col 3,400 5,200 34,000
mm-swe 5,400 7,200 62,000
mm-us 10,200 15,800 125,000

Table 1: markal-macro models characteristics.

5.2 Solution platform

Except for the comparison with loqo 5.02, all runs were performed on a 350 MHz Pen-
tium II processor under Linux, with 96 MB of RAM, a level-1 memory cache of 32 kB
and a level-2 memory cache of 512 kB. The executable of loqo 5.02 that we downloaded
(http://www.orfe.princeton.edu/~loqo) was apparently not compatible with the C li-
brary of this machine and was therefore compared with nlphopdm on another compatible
machine under Linux running at 200 MHz. Last versions of softwares, and possibly previous
ones, were used, i.e.,

� conopt 2.043C and conopt2 2.071C;

� loqo 4.01 and loqo 5.02;

� minos 5.4 and minos 5.5;

� nlphopdm 1.0;

� snopt 5.3.5.

Comparison between nlphopdm and loqo is done both on the basis of runtime and in
terms of iterations number, since both optimizers are path-following primal-dual methods.
The problems submitted to loqo are all written in ampl because loqo cannot be used to
solve models written in gams. loqo can solve nonconvex programs but it has an option for
convex cases which was turned on for fair comparison with nlphopdm. loqo also has an
option for turning on the predictor-corrector technique. Runs were done with and without
this option and only the best results are presented.
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5.3 Algorithms setting

Each algorithm was run with its default setting, excepted possibly as far as optimality criteria
are concerned (see 5.4). Adjustments were made if one of the following event occurred:

� The maximum number of iterations allowed was reached. This occurred for some runs
with conopt, conopt2, minos and snopt. The new setting consisted in increasing
the iterations number limit.

� The time limit was reached. This occurred for some runs with conopt, conopt2,
minos and snopt. The new setting consisted in increasing the time limit.

� A Jacobian element or a variable had exceeded a given threshold. This was necessary
for some runs with conopt and conopt2. The new setting consisted in increasing
those thresholds.

Last, conopt, conopt2, minos and snopt sometimes stopped because there was no change
in the objective after a given number of iterations; such a situation is well known by markal-
macro users and it is managed at the level of the modeling language by a loop which consists
of an iterative solving with a warm start. In markal-macro models, the number of attempts
is usually 3 and it was increased up to 7 to increase chances of reaching optimality.

5.4 Stopping criteria

A fair comparison can be performed provided that algorithms have the same stopping criteria
and the same tolerances. All solvers under examination, except loqo and conopt, run with
1E-6 as default tolerance. We accordingly changed loqo tolerance, but let conopt default
tolerances, because this latter optimizes the choice of the tolerance level by taking into account
the value of the machine-dependent �nite precision and by adjusting dynamically the toler-
ance level in the course of the algorithm run. In the end, for the problems under examination,
conopt stopped at optimal solutions for which stopping criteria were close to those of other
solvers. The di�erent criteria types are summarized below for the di�erent optimizers as they
are reported at http://www1.gams.com/docs/pdffiles.htm for conopt and conopt2 and
at http://www.sbsi-sol-optimize.com/manuals.htm for minos and snopt.

conopt default stopping criteria:

� Feasibility tolerance: a constraint is considered feasible if the residual is less than 1E-3
�MaxJac

100 , where MaxJac is an overall scaling measure for the constraints, computed as
max(max

ij
Jij ; 100), where J denotes the Jacobian matrix.

� Optimality tolerance: its value depends on machines and is usually around 9E-8; opti-
mality is reached if the largest superbasic component of the reduced gradient is lower
than this tolerance.

� Information displayed at optimality: the largest reduced gradient of the nonoptimal
variables (denoted RGmax).

conopt2 default stopping criteria:

� conopt2 uses the same criteria as conopt.
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� Information displayed at optimality: the largest reduced gradient of the nonoptimal
variables (denoted RGmax).

loqo default stopping criteria:

� Feasibility tolerance: 1E-6 is the default tolerance for primal and dual relative feasibility
tolerances.

� Optimality tolerance: 1E-8 is the default tolerance for the absolute gap between primal
and dual objectives. In view a comparing loqo with nlphopdm as fairly as possible,
we set loqo optimality tolerance to an appropriate problem-dependent value since
nlphopdm uses a relative optimality tolerance equal to 1E-6.

� Information displayed at optimality: primal and dual feasibility violations (Pviol and
Dviol) and primal and dual objective values at optimality (Pobj and Dobj).

minos 5.4 default stopping criteria:

� Feasibility tolerance: 1E-6 is the default feasibility tolerance for linear constraints.

� Row tolerance: 1E-6 is the default relative feasibility tolerance for nonlinear constraints,
the latter being scaled by a measure of the size of the current primal solution.

� Optimality tolerance: 1E-6 is the default relative tolerance for the relative norm (de-

noted RG/PI) of the reduced gradient of linearized subproblems, scaled by max(

Pm
i=1 j�ijp
m

; 1),

where � denotes the dual variables.

� Information displayed at optimality: the maximum component of the nonlinear con-
straint residuals (denoted Viol), the largest relative constraint violation, scaled by a a
measure of the size of the current primal solution (denoted Viol/X). the norm of the
reduced gradient of the last linearized subproblem (denoted RG) and the same norm
scaled by the above norm of dual variables (denoted RG/PI).

minos 5.5 default stopping criteria:

� Feasibility tolerance: 1E-6.

� Optimality tolerance: 1E-6.

� Information displayed at optimality: a measure of infeasibility (denoted Feasible)
and a measure of optimality (denoted Optimal) in the case of nonlinearly constrained
problems, two measures of infeasibility in the case of linearly constrained problems
(denoted FeasSum and FeasMax).

nlphopdm default stopping criteria:

� Feasibility tolerance: 1E-6 is the default tolerance for primal and dual constraints rela-
tive feasibility. Primal residual i is scaled by max(1; jbij), dual residual k is scaled by
max(1; jrkf(x)j), where f is the objective function and x the current primal variables.
Note that we depart from most criteria used for feasibility. Usually, each residual is
scaled by a global measure of coe�cients magnitude, i.e., primal variables norm for pri-
mal feasibility, dual variables norm for dual feasibility, or right-hand side norm of given
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primal or dual space. This option is well justi�ed in LP where a preliminary scaling
process sets coe�cients around 1. In NLP, we �nd that a local measure of the relative
accuracy of residuals is more appropriate.

� Optimality tolerance: 1E-6 is the default tolerance for the relative complementarity gap
scaled by max(1; jf(x)j).

� Information displayed at optimality: the maximum components of relative violations of
primal and dual constraints (denoted relPviol and relDviol) and the relative com-
plementarity gap (denoted relGap). nlphopdm considers that optimality is reached
when all stopping criteria are satis�ed, either for formulation (2) or for formulation (3).

snopt default stopping criteria:

� Minor feasibility tolerance: 1E-6 is the default feasibility tolerance for linear constraints.

� Major feasibility tolerance: 1E-6 is the default relative feasibility tolerance for nonlinear
constraints, the latter being scaled by the 2-norm of primal variables.

� Major optimality tolerance: 1E-6 is the default relative tolerance for the largest com-
plementarity gap scaled by the 2-norm of dual variables.

� Minor optimality tolerance: 1E-6 is the tolerance for the norm of the reduced gradient of

quadratic subproblems scaled by max(

Pm
i=1 j�ijp
m

; 1), where � denotes the dual variables.

� Information displayed at optimality: the maximum component of the scaled nonlinear
constraint residuals (denoted Feasible) and the value of the maximum complementarity
gap (denoted Optimal). In the case of linearly constrained problems, only Optimal is
displayed.

It is clear from this overview that tolerances for nonlinear optimizers can be set identical
but the way criteria are built di�ers from one optimizer to another. As a result, it is almost
impossible to perform a comparison exactly on the same basis. The additional information
delivered by optimizers at optimality allows to check, to some an extent, whether signi�cant
di�erences appear. For example, minos 5.5 and snopt claim that they solve the mm-us
model, whereas some variables are reported as being nonoptimal. However, for the models
we run, results can be considered as conclusive enough in view of a rough comparison of
optimizers e�ciency, for this class of problems. We refer the reader to detailed results in
appendix which support this conclusion.

5.5 Comparison with CONOPT, CONOPT2, MINOS and SNOPT

Next tables indicate the solution time durations in case of successful runs. The letter \F",
if present, indicates a failure of the corresponding optimizer. The symbol \-" is used if a
formulation is inappropriate. For problems written in gams, execution time is measured
by the user time returned by the time shell command, which thus records CPU seconds
both for the optimizer and the modeling language itself. In the case of the ampl version of
smerge, execution time is measured by ampl built-in total solve time command.

Table 2 corresponds to nonlinearly constrained convex formulation of problems, Table 3
stands for linearly constrained convex formulations, Table 4 reports the best times in between
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tables 2 and 3 and Table 5 reports time durations ratios over the best time among the solvers
under examination.

Problems nlphopdm conopt conopt2 minos 5.4 minos 5.5 snopt

ram200 1.3 3.4 5.5 6.5 17.2 20
ram400 38 9.4 40 15 97 61
smerge 4.3 21.3 F 15.5 7.3 145
mm-ch5 20 1,000 950 F 600 1,080
mm-ch9 85 11,240 7,920 4,000 5,750 22,400
mm-col 240 23,220 5,180 4,500 7,330 4,350
mm-swe 240 90,000 13,130 F 3,180 5,330
mm-us 480 33,000 43,000 F 1,330 2,000

Table 2: Computing times (sec.) for nonlinearly constrained convex formulations.

Problems nlphopdm conopt conopt2 minos 5.4 minos 5.5 snopt

ram200 - 0.84 1.86 2.76 2.70 5.55
ram400 - 1.87 25.9 5.88 5.55 9.4
smerge - - - - - -
mm-ch5 - - 870 90 70 820
mm-ch9 - - F 560 440 6,030
mm-col - - F 2,970 680 2,550
mm-swe - - F 1,200 700 2,660
mm-us - - F F 5,200 23,500

Table 3: Computing times (sec.) for linearly constrained convex formulations.

Problems nlphopdm conopt conopt2 minos 5.4 minos 5.5 snopt

ram200 1.32 0.84 1.86 2.76 2.70 5.55
ram400 38 1.87 25.9 5.88 5.55 9.4
smerge 4.30 21.3 F 15.5 7.3 145
mm-ch5 20 1,000 870 90 70 820
mm-ch9 85 11,240 7,920 560 440 6,030
mm-col 240 23,220 5,180 2,970 680 2,550
mm-swe 240 89,000 13,130 1,200 700 2,660
mm-us 480 33,000 43,000 F 1,330 2,000

Table 4: Best computing times in seconds for all formulations.

nlphopdm achieves the best computing times for all models of this set except for Ramsey
models. To be fair, let us point out that the solvers to which nlphopdm is compared are not
restricted to convex programs. They can solve general nonlinear programs and therefore do
not take advantage of convexity as nlphopdm does.
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Problems nlphopdm conopt conopt2 minos 5.4 minos 5.5 snopt

ram200 1.6 1 2.2 3.3 3.2 6.6
ram400 20 1 14 3 3 5
smerge 1 5 1 3.6 1.7 34
mm-ch5 1 50 40 4 3 40
mm-ch9 1 130 90 6 5 70
mm-col 1 100 20 10 3 10
mm-swe 1 370 55 5 3 10
mm-us 1 70 90 1 3 4

Table 5: Approximate ratios over best computing times.

mm-us is probably the most di�cult problem to solve in this set. minos 5.5 and snopt,
as nlphopdm, produce a solution that is claimed optimal. However, in their results �le,
both minos 5.5 and snopt report numerous nonoptimal variables and/or feasibility viola-
tions. Last, let us observe that conopt and conopt2 are, contrary to nlphopdm, specially
designed to handle strongly nonlinear models. Their better behaviour for Ramsey models
rather than for markal-macro models is therefore consistent with their design.

5.6 Comparison with LOQO

loqo is not linked with gams modeling environment, because this latter does not provide
Hessian. As a result, comparison is restricted to those problems presented in section (3)
which are formulated in ampl too. Comparison is performed on the basis of the number of
iterations as well as of the time required to reach optimality. For smerge, the sum of the
iterations performed at each iteration of the Negishi loop is reported.

nlphopdm loqo 4.01 nlphopdm loqo 5.02
runs on a 350 MHz machine runs on a 200 MHz machine

Problems iter. time iter. time iter. time iter. time

ram200 30 1.3 3,410 1,040 30 2.3 58 2.67
ram400 459 38 F F 459 63 F F
smerge 73 4.30 123 5.25 73 7.08 115 5.37

Table 6: Number of iterations and runtime (sec.).

5.7 Computational e�ort and problems size

Table 7 reports the number of iterations and the solution time needed by nlphopdm for
markal-macro models in relation with the size of the problems. In contrast to Table 1, size
is given here after problems were preprocessed by nlphopdm, which implies the introduction
of additional slack variables and also the possible removal of �xed variables and of redundant
constraints. Size is expressed in terms of rows and columns numbers and of nonzeros in
Jacobian (nzJ) but also in terms of nonzeros in Hessian (nzH) and in the matrix (6) to be
factorized (nzTOTAL), because it is more directly related to the algorithm used in nlphopdm.
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Problems iterations time (sec.) rows columns nzJ nzH nzTOTAL

mm-ch5 31 20 2,000 4,800 15,000 1,600 33,000
mm-ch9 33 85 3,700 8,600 30,000 2,800 63,000
mm-swe 47 240 4,700 11,000 39,000 1,600 80,000
mm-col 54 240 3,200 7,600 28,000 31,000 87,000
mm-us 52 480 10,000 23,000 77,000 13,500 168,000

Table 7: Computational e�ort and problems size.

Problems are listed in increasing order of nzTOTAL. The computational e�ort in nlphopdm
seems to be nicely related to problems size, whereas it does not hold so much for other solvers.

6 Conclusions

We propose an optimizer which takes advantage of the special structure of large-scale economic
models such as markal-macro models: a large dynamic linear program on one side, a small
nonlinear convex block on the other one. This framework favors the use of interior point
methods which are e�cient for large-scale linear programming and which can handle convex
programs. nlphopdm is an implementation of an interior point method built upon the hopdm
code for linear and convex quadratic programming [18]. Its algorithm combines ideas of a
globally convergent algorithm [3, 31] and the extension of multiple centrality correctors [19]
to nonlinear convex programming. It is designed for being hooked to modeling languages such
as gams and ampl. Additional information can be found at the following pages:
http://www.maths.ed.ac.uk/~gondzio/software/hopdm.html and,
http://www.ecolu-info/~logilab/software/nlphopdm.html.
In this paper, we reported preliminary numerical experiments with nlphopdm. The code is
still under development. No special e�ort has been made to improve basic i/o operations nor
to optimize numerical procedures. In this respect our results are particularly encouraging
in comparison with other codes. Benchmarking was achieved as fairly as possible, based on
the same tolerance level (six signi�cant �gures), even though it appears di�cult to compare
codes based on di�erent methods, because stopping criteria are not always equivalent. This
is particularly true for the larger models under examination. We observe that the \optimal"
objective values reported by each optimizer di�er by amounts larger than the announced
optimality tolerances. However, we may fairly conclude that markal-macro models are
currently solved by nlphopdm approximately from 3 to 5 times faster than by minos, from
4 to 70 times faster than by snopt, from 20 to 90 times faster than by conopt2 and from
50 to 370 times faster than by conopt. This is performed via the use of a library which
computes exact second derivatives.
Among obvious developments liable to reduce computing time, we would like to point out that
the management of �rst and second order derivatives can be improved greatly; right now, we
build a whole Jacobian matrix at each iteration, instead of just updating nonlinear coe�cients.
Further applications will concern very large-scale nonlinear convex programs which can be
solved by decomposition techniques. It is expected that nlphopdm will speed up the solution
process, since each local model must be repeatedly solved after a slight perturbation.
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8 Appendix

8.1 Detailed results

Next tables report detailed outputs of all runs. The following status is indicated:

� Optimal: whenever the solver converges within prespeci�ed tolerance, the corresponding
stopping criteria and objective function values are reported. Only signi�cant �gures are
reported as much as possible. Note that it is not always clear whether a �gure is
signi�cant or not.

� F: whenever the optimum is not found, we give corresponding details as much as possible.

8.2 CONOPT

For the nonlinearly constrained formulation of smerge, conopt claims that it found an
optimal solution but RGmax is equal to 1.2E-02. For linearly constrained formulations of
markal-macro and merge, conopt reports that too many domain errors occurred in
nonlinear functions, due to arguments of logarithmic terms in the objective function which
became negative.

Problems RGmax Obj. value Status

ram200 1.8E-05 9.35021 Optimal
ram400 1.7E-05 9.34818 Optimal
smerge 1.2E-02 2,327,920.7 Optimal
mm-ch5 3.2E-08 2,802.6951 Optimal
mm-ch9 1.9E-05 5,248.7 Optimal
mm-col 1.6E-04 4,204.6 Optimal
mm-swe 5.6E-04 12,504.6 Optimal
mm-us 1.8E-05 7,862.1 Optimal

Table 8: conopt results for nonlinearly constrained convex formulations.

Problems RGmax Obj. value . Status

ram200 9.4E-06 9.3522621 Optimal
ram400 1.6E-05 9.3524809 Optimal
smerge F
mm-ch5 F
mm-ch9 F
mm-col F
mm-swe F
mm-us F

Table 9: conopt results for linearly constrained convex formulations.
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8.3 CONOPT2

For the nonlinearly constrained convex formulation of smerge, conopt2 reports that it
found a feasible solution after 21,6 seconds but that convergence was too slow. The objective
value was equal to 2,327,920.6 at the last iterate, which is close to the optimal value, but RGmax
is equal to 2.3E-01. For the linearly constrained convex formulation of smerge, conopt2
stopped after a too high number of errors during the evaluation of the objective function. For
linearly constrained convex formulations of mm-ch9, mm-col, mm-swe andmm-us, conopt2
reports after respectively 3,300, 2,600, 5,800 and 34,000 seconds that it found a feasible
solution but that there is no change in objective although the reduced gradient is greater
than the tolerance. Note that the point at which conopt2 stopped for mm-us is relatively
close to optimality since RGmax is equal to 7.8-04 and the objective value is equal to 7,861.

Problems RGmax Obj. value Status

ram200 7.6E-08 9.3536537 Optimal
ram400 6.3E-08 9.3538929 Optimal
smerge F
mm-ch5 3.7E-08 2,802.6952 Optimal
mm-ch9 6.4E-08 5,249.1968 Optimal
mm-col 3.2E-08 4,205.8056 Optimal
mm-swe 2.2E-08 12,535.996 Optimal
mm-us 1.3E-06 7,867.14 Optimal

Table 10: conopt2 results for nonlinearly constrained convex formulations.

Problems RGmax Obj. value Status

ram200 2.4E-08 9.3536548 Optimal
ram400 8.1E-08 9.3539487 Optimal
smerge F
mm-ch5 2.1E-08 2,802.6951 Optimal
mm-ch9 F
mm-col F
mm-swe F
mm-us F

Table 11: conopt2 results for linearly constrained convex formulations.

20



8.4 MINOS 5.4

Failures reported in Table 12 correspond to two di�erent situations: in mm-ch5 case, we
interrupted the solver after 2; 000 seconds because erratic iterates were generated, whereas
in the case of mm-swe and mm-us, minos 5.4 stopped because the current point, far from
the optimal solution, could not be improved upon. In Table 13, for the mm-us model, minos
5.4 stopped after 4; 000 seconds for the same reason, whereas the point at which minos 5.4
stopped is relatively close to optimality since RG and RG/PI are equal to 4.4E-02 and the
objective value is equal to 7,865. For the linearly constrained convex formulation of smerge,
minos 5.4 stopped after a too high number of errors during the evaluation of the objective
function.

Problems Viol Viol/X RG RG/PI Obj. value Status

ram200 1.8E-14 1.5E-17 1.5E-07 9.7E-08 9.3534284 Optimal
ram400 7.3E-13 2.7E-17 2.7E-08 2.5E-08 9.3538004 Optimal
smerge 2.7E-10 6.0E-13 5.1E-03 3.5E-08 2,327,920 Optimal
mm-ch5 F
mm-ch9 1.9E-13 6.0E-18 7.8E-09 4.8E-09 5,249.1967 Optimal
mm-col 2.2E-09 5.9E-14 2.6E-06 5.7E-07 4,205.799 Optimal
mm-swe F
mm-us F

Table 12: minos 5.4 results for nonlinearly constrained convex formulations.

Problems RG RG/PI Obj. value Status

ram200 2.54E-08 2.10E-08 9.3534506 Optimal
ram400 3.85E-09 3.85E-09 9.3538135 Optimal
smerge F
mm-ch5 3.17E-08 2.84E-08 2,802.6951 Optimal
mm-ch9 5.62E-10 3.62E-10 5,249.1967 Optimal
mm-col 1.05E-05 2.43E-06 4,205.8 Optimal
mm-swe 1.48E-07 1.01E-07 12,536.73 Optimal
mm-us F

Table 13: minos 5.4 results for linearly constrained convex formulations.
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8.5 MINOS 5.5

minos 5.5 claims that it found an optimal solution for the nonlinearly constrained convex
formulation of smerge but it reports in the same time that 151 variables are nonoptimal.
For the linearly constrained convex formulation of smerge, minos 5.5 stopped after a too
high number of errors during the evaluation of the objective function. For the mm-us model,
minos reports that it found the optimal solution, but in the same time it reports that some
variables are not optimal or/and that feasibility is violated. Namely, for the nonlinearly con-
strained convex formulation, 2,250 variables are reported to be nonoptimal. For the linearly
constrained convex formulation, 726 variables are reported to be nonoptimal and 2 to be
infeasible, which is consistent with the high values of FeasSum and FeasMax. This could ex-
plain why the objective function values reported at optimality for the nonlinearly constrained
convex formulation of mm-us, and, to a less extent, for the linearly constrained formulation,
are pretty di�erent from the values reported by other solvers.

Problems Feasible Optimal Obj. value Status

ram200 2.1E-13 1.4E-06 9.35341 Optimal
ram400 4.3E-06 1.0E-06 9.35345 Optimal
smerge 1.3E-08 2.3E-03 2,327,920 Optimal
mm-ch5 4.8E-06 9.9E-07 2,802.65 Optimal
mm-ch9 2.8E-13 9.9E-07 5,249.158 Optimal
mm-col 4.4E-07 9.7E-07 4,201.585 Optimal
mm-swe 8.8E-13 5.3E-06 12,535.9 Optimal
mm-us 6.0E-12 9.3E-07 7,837.447 Optimal

Table 14: minos 5.5 results for nonlinearly constrained convex formulations.

Problems FeasSum FeasMax Obj. value Status

ram200 0.E+00 0.E+00 9.3533802 Optimal
ram400 0.E+00 0.E+00 9.3536974 Optimal
smerge F
mm-ch5 0.E+00 0.E+00 2,802.6834 Optimal
mm-ch9 1.2E-06 1.2E-06 5,249.1952 Optimal
mm-col 0.E+00 0.E+00 4,201.8164 Optimal
mm-swe 0.E+00 0.E+00 12,536.7841 Optimal
mm-us 6.0E-01 3.0E-01 7,859.4536 Optimal

Table 15: minos 5.5 results for linearly constrained convex formulations.
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8.6 NLPHOPDM

No results are reported for nlphopdm in case of linearly constrained formulations since they
are incompatible with the algorithm employed.

Problems relPviol relDviol relGap Obj. value Status

ram200 9.2E-08 1.5E-12 1.1E-11 9.353664 Optimal
ram400 5.2E-13 3.8E-11 1.0E-06 9.354049 Optimal
smerge 8.2E-10 2.5E-08 8.5E-12 2,327,920.7 Optimal
mm-ch5 1.6E-07 6.4E-07 6.2E-10 2,802.695 Optimal
mm-ch9 8.8E-08 1.1E-07 8.5E-10 5,249.196 Optimal
mm-col 9.0E-08 3.5E-07 2.6E-09 4,205.801 Optimal
mm-swe 7.1E-07 1.4E-08 5.2E-11 12,535.77 Optimal
mm-us 5.3E-07 5.0E-07 5.9E-12 7,865.427 Optimal

Table 16: nlphopdm results for nonlinearly constrained convex formulations.
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8.7 SNOPT

For the linearly constrained convex formulation of smerge, minos 5.5 stopped after a too
high number of errors during the evaluation of the objective function. Note that sometimes
snopt claims that it found the optimal solution but that some variables are not optimal.
This occurs for Ramsey models and mm-us. For the linearly constrained convex formulations
of ram200 and ram400, snopt reports that respectively 3 and 2 variables are not optimal.
For the nonlinearly (resp. linearly) constrained convex formulation of mm-us, 2,485 (resp.
748) variables are reported to be nonoptimal. This could explain why the objective function
values reported at optimality for the nonlinearly constrained convex formulation of mm-us,
and, to a less extent, for the linearly constrained convex formulation, are pretty di�erent from
the values reported by other solvers.

Problems Feasible Optimal Obj. value Status

ram200 1.1E-07 1.4E-06 9.35216 Optimal
ram400 1.2E-07 1.3E-06 9.35135 Optimal
smerge 2.0E-12 1.1E-06 2,327,920.3 Optimal
mm-ch5 1.9E-08 1.6E-06 2,802.59 Optimal
mm-ch9 3.7E-07 1.2E-06 5,249.06 Optimal
mm-col 4.9E-12 1.5E-06 4,197.28 Optimal
mm-swe 7.6E-09 1.7E-06 12,536.7 Optimal
mm-us 3.5E-07 1.4E-06 7,843.95 Optimal

Table 17: snopt results for nonlinearly constrained convex formulations.

Problems Optimal Obj. value Status

ram200 1.6E-06 9.35249 Optimal
ram400 1.3E-06 9.35239 Optimal
smerge F
mm-ch5 1.2E-06 2,802.58 Optimal
mm-ch9 1.1E-06 5,249.05 Optimal
mm-col 1.3E-06 4,199.20 Optimal
mm-swe 1.6E-06 12,535.9 Optimal
mm-us 1.7E-06 7,861.74 Optimal

Table 18: snopt results for linearly constrained convex formulations.
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8.8 LOQO

Next tables report results for loqo 4.01, run on a 350 MHz machine, and loqo 5.02, run on
a 250 MHz machine.

After 2,602 iterations and 1,660 seconds, loqo 4.01 reports that ram400 is dual infeasible.

Problems Pviol Dviol Pobj Dobj Status

ram200 5.0E-07 5.9E-11 9.353664 9.353662 Optimal
ram400 F
smerge 2.5E-08 3.2E-10 2,327,920.6 2,327,920.7 Optimal

Table 19: Detailed results for loqo 4.01.

Note that both feasibility and optimality violations are well under the prespeci�ed op-
timality tolerance chosen for nlphopdm. Indeed, for ram200 (resp. smerge), loqo 4.01
reports that the duality gap is equal to 2E-06 (resp. 0.107). By dividing this quantity by
9.35366 (resp. 2,327,920), this leads to a relative duality gap equal to 2E-07 (resp. 4.6E-08)
which is lower than 1E-06, i.e. the prespeci�ed optimality tolerance chosen for nlphopdm.

After 176 iterations and 24 seconds, loqo 5.02 reports that it found a suboptimal solution
for ram400: Pviol is equal to 6.5E-07, Dviol to 1.3e-09, but Pobj to 9.35399 and Dobj to
9.35391.

Problems Pviol Dviol Pobj Dobj Status

ram200 7.5E-07 7.2E-11 9.353664 9.353662 Optimal
ram400 F
smerge 2.5E-08 4.2E-10 2,327,920.6 2,327,920.7 Optimal

Table 20: Detailed results for loqo 5.02.
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