
New developments in the primal-dual column generation

technique

Jacek Gondzio
∗

Pablo González-Brevis
†

Pedro Munari
‡

School of Mathematics, University of Edinburgh

The King’s Buildings, Edinburgh, EH9 3JZ, UK

Technical Report ERGO 11-001,

March 19, 2012.

Abstract

The optimal solutions of the restricted master problems typically leads to an unsta-

ble behaviour of the standard column generation technique and, consequently, originates

an unnecessarily large number of iterations of the method. To overcome this drawback,

variations of the standard approach use interior points of the dual feasible set instead of

optimal solutions. In this paper, we focus on a variation known as the primal-dual column

generation technique which uses a primal-dual interior point method to obtain well-centred

non-optimal solutions of the restricted master problems. We show that the method con-

verges to an optimal solution of the master problem even though non-optimal solutions are

used in the course of the procedure. Also, computational experiments are presented using

linear-relaxed reformulations of three classical integer programming problems: the cutting

stock problem, the vehicle routing problem with time windows, and the capacitated lot siz-

ing problem with setup times. The numerical results indicate that the appropriate use of a

primal-dual interior point method within the column generation technique contributes to a

reduction of the number of iterations as well as the running times, on average. Furthermore,

the results show that the larger the instance, the better the relative performance of the

primal-dual column generation technique.

Keywords: column generation; interior point methods; linear programming

1 Introduction

The column generation technique has become a very important tool in the solution of opti-

mization problems [32, 44]. This technique is an iterative procedure applied to solve a linear

programming problem with a huge number of variables, called the master problem (MP), such

∗School of Mathematics, University of Edinburgh, Scotland, United Kingdom. Email: J.Gondzio@ed.ac.uk.
†School of Mathematics, University of Edinburgh, Scotland, United Kingdom. Email: P.Gonzalez-

Brevis@sms.ed.ac.uk. Partially supported by Beca Presidente de la República and Facultad de Ingenieŕıa, Uni-

versidad del Desarrollo, Chile.
‡Instituto de Ciências Matemáticas e de Computação, University of São Paulo, São Carlos, Brazil. Email:

munari@icmc.usp.br. Partially supported by CAPES and FAPESP, Brazil.

1

that the columns in the coefficient matrix of this problem can be generated by following a

known rule. By exploiting this characteristic, the column generation technique starts with a

reduced version of the problem, called the restricted master problem (RMP), in which only a

few columns of the MP are considered at first. Iteratively, new columns are generated and

added to the RMP until an optimal solution of the MP is obtained. In general, it is achieved

by generating a relatively small subset of the columns.

In the standard column generation technique, an unstable behaviour is caused by the use

of optimal dual solutions of the RMPs [32, 43]. To overcome this drawback, variations of the

standard technique relying on interior points of the dual feasible set of the RMP have been

proposed (see Section 2.1). Here we focus on the primal-dual column generation technique [25],

in which an interior point method is used to obtain non-optimal solutions that are well-centred

in the dual feasible set of the corresponding RMP. Promising computational results have been

reported using this technique [25, 34], but it has never been tested on applications in which

the MP formulation comes from an integer programming context. Furthermore, no theoretical

analysis that guarantees the convergence of the primal-dual approach has been presented. The

aim of this paper is to close this gap. First, we review the primal-dual column generation

technique and show that it converges to an optimal solution of the master problem even though

non-optimal solutions are used in the course of the algorithm. Then, we present extensive

computational results for linear-relaxed formulations obtained from the decomposition of three

classes of problems which are well-known in the column generation literature: the cutting

stock problem (CSP), the vehicle routing problem with time windows (VRPTW), and the

capacitated lot sizing problem with setup times (CLSPST). These problems are known to lead

to very degenerate restricted master problems, a property that usually causes instability in the

standard column generation [5, 30, 11]. We compare the performance of the primal-dual column

generation technique against the standard column generation and the analytic centre cutting

planning method.

The contributions of this paper are twofold: (i) presenting new theoretical as well as compu-

tational results of a naturally stable column generation technique; (ii) showing how primal-dual

interior point methods can be efficiently combined with the column generation technique for

solving relaxations of integer programming problems. The motivation for the latter lies in the

fact that this variation of interior point methods has become very powerful when solving linear

programming problems, but only a few attempts have been made to use it within a column

generation procedure.

Notice that here we are not concerned with obtaining optimal integer solutions, which would

require the development of a branch-and-price framework for each application. Instead, we want

to analyse the behaviour of the primal-dual column generation strategy, when applied to a given

node of the branch-and-price tree. By improving the performance of the column generation

procedure, we are likely to improve the overall performance on solving the integer problem to

optimality. The use of the primal-dual column generation technique within a branch-and-price

framework will be addressed in a companion paper.

The structure of the remaining sections is the following. In Section 2, we present the main

concepts in column generation and establish the notation used throughout the paper. The

2

primal-dual column generation technique and new theoretical developments are discussed in

Section 3. In Section 4, a computational study comparing the primal-dual approach to other

two column generation techniques is presented. The conclusions and directions for further

studies are presented in Section 5.

2 Column generation technique

Consider a master problem (MP) represented as the following linear programming problem

z⋆ := min
∑

j∈N

cjλj, (2.1a)

s.t.
∑

j∈N

ajλj = b, (2.1b)

λj ≥ 0, ∀j ∈ N, (2.1c)

where N = {1, . . . , n} is a set of indices, λ = (λ1, . . . , λn) is the column vector of decision

variables, c ∈ R
n, b ∈ R

m and aj ∈ R
m, ∀j ∈ N . We assume that the MP has a huge number of

variables which makes solving this problem a very difficult task. Furthermore, we assume the

columns aj are not given explicitly but are implicitly represented as elements of a set A 6= ∅,

and they can be generated by following a known rule. To solve the MP, we consider only a

small subset of columns at first, which leads to the restricted master problem (RMP):

zRMP := min
∑

j∈N

cjλj , (2.2a)

s.t.
∑

j∈N

ajλj = b, (2.2b)

λj ≥ 0, ∀j ∈ N, (2.2c)

for some N ⊆ N . Any primal feasible solution λ̄ of the RMP corresponds to a primal feasible

solution λ̂ of the MP, with λ̂j = λ̄j, ∀j ∈ N , and λ̂j = 0, otherwise. Hence, the optimal value

of any RMP gives an upper bound of the optimal value of the MP, i.e., z⋆ ≤ zRMP .

The column generation technique consists in an iterative process where we solve the RMP

and use the obtained optimal solution to generate one or more new columns. Then, we modify

the RMP by adding the generated column(s) and repeat the same steps until we can guarantee

that no more columns are necessary to obtain an optimal solution of the MP. Natural questions

arise at this point: (a) how to check whether no more columns are necessary? and (b) how to

generate new columns to be added to the RMP? The answers to both questions are given by

the oracle. The oracle is composed of one or more (pricing) subproblems, which are able to

generate new columns by using a dual solution of the RMP. The idea behind the oracle is to

check if a dual solution of the RMP is also feasible for the MP.

Let u = (u1, . . . , um) be the vector of dual variables associated to constraints (2.1b) of the

MP. For any given pair (λ, u) of primal-dual solution, we assume that λ is a primal feasible

solution. We can check the feasibility of the dual variables in the MP by using the reduced

costs sj = cj − uT aj , for each j ∈ N . If sj < 0 for some j ∈ N , then the dual solution uj is not

3

feasible and, therefore, λ cannot be optimal. Otherwise, if sj ≥ 0 for all j ∈ N and bT u = cT λ,

then an optimal solution of the MP has been found.

Since we have assumed that columns aj do not have to be explicitly available, we should

avoid computing the values sj for all j ∈ N . Hence, we use the minimum among them, obtained

by solving the subproblem

zSP (u) := min{0; cj − uT aj|aj ∈ A}. (2.3)

In some applications, the subproblem (2.3) can be partitioned into several independent subprob-

lems that provide different types of columns. In this case, zSP (u) corresponds to the minimum

reduced costs among all the subproblems.

The value zSP (u) is called the value of the oracle. If zSP (u) = 0, we can ensure that there

is no negative reduced cost and, hence, an optimal solution of the MP has been obtained.

Otherwise, a column aj corresponding to the minimal reduced cost should be added to the

RMP. At this point, more than one column may be found and we can add one or more of them

to the RMP. Actually, any column with a negative reduced cost can be added to the RMP. By

using (2.3) we can provide a lower bound of the optimal value of the MP, if we know a constant

κ such that

κ ≥
∑

i∈N

λ⋆
i , (2.4)

where λ⋆ = (λ⋆
1, . . . , λ

⋆
n) is an optimal solution of the MP. Indeed, we cannot reduce zRMP by

more than κ times zSP (u) and, hence, we have

zRMP + κzSP (u) ≤ z⋆ ≤ zRMP . (2.5)

The value of κ is promptly available when the Dantzig-Wolfe decomposition is applied to obtain

the column generation scheme.

The column generation terminates when both bounds in (2.5) are the same, i.e., zSP (u) = 0.

We refer to each call to the oracle as an outer iteration and consider the column generation

scheme to be efficient if it keeps the number of outer iterations small. Every RMP is then solved

by an appropriate linear programming technique (infeasible primal-dual interior point method

in our case) and the iterations in this process are called inner iterations.

2.1 Column generation strategies

As already mentioned in the previous section, the standard column generation is adversely

affected by the use of optimal dual solutions. However, solving every RMP to optimality is not

needed in a column generation procedure and, hence, variations of the standard technique avoid

this strategy. In general, they rely on interior points of the dual feasible set of the RMP. For

instance, the stabilization techniques [33, 13, 7] choose a dual point called stability centre and

add penalization terms to the dual objective function of the RMP to keep the dual solutions

close to this centre. The modified RMP is solved to optimality, however now the dual solutions

do not oscillate greatly from one outer iteration to another, because of the penalties added to

the problem. For performance comparisons involving stabilized approaches and the standard

4

column generation, see [7, 39, 6].

An interior point column generation based on the simplex method is proposed in [39]. At

each outer iteration, a dual solution in the interior of the dual space is obtained by solving the

dual problem of the RMP several times, with different objective functions that are randomly

generated. Then, a set of vertices of the dual space is generated and an interior dual point is

given by the convex combination of the points in the set. The authors present computational

results considering instances of the VRPTW, for which the number of outer iterations and

CPU time were considerably reduced in relation to the standard as well as stabilized column

generation. However, for applications with large-scale RMPs, the need of solving these problems

several times for different objective functions adversely affects the efficiency of the approach.

Other column generation approaches obtain interior points of the dual feasible set without

(directly) modifying the RMP. In [35] and [36], the authors address the solution of two classes

of combinatorial optimization problems by a cutting plane method which uses interior points of

the dual set, obtained by a primal-dual interior point method. For those particular applications,

the valid inequalities are explicitly known in advance, and for each dual solution of the RMP,

the violated inequalities are found by full enumeration. If the violation is not large enough,

then the tolerance is updated and the interior point method continues with the optimization of

the RMP. Notice that this approach cannot be directly applied in the general context of column

generation, as usually the columns cannot be fully enumerated, but are rather generated by

solving a possibly time-consuming problem (NP-hard in many cases).

The analytic centre cutting plane method (ACCPM) [18, 1, 19] is an interior point approach

that relies on central prices. The strategy consists in computing a dual point which is an ap-

proximate analytic centre of the localization set associated to the current RMP. The localization

set is given by the intersection of the dual space of the RMP with a half-space given by the best

lower bound found for the optimal dual value of the MP. Relying on points in the centre of the

localization set usually prevents the unstable behaviour between consecutive dual points and

also contributes to the generation of deeper cuts. A very important property of this approach is

given by its theoretical fully polynomial complexity. Although other polynomial cutting plane

methods are proposed in the literature, no efficient computational implementations are publicly

available for them (see [37]). The use of stabilization terms within the analytic centre cutting

plane method has been successful, as showed in [2]. A thorough comparison of our approach

against the implementation of ACCPM [2] will be provided in Section 4.

Another interior point approach is the primal-dual column generation technique. Proposed

in [25], it relies on an infeasible primal-dual interior point method to find a non-optimal solution

of the RMP, such that the distance to optimality is defined in function of the relative gap in

the column generation procedure. In the first outer iterations, each RMP is solved with a loose

tolerance, and this tolerance is dynamically reduced throughout the iterations as the relative

gap in the column generation approaches zero. The authors present promising computational

results for a class of nonlinear programming problems, whose linearization is solved by column

generation. A similar strategy is used by [34] to solve linear programming problems by combin-

ing Dantzig-Wolfe decomposition and a primal-dual interior point method. The authors also

report a substantial reduction in the number of outer iterations when compared to other column

5

generation procedures. To the best of our knowledge, these strategies have never been applied

in the context of integer programming, where the column generation technique is used in the

solution of linear relaxations that typically arise from Dantzig-Wolfe reformulations.

Notice that the standard column generation and the analytic centre approaches are extremal

strategies, as they are based on optimal solutions. In fact, the analytic centre of a feasible set

corresponds to the optimal solution of a modified dual problem associated to the RMP. From

this point of view, the idea of the primal-dual column generation technique is somewhere in the

middle of these two approaches. It relies on solutions that are close-to-optimality, but at the

same time not far from the central trajectory in the dual feasible set. The contribution of using

non-optimal solutions is twofold. First, a smaller number of inner iterations is usually needed

to solve each RMP and, hence, the running times per outer iteration is reduced. Second, a

more stable column generation strategy is likely to be obtained, so that smaller number of outer

iterations as well as less total CPU time are usually required.

3 Primal-dual column generation

Proposed in [25], the primal-dual column generation method (PDCGM) is based on non-optimal

solutions of the RMPs. A primal-dual interior point method is used to solve the RMPs, which

makes possible obtaining primal-dual feasible solutions which are well-centred in the feasible

set, but have a nonzero distance to optimality. The theoretical development of the method is

presented in this section.

Following the notation of Section 2, we consider that a given RMP is represented by (2.2),

with optimal primal-dual solution (λ, u). Similarly to the standard approach, the primal-dual

column generation starts with an initial RMP with enough columns to avoid an unbounded

solution. However, at a given outer iteration, a suboptimal feasible solution (λ̃, ũ) of the current

RMP is obtained, which is defined as follows.

Definition 3.1 A primal-dual feasible solution (λ̃, ũ) of the RMP is called suboptimal solution,

or ε-optimal solution, if it satisfies 0 < (cT λ̃ − bT ũ) ≤ ε(1 + |cT λ̃|), for some tolerance ε > 0.

We denote by z̃RMP = cT λ̃ the objective value corresponding to the suboptimal solution

(λ̃, ũ). Since cT λ̃ ≥ cT λ = zRMP , z̃RMP is a valid upper bound of the optimal value of the MP.

The solution (λ̃, ũ) should also be well-centred in the primal-dual feasible set, in order to

provide a more stable dual information to the oracle. We say a point (λ, u) is well-centred if it

satisfies

γµ ≤ (cj − uT aj)λj ≤ (1/γ)µ, ∀j ∈ N, (3.1)

for some γ ∈ (0.1, 1], where µ = (1/|N |)(cT −uT A)λ. By imposing (3.1), we guarantee that the

point is not too close to the boundary of the primal-dual feasible set and, hence, the oscillation

of the dual solutions will be relatively small. Notice that (3.1) is a natural way of stabilizing

the dual solutions, if a primal-dual interior point method is used to solve the RMP [46, 22].

Once the suboptimal solution of the RMP is obtained, the oracle is called with the dual

solution ũ as a query point. Then, it should return either a value zSP (ũ) = 0, if no columns

could be generated from the proposed query point, or a value zSP (ũ) < 0, together with one or

6

more columns to be added to the RMP. Consider the value κ > 0 defined as (2.4). As already

mentioned before, a suitable value for κ is usually promptly available in a column generation

scheme. According to Proposition 3.2, a lower bound of the optimal value of the MP can still

be obtained.

Proposition 3.2 Let z̃SP := zSP (ũ) be the value of the oracle corresponding to the suboptimal

solution (λ̃, ũ). Then, κz̃SP + bT ũ ≤ z⋆.

Proof. Let λ⋆ be an optimal primal solution of the MP. By using (2.1b) and z̃SP ≤ 0, we have

that

cT λ⋆ − bT ũ =
∑

j∈N

cjλ
⋆
j −

∑

j∈N

λ⋆
ja

T
j ũ

=
∑

j∈N

λ⋆
j (cj − aT

j ũ)

≥
∑

j∈N

λ⋆
j z̃SP

≥ κz̃SP .

Therefore, z⋆ = cT λ⋆ ≥ κz̃SP + bT ũ. �

The tolerance ε which controls the distance of (λ̃, ũ) to optimality can be loose at the

beginning of the column generation process, as a very rough approximation of the MP is known

at this time. This tolerance should be reduced throughout the outer iterations, and be tight

when the gap is small. Hence, we can dynamically adjust it by using the relative gap in the

outer iterations, given by

gap :=
cT λ̃ − (κz̃SP + bT ũ)

1 + |cT λ̃|
,

where z̃SP := zSP (ũ), as defined in Proposition 3.2. At the end of every outer iteration, we

recompute the relative gap, and the tolerance ε is updated as

εk := min{εmax, gapk−1/D}, (3.2)

where D > 1 is the degree of optimality that relates the tolerance εk to the relative gap at

iteration k− 1. Here, we consider it is a fixed parameter. Also, an upper bound εmax is used so

that the suboptimal solution is not far away from the optimum.

It is important to emphasize that unlike in the standard approach, z̃SP = 0 does not suffice

to terminate the column generation process. Indeed (λ̃, ũ) is a feasible but suboptimal solution

and therefore there may still be a difference between cT λ̃ and bT ũ. Proposition 3.3 shows that

the gap is still reduced in this case, and the progress of the algorithm is guaranteed.

Proposition 3.3 Let (λ̃, ũ) be the suboptimal solution of the RMP, found at iteration k with

tolerance εk > 0. If z̃SP = 0, then the new relative gap is strictly smaller than the previous one,

i.e., gapk < gapk−1.

7

Proof. We have that z̃RMP = cT λ̃ is an upper bound of the optimal solution of the MP. Also,

from Proposition 3.2 we obtain the lower bound bT ũ, since z̃SP = 0. Hence, the gap in the

current iteration is given by

gapk =
cT λ̃ − bT ũ

1 + |cT λ̃|
.

Notice that the right-hand side of this equality is less than or equal to εk, the tolerance used

to obtain (λ̃, ũ). Hence, gapk ≤ εk. We have two possible values for εk. If εk = εmax, then by

(3.2) gapk−1 ≥ Dεk > εk. Otherwise, εk = gapk−1/D and, again, gapk−1 > εk. Therefore, we

conclude gapk < gapk−1. �

Algorithm 1 summarizes the above discussion. Notice that the primal-dual column genera-

tion method has a simple algorithmic description, similar to the standard approach. Thus, it

can be implemented in the same level of difficulty if a primal-dual interior point solver is readily

available. Notice that κ is known in advance and problem dependent.

Algorithm 1: Primal-Dual Column Generation Method

1. Input: Initial RMP; parameters κ, εmax > 0, D > 1, δ > 0.

2. set LB = −∞, UB = ∞, gap = ∞, ε = 0.5;

3. while (gap ≥ δ) do

4. find a well-centred ε-optimal solution (λ̃, ũ) of the RMP;

5. UB = min(UB, z̃RMP);

6. call the oracle with the query point ũ;

7. LB = max(LB, κz̃SP + bT ũ);

8. gap = (UB − LB)/(1 + |UB|);

9. ε = min{εmax, gap/D};

10. if (z̃SP < 0) then add the new columns to the RMP;

11. end(while)

Since the PDCGM relies on suboptimal solutions of each RMP, it is important to ensure

that it is a valid column generation procedure, i.e., a finite iterative process that delivers an

optimal solution of the MP. Even though the optimality tolerance ε decreases geometrically in

the algorithm, there is a special case in which the subproblem value is zero, which would cause

the method to stall. Fortunately, by using Proposition 3.3 we can guarantee the method still

converges successfully. The proof of convergence is given in Proposition 3.4.

Proposition 3.4 Let z⋆ be the optimal value of the MP. Given δ > 0, the primal-dual column

generation method converges in a finite number of steps to a primal feasible solution λ̂ of the

8

MP with objective value z̃ that satisfies

(z̃ − z⋆) < δ(1 + |z̃|). (3.3)

Proof. Consider an arbitrary iteration k of the primal-dual column generation method, with

corresponding suboptimal solution (λ̃, ũ). After calling the oracle, two situations may occur:

1. z̃SP < 0 and new columns have been generated. These columns correspond to dual

constraints of the MP that are violated by the dual point ũ. Since the columns are added

to the RMP, the corresponding dual constraints will not be violated in the next iterations.

Therefore, it guarantees the progress of the algorithm. Also, this case can only happen a

finite number of times, as there are a finite number of columns in the MP.

2. z̃SP = 0 and no columns have been generated. If additionally we have εk < δ, then

from Proposition 3.3 the gap in the current iteration satisfies gapk < δ, and the algorithm

terminates with the suboptimal solution (λ̃, ũ). Otherwise, we also know from Proposition

3.3 that the gap is still reduced, and although the RMP in the next iteration will be the

same, it will be solved to a tolerance εk+1 < εk. Moreover, the gap is reduced by a factor

of 1/D and, hence, after a finite number of iterations we obtain a gap less than δ.

At the end of the iteration, if the current gap satisfies gapk < δ, then the algorithm terminates

and we have
z̃RMP − (z̃SP + bT ũ)

1 + |z̃RMP |
< δ.

Since z̃SP + bT ũ ≤ z⋆, the inequality (3.3) is satisfied with z̃ = z̃RMP . The primal solution λ̃

leads to a primal feasible solution of the MP, given by λ̂j = λ̃j , ∀j ∈ N , and λ̂j = 0, otherwise.

If gapk ≥ δ, a new iteration is carried out and we have one of the above situations again. �

Having presented a proof of convergence for the PDCGM, it is important to give some

remarks about its implementation. As requested by (3.1), the suboptimal solutions are well-

centred points in the primal-dual feasible set. This contributes to the stabilization of the dual

points and, hence, reduces the number of outer iterations in general. In our implementation,

each RMP is solved by the interior point solver HOPDM [20]. It keeps the iterates inside a

neighbourhood of the central path, which has the form (3.1). To achieve this, the solver makes

use of multiple centrality correctors [21, 9].

An efficient warmstarting technique is essential for a good performance of a column gen-

eration technique based on a interior point method, as the PDCGM. Throughout the column

generation process, closely-related problems are solved, as the RMP in a given iteration differs

from the RMP of the previous iteration by merely a few columns. Hence, this similarity should

be exploited in order to reduce the computational effort of solving a sequence of problems.

In our implementation of PDCGM, we rely on the warmstarting techniques available in the

solver HOPDM (see [21, 23, 24]). The main idea of these methods consists of storing a close-to-

optimality and well-centred iterate when solving a given RMP. After a modification is carried

out on the RMP, the stored point is used as a good initial point to start from.

9

Notice that a primal-dual interior point method is well-suited for the implementation of the

PDCGM. In fact, (standard) simplex type methods cannot straightforwardly provide suboptimal

solutions which are well-centred in the dual space. Instead, the primal and dual solutions are

always on the boundaries of their corresponding feasible sets. Besides, there is no control on

the infeasibilities of the solutions before optimality is reached in a simplex method.

4 Computational experiments

In this section, we present the results of computational experiments using three classes of

problems which are well known in the column generation literature. They are the cutting stock

problem (CSP), the vehicle routing problem with time windows (VRPTW), and the capacitated

lot sizing problem with setup times (CLSPST). For each application, we have implemented three

different column generation strategies. The descriptions of each strategy are the following:

• Standard column generation (SCG): each RMP is solved to optimality by the simplex

method available in the commercial solver CPLEX [27]. The solver is used as a black-

box by invoking the function lpopt(), and all parameters are left at their default values.

Note that by using this function we are not forcing CPLEX to use any particular method

(primal, dual or barrier) and therefore, we rely on the internal rules of CPLEX on this

regard. Nevertheless, we have made preliminary experiments in which we forced each of

the lpopt() methods in the SCG. The primal and the dual simplex methods resulted

in a comparable behaviour in terms of CPU time, being the primal slightly better than

the dual method as the optimal basis remains primal feasible from one outer iteration to

another. The overall performance using the barrier method was inferior than the other

two methods, which shows that an appropriate use of an interior point method is essential

for its success in the column generation context.

• Primal-dual column generation (PDCGM): the suboptimal solutions of each RMP are

obtained by using the interior point solver HOPDM [20], which is able to efficiently provide

well-centred dual points.

• Analytic centre cutting plane (ACCPM): the dual point at each iteration is an approximate

analytic centre of the localization set associated to the current RMP. The applications

were implemented on top of the open-source solver OBOE/COIN [8], a state-of-the-art

implementation of the analytic centre strategy with additional stabilization terms [2].

For each application and for every aforementioned column generation strategy, the subprob-

lems are solved using the same source-code. Also, the SCG and the PDCGM are initialized

with the same columns and, hence, have the same initial RMP. The ACCPM requires an initial

dual point to start from, instead of a set of initial columns. After preliminary tests, we have

chosen initial dual points that led to a better performance of the method on average. We have

used different initial dual points for each application, as will be specified later. To run the tests

we have used a computer with processor Intel Core 2 Duo 2.26 Ghz, 4 GB RAM, and Linux

operating system. For each of the strategies, we stop the column generation procedure when

the relative gap becomes smaller than the default accuracy δ = 10−6.

10

The purpose of comparing the PDCGM against the SCG is to give an idea of how much

it can be gained in overall performance in relation to the standard approach, i.e., without

any stabilization. Undoubtedly, it would be interesting to consider stabilized versions of the

standard column generation in the computational experiments presented here. However, the

lack of publicly available codes of stabilized versions discouraged us to include them at this

stage of our study. For the interested reader, available comparisons between standard and

stabilized column generation are available in the literature for the same applications [39, 7, 6].

The ACCPM was included in our experiments for being a strategy that also relies on an interior

point method (although essentially different). After extensive testing we chose what seems to

be the best possible starting point/parameters setting for OBOE/COIN.

In the applications addressed in this paper, the column generation schemes are obtained

by applying Dantzig-Wolfe decomposition (DWD) to the corresponding integer programming

formulations [10, 42]. In each application, the decomposition leads to an integer MP and also

an integer (pricing) subproblem. Here, we relax the integrality of the variables in the integer

MP and then solve it by column generation, which gives a lower bound of the optimal value of

the original formulation. To obtain an integer solution, it would be necessary to combine the

column generation with a branch-and-bound search, which is called a branch-and-price method

[4, 32]. However, this combination is out of the scope of this paper, as we are concerned with

the behaviour of the column generation strategies.

4.1 Cutting stock problem

The one-dimensional CSP consists in determining the smallest number of rolls of fixed width

W that have to be cut in order to satisfy the demands of m pieces which may have different

widths [17]. The coefficient matrix of its standard integer programming formulation has a

special structure which is well-suited to the application of the DWD [5]. The oracle associated

to the decomposition is given by a set of n subproblems, where n is an upper bound for the total

number of rolls. Since the stock pieces have all the same width, these subproblems are identical

and, hence, an aggregated master problem can be used instead. The oracle is then given by an

integer knapsack problem. If the k-best solutions of the knapsack problem are available, for a

given k > 0, then up to k (different) columns can be generated at each call to the oracle (see

[5, 7] for further details about the decomposition). The number of rows in any restricted master

problem is equal to m.

To analyse the performance of the different column generation strategies addressed here,

we have initially selected 262 instances from the literature in one-dimensional CSP (http:

//www.math.tu-dresden.de/~capad/). Additionally, we have extended our comparisons by

using 180 instances from the so-called triplet and uniform sets proposed in [14]. In all these

cases, the initial RMP consists of columns generated by m homogeneous cutting patterns, which

corresponds to selecting only one piece per pattern, as many times as possible without violating

the width W . In the ACCPM approach and after testing with different values, we have used

the initial guess u0 = 0.5e which has provided the best results for this strategy. The knapsack

problem is solved using a branch-and-bound method described in [31], the implementation of

which was provided by the author.

11

SCG PDCGM ACCPM Total/Iter (Oracle/Iter)
Time (in s) Time (in s) Time (in s)

Class Iter Oracle Total Iter Oracle Total Iter Oracle Total SCG PDCGM ACCPM
S 571.8 2.0 2.6 368.9 1.9 4.8 466.2 3.0 10.5 < 0.01(< 0.01) 0.01(< 0.01) 0.02(0.01)
L 881.3 153.7 155.8 591.4 35.5 44.5 734.0 143.9 182.4 0.18(0.17) 0.08(0.06) 0.25(0.20)

All 671.0 50.6 51.7 440.3 12.7 17.5 552.1 48.2 65.6 0.08(0.07) 0.04(0.03) 0.12(0.09)

Table 1: CSP - Average results on the 262 instances adding one column at a time.

Adding one column to the RMP In the first set of numerical experiments we consider that

only one column is generated by the oracle at each iteration. We have classified the instances

into two sets according to m, the number of pieces. In class S (set of small instances) we have

included 178 instances with dimensions ranging between 15 and 199 pieces while in class L

(set of large instances) we have 84 instances ranging from 200 to 555 pieces. Table 1 presents

for each class and strategy: the average number of outer iterations (Iter), the average CPU

time spent in the oracle (Oracle) and the average CPU time required for the column generation

procedure (Total). The last row (All) presents the average results considering the 262 instances.

Additionally, the last three columns show the average total and oracle times per iteration (in

seconds). The oracle times are shown in parentheses. For the set of small instances, the SCG is

the best overall strategy if we consider the total CPU time, while the PDCGM has the smallest

number of iterations on average. For the set of large instances, the PDCGM is on average 3.5

times faster than the SCG and 4.1 times faster than the ACCPM. If we consider the average

over all the instances, the PDCGM requires fewer outer iterations and less CPU time when

compared with both, the SCG and the ACCPM.

Observe that the RMPs solved at each outer iteration are actually small/medium size linear

programming problems. The number of columns in the last RMP is approximately the number

of initial columns plus the number of outer iterations. Note that for the SCG the time spent

in solving the RMPs is very small in relation to the time required to solve the subproblems,

regardless the size of the instances. It happens because the simplex method available in the

CPLEX solver is very efficient on solving/reoptimizing these linear programming problems. For

the PDCGM and the ACCPM, the proportion of the total CPU time required to solve the RMP

and the oracle varies according to the size of the instances.

Adding k-best columns to the RMP The knapsack solver is able to obtain not only the

optimal solution, but also the k-best solutions for a given k > 0. Hence, we can generate up to k

columns in one call to the oracle to be added to the RMP. It usually improves the performance

of a column generation procedure, since more information is gathered at each iteration. With

this in mind, we carry out a second set of experiments in which we have tested these strategies

for three different values of k: 10, 50 and 100.

In Table 2, we present the results obtained by adding more than one column at each iteration.

For the set of small instances, the SCG is more efficient than the PDCGM and the ACCPM,

regardless the number of columns added at each iteration. However, when the set of large

instances is considered, the PDCGM is on average more efficient than the SCG and the ACCPM

in terms of both outer iterations and CPU time. For instance, if we consider k = 100, the

PDCGM is 2.2 times faster than the SCG and 16.7 times faster than the ACCPM. Similar

12

SCG PDCGM ACCPM Total/Iter (Oracle/Iter)
Time (in s) Time (in s) Time (in s)

k Class Iter Oracle Total Iter Oracle Total Iter Oracle Total SCG PDCGM ACCPM
10 S 149.7 0.9 1.2 102.2 0.8 2.1 253.1 2.5 26.1 0.01(0.01) 0.02(0.01) 0.10(0.01)

L 251.4 75.8 77.0 158.4 15.1 18.3 368.3 82.6 148.7 0.31(0.30) 0.12(0.10) 0.40(0.22)
All 182.3 24.9 25.5 120.2 5.4 7.3 290.0 28.2 65.4 0.14(0.14) 0.06(0.04) 0.23(0.10)

50 S 70.9 1.8 2.1 63.2 2.0 3.8 276.8 10.7 106.3 0.03(0.03) 0.06(0.03) 0.38(0.04)
L 133.7 56.6 58.2 97.1 18.8 23.1 400.2 45.5 277.6 0.44(0.42) 0.24(0.19) 0.69(0.11)

All 91.0 19.4 20.1 74.1 7.4 10.0 316.4 21.9 161.2 0.22(0.21) 0.13(0.10) 0.51(0.07)
100 S 53.7 3.8 4.2 53.9 4.6 7.3 308.4 31.2 221.8 0.08(0.07) 0.14(0.09) 0.72(0.10)

L 101.0 66.3 67.8 82.3 25.4 31.5 449.4 96.4 525.2 0.67(0.66) 0.38(0.31) 1.17(0.21)
All 68.8 23.9 24.6 63.0 11.3 15.1 353.6 52.1 319.1 0.36(0.35) 0.24(0.18) 0.90(0.15)

Table 2: CSP - Average results on the 262 instances adding up to k columns at a time.

SCG PDCGM ACCPM Total/Iter (Oracle/Iter)
Time (in s) Time (in s) Time (in s)

Class Iter Oracle Total Iter Oracle Total Iter Oracle Total SCG PDCGM ACCPM
S(u, t) 31.0 0.9 1.0 34.0 1.7 2.2 143.3 4.8 13.7 0.03(0.03) 0.06(0.05) 0.10(0.03)
L(u, t) 150.6 259.4 263.5 110.2 396.0 405.1 383.3 443.5 1064.3 1.75(1.72) 3.68(3.59) 2.78(1.16)
V (u, t) 442.7 142.1 190.5 255.3 81.4 145.7 - - - 0.43(0.32) 0.57(0.32) -(-)

Table 3: CSP - Average results on 160 instances from triplet and uniform problem sets adding
up to 100 columns at a time.

results are observed when all instances are considered. Again for k = 100, the PDCGM is 1.6

times faster than the SCG and 21.1 times faster than the ACCPM on average. The results

indicate that the best overall strategy to solve the 262 instances is the PDCGM with k = 10,

which is on average 2.8 and 8.9 times faster than the best result found with the SCG (k = 50)

and the ACCPM (k = 10), respectively. Clearly, the behaviour of the ACCPM is adversely

affected by the number of columns added at a time, as the number of iterations and the CPU

time required for solving the RMPs are considerably increased for larger values of k. The main

reason for this behaviour is that the localization set may be drastically changed from one outer

iteration to another if many columns are added. Hence, finding the new analytic centre can be

very expensive in this case.

From Tables 1 and 2 we observe that the average CPU time per iteration spent in the oracle

is smaller for the PDCGM and the ACCPM than for the SCG, which shows the importance of

using well-centred, stable dual solutions. Furthermore, the PDCGM is able to solve the RMPs

more efficiently than the ACCPM and, hence, better total average CPU times per iteration are

achieved.

We have also compared the performances of the column generation strategies by using 160

instances from the triplet and uniform problem sets. The results when 100 columns are added

at each iteration are presented in Table 3. We have grouped the instances in three classes. The

class of small instances, S(u, t), contains 80 instances with m varying from 60 to 120. The

L(u, t) class groups 120 instances with m between 249 and 501. Finally, the last row, V (u, t),

contains 20 instances with m = 1000. Note that for this class of instances, the ACCPM was not

able to solve all the instances so we have omitted results for the ACCPM in the last row. The

columns in Table 3 have the same meaning as for Tables 1 and 2. For these sets of instances, the

SCG performs better than the PDCGM and the ACCPM in classes S(u, t) and L(u, t), however

for very large instances, with m = 1000, PDCGM outperforms the other two strategies in both,

CPU time and the number of outer iterations.

13

SCG PDCGM ACCPM Total/Iter (Oracle/Iter)
Time (in s) Time (in s) Time (in s)

Instance m Iter Oracle Total Iter Oracle Total Iter Oracle Total SCG PDCGM ACCPM
BPP U09498 1005 548 12760.2 12946.8 293 5545.0 5678.0 762 10054.0 21253.6 23.6(23.3) 19.4(18.9) 27.9(13.2)
BPP U09513 975 518 9741.1 9903.8 267 4169.3 4276.7 779 7404.4 19362.0 19.1(18.8) 16(15.6) 24.9(9.5)
BPP U09528 945 541 9011.3 9173.2 276 4810.9 4923.6 740 6586.1 15919.8 17(16.7) 17.8(17.4) 21.5(8.9)
BPP U09543 915 506 7676.4 7797.8 263 3624.1 3723.7 723 5254.7 13448.9 15.4(15.2) 14.2(13.8) 18.6(7.3)
BPP U09558 885 482 5479.0 5585.0 265 2631.4 2730.4 683 4222.4 10860.5 11.6(11.4) 10.3(9.9) 15.9(6.2)
BPP U09573 855 473 4693.7 4771.1 230 1980.2 2054.3 672 3732.1 9793.7 10.1(9.9) 8.9(8.6) 14.6(5.6)
BPP U09588 825 467 4876.0 4950.3 247 1573.9 1649.4 658 3983.1 9376.4 10.6(10.4) 6.7(6.4) 14.2(6.1)
BPP U09603 795 465 3893.9 3961.7 237 1597.8 1668.3 627 3055.2 7503.6 8.5(8.4) 7(6.7) 12.0(4.9)
BPP U09618 765 424 2773.2 2830.4 203 1041.9 1091.6 617 2156.1 6466.7 6.7(6.5) 5.4(5.1) 10.5(3.5)
BPP U09633 735 432 2832.7 2878.1 217 912.4 969.0 595 1750.7 5307.6 6.7(6.6) 4.5(4.2) 8.9(2.9)
BPP U09648 705 424 2611.3 2659.5 209 807.9 856.8 582 1403.0 4466.2 6.3(6.2) 4.1(3.9) 7.7(2.4)
BPP U09663 675 381 2155.8 2187.4 202 613.0 654.0 534 1073.7 3324.9 5.7(5.7) 3.2(3) 6.2(2.0)
BPP U09678 645 376 1745.3 1774.6 173 387.1 417.5 542 1042.8 3395.1 4.7(4.6) 2.4(2.2) 6.3(1.9)
BPP U09693 615 384 1323.6 1347.2 165 400.6 426.8 520 875.9 2773.2 3.5(3.4) 2.6(2.4) 5.3(1.7)

Table 4: CSP - Results on 14 large instances adding up to 100 columns at a time.

Finally, we have further compared the performance of the three approaches, using 14 in-

stances with numbers of items (m) varying from 615 to 1005, which leads to larger restricted

master problems. Table 4 shows the results of this experiment. In all cases, the PDCGM is

faster and requires less iterations than the SCG and the ACCPM, which supports the conclusion

that the relative performance of the PDCGM is improved as the instances become larger.

4.2 Vehicle routing problem with time windows

Consider a set of vehicles available in a depot to serve n customers with known demands. A

vehicle can serve more than one customer in a route, as long as its maximum capacity is not

exceeded. Each customer must be served once within a given time window. Besides, a service

time is assigned for each customer. Late arrivals are not allowed and if a vehicle arrives earlier to

a customer it must wait until the window is open. We assume all the vehicles are identical and are

initially at the same depot, and every route must start and finish at this depot. The objective

is to design a set of minimum cost routes in order to serve all the customers. The column

generation technique has been successfully used in the solution of the VRPTW, after applying

DWD to the standard integer programming formulation [12, 30]. The subproblem obtained

in this case corresponds to an elementary shortest path problem with resource constraints.

Although exact algorithms are available in the literature (see [28] for a survey), solving this

subproblem to optimality may require a relatively large CPU time, especially when the time

windows are wide. As a consequence, a relaxed version has been used in practice, in which

non-elementary paths are allowed (i.e., paths that visit the same customer more than once).

Even though the lower bound provided by the column generation scheme may be slightly worse

in this case, the CPU time to solve the subproblem is considerably reduced. We have adopted

this approach in our three implementations. As it will be observed in the following results, a

large amount of the total CPU time is spent on solving the subproblems. We believe that using

an exact subproblem solver will lead to similar results, although more tests in this direction may

be required to support this belief. Similarly to CSP, an aggregated master problem is used, as

we consider identical vehicles. The restricted master problems have the set covering structure

and the number of rows is equal to n.

We have selected 87 VRPTW instances from the literature (http://www2.imm.dtu.dk/

14

SCG PDCGM ACCPM Total/Iter (Oracle/Iter)
Time (in s) Time (in s) Time (in s)

Class Iter Oracle Total Iter Oracle Total Iter Oracle Total SCG PDCGM ACCPM
S 99.9 0.8 0.8 48.7 0.4 0.5 106.6 0.4 0.6 0.01(0.01) 0.01(0.01) 0.01(< 0.01)
M 279.6 20.0 20.1 101.3 6.1 6.3 162.4 7.5 7.8 0.07(0.07) 0.06(0.06) 0.05(0.05)
L 797.8 469.7 470.4 213.7 127.8 128.6 292.2 163.4 164.8 0.59(0.59) 0.60(0.60) 0.56(0.56)

All 392.4 163.5 163.8 121.3 44.8 45.1 187.1 57.1 57.8 0.42(0.42) 0.37(0.37) 0.31(0.31)

Table 5: VRPTW - Average results on 87 instances adding one column at a time.

~jla/solomon.html), which were originally proposed in [40]. We have divided them in small

(n = 25), medium (n = 50) and large (n = 100) classes. Each class has 29 instances. The

initial columns of the RMP have been generated by n single-customer routes which correspond

to assigning one vehicle per customer. In the ACCPM approach, we have considered the initial

guess u0 = 100.0e which after testing various settings has proven to be the choice which gives

the best overall results for this problem. The subproblem is solved by our own implementation

of the bounded bidirectional dynamic programming algorithm proposed in [38], with state-space

relaxation and identification of unreachable nodes [15].

Adding one column to the RMP In Table 5 we compare the performance of the three

strategies when only one column is added to the RMP at each iteration. For each class and

strategy we present: the number of outer iterations (Iter), the average CPU time to solve

the subproblems (Oracle) and the average total CPU time required for the column generation

(Total). The last row (All) shows the average results considering the 87 instances. In the last

three columns, the average total and oracle time per iteration is presented. In all the classes,

the PDCGM shows the best average performance in the number of iterations and total CPU

time compared with the other two strategies. When the size of the instances increases, the

difference between the SCG and the other two strategies increases as well, with the SCG being

the one which shows the worst overall performance. Considering the 87 instances, the PDCGM

is on average 3.7 and 1.3 times faster than the SCG and the ACCPM, respectively.

Notice that, differently from what was observed on the CSP results, the CPU time required

for solving the RMPs is very small not only for the SCG, but also for the PDCGM and the

ACCPM. In the VRPTW, the RMPs have the set covering structure, which corresponds to a

very sparse coefficient matrix with only binary components, a property that is well exploited

by the solvers.

Adding k-best columns to the RMP Since the subproblem solver is able to provide the

k-best solutions at each iteration, we carried out a second set of experiments. For each column

generation method, we have solved each instance using k equal to 10, 50, 100, 200 and 300. In

Table 6 we show the results of these experiments where column k denotes the maximum number

of columns added at each iteration to the RMP.

For class S, the SCG and the PDCGM have a similar overall performance. Now, if we take

into account classes M and L, the PDCGM seems to be consistently more efficient than the

other two approaches in both, number of outer iterations and total CPU time, for any k. The

same conclusion is obtained considering all the 87 instances. For all the strategies and values

of k, the PDCGM with k = 200 is the most efficient setting on average, as it is 1.6 and 4.5

15

SCG PDCGM ACCPM Total/Iter (Oracle/Iter)
Time (in s) Time (in s) Time (in s)

k Class Iter Oracle Total Iter Oracle Total Iter Oracle Total SCG PDCGM ACCPM
10 S 26.2 0.3 0.3 22.3 0.2 0.2 93.6 0.4 0.5 0.01(0.01) 0.01(0.01) 0.01(< 0.01)

M 66.7 6.1 6.2 37.7 2.4 2.6 122.0 5.4 5.7 0.09(0.09) 0.07(0.06) 0.05(0.04)
L 188.2 113.5 114.1 72.6 41.0 41.6 170.6 90.9 92.1 0.61(0.60) 0.57(0.56) 0.54(0.53)

All 93.7 40.0 40.2 44.2 14.5 14.8 128.7 32.2 32.8 0.43(0.43) 0.33(0.33) 0.25(0.25)
50 S 14.4 0.2 0.2 18.1 0.1 0.2 92.2 0.4 0.5 0.01(0.01) 0.01(0.01) 0.01(< 0.01)

M 33.1 3.5 3.5 26.4 1.6 1.8 120.0 5.3 5.7 0.11(0.11) 0.07(0.06) 0.05(0.04)
L 88.0 54.9 55.5 48.6 26.0 27.0 165.2 85.8 87.8 0.63(0.62) 0.56(0.53) 0.53(0.52)

All 45.2 19.5 19.7 31.0 9.3 9.7 125.8 30.5 31.3 0.44(0.43) 0.31(0.30) 0.25(0.24)
100 S 12.2 0.2 0.2 16.7 0.1 0.2 92.3 0.4 0.6 0.02(0.02) 0.01(0.01) 0.01(< 0.01)

M 26.0 2.9 3.0 23.2 1.4 1.7 119.7 5.4 5.8 0.12(0.11) 0.07(0.06) 0.05(0.05)
L 65.4 41.7 42.4 37.9 20.3 21.5 166.0 84.5 87.5 0.65(0.64) 0.57(0.54) 0.53(0.51)

All 34.5 14.9 15.2 25.9 7.3 7.8 126.0 30.1 31.3 0.44(0.43) 0.3(0.28) 0.25(0.24)
200 S 9.8 0.1 0.2 16.1 0.1 0.3 92.4 0.4 0.6 0.02(0.01) 0.02(0.01) 0.01(< 0.01)

M 20.8 2.3 2.4 21.1 1.2 1.7 120.9 5.3 6.0 0.12(0.11) 0.08(0.06) 0.05(0.04)
L 50.1 33.1 33.9 32.4 16.9 18.7 167.4 82.1 89.2 0.68(0.66) 0.58(0.52) 0.53(0.49)

All 26.9 11.9 12.1 23.2 6.1 6.9 126.9 29.3 31.9 0.45(0.44) 0.30(0.26) 0.25(0.23)
300 S 9.4 0.1 0.1 15.8 0.1 0.3 93.3 0.4 0.6 0.01(0.01) 0.02(0.01) 0.01(< 0.01)

M 18.0 2.1 2.2 20.4 1.2 1.8 121.1 5.2 6.1 0.12(0.12) 0.09(0.06) 0.05(0.04)
L 42.6 28.7 29.7 31.5 16.2 18.8 168.7 79.4 89.9 0.70(0.67) 0.60(0.51) 0.53(0.47)

All 23.3 10.3 10.7 22.6 5.8 7.0 127.7 28.3 32.2 0.46(0.44) 0.31(0.26) 0.25(0.22)

Table 6: VRPTW - Average results on 87 instances adding at most k columns at a time.

times faster than the best results obtained with the SCG (k = 300) and the ACCPM (k = 100),

respectively.

Similarly to the results obtained for the CSP, the well-centred dual points provided by

the PDCGM and the ACCPM lead to smaller average oracle CPU times per iteration when

compared to the SCG. However, the ACCPM achieved now the best results regarding the total

CPU times per iteration, as it can efficiently solve the RMPs in this case, even if up to 300

columns are added at each call to the oracle. The only drawback of this strategy was the

(relatively) large number of outer iterations.

Additionally, we have tested the three described column generation strategies in more chal-

lenging instances with 200, 400 and 600 customers, which were proposed in [26]. Table 7 shows

the results of this second round of experiments, adding 300 columns per iteration. Column

n denotes the number of customers per instance while the remaining columns have the same

meaning as in Table 5. For all these instances, the PDCGM requires less CPU time and fewer

iterations when compared with the SCG and the ACCPM. For the most difficult instance the

PDCGM is 2.1 and 6.4 times faster than the SCG and the ACCPM, respectively. In terms of

time per iteration, the three strategies behave similarly.

SCG PDCGM ACCPM Total/Iter (Oracle/Iter)
Time (in s) Time (in s) Time (in s)

Instance n Iter Oracle Total Iter Oracle Total Iter Oracle Total SCG PDCGM ACCPM
R1 2 1 200 57 36.4 42.7 45 26.0 34.2 423 191.5 201.9 0.7(0.6) 0.8(0.6) 0.5(0.5)
C1 2 1 200 85 32.5 41.0 29 12.6 15.2 169 71.6 81.6 0.5(0.4) 0.5(0.4) 0.5(0.4)

RC1 2 1 200 67 105.3 109.9 57 76.8 88.4 385 566.6 607.1 1.6(1.6) 1.6(1.3) 1.6(1.5)
R1 4 1 400 131 793.3 865.2 84 596.1 640.5 636 2994.5 3075.6 6.6(6.1) 7.6(7.1) 4.8(4.7)
C1 4 1 400 137 453.2 551.9 53 171.4 185.7 272 885.8 908.6 4.0(3.3) 3.5(3.2) 3.3(3.3)

RC1 4 1 400 189 2706.0 2788.8 113 1359.8 1436.1 521 6547.6 6649.4 14.8(14.3) 12.7(12) 12.8(12.6)
R1 6 1 600 222 7226.1 7558.4 118 4142.1 4259.9 897 25599.4 25870.2 34.0(32.6) 36.1(35.1) 28.8(28.5)
C1 6 1 600 183 1920.8 2334.7 48 495.7 510.2 482 5114.7 5172.9 12.8(10.5) 10.6(10.3) 10.7(10.6)

RC1 6 1 600 258 18701.4 18972.3 150 8676.8 8844.3 923 56177.4 56683.3 73.5(72.5) 59.0(57.8) 61.4(60.9)

Table 7: VRPTW - Results on 6 large instances adding 300 columns at a time.

16

4.3 Capacitated Lot-Sizing Problem with Setup Times

Consider m items which must be processed by a single machine in n time periods. The objective

is to minimize the total cost of producing, holding and setting up the machine in order to satisfy

the demands of each item at each time period. Processing and setup times are associated to the

manufacturing of each item and the machine has a limited capacity. This problem is known as

the capacitated lot sizing problem with setup times (CLSPST) [41, 29]. A detailed description

of the decomposition used here can be found in [7]. Each subproblem is a single-item lot sizing

problem with modified production and setup costs, and without capacity constraints. Hence,

it can be solved by the Wagner-Whitin algorithm [45]. Unlike the other two applications, in

the CLSPST m different subproblems are solved in each call to the oracle and a disaggregated

master problem is used. Up to m columns may be added to the RMP at each outer iteration,

one from each subproblem.

We have selected 751 instances proposed in [41] to test the aforementioned column generation

strategies in this application. The SCG and the PDCGM approaches are initialized using a

single-column Big-M technique. The coefficients of this column are set to 0 in the capacity

constraints and set to 1 in the convexity constraints. In the ACCPM approach, after several

settings, we have chosen u0 = 10.0e as the initial dual point. The subproblems are solved using

our own implementation of the Wagner-Whitin algorithm [45].

For each column generation strategy, we found that the 751 instances were solved in less

than 100 seconds. The majority of them were solved in less than 0.1 seconds. From these

results, no meaningful comparisons and conclusions can be derived, so we have modified the

instances in order to challenge the column generation approaches. For each instance and for

each product we have replicated their demands 5 times and divided the capacity, processing

time, setup time and costs by the same factor. Also, we have increased the capacity by 10%.

Note that we have increased the size of the problems in time periods but not in items and

therefore, all instances remain feasible. In Table 8, we show a summary of our findings using

the modified instances. We have grouped the instances in 7 different classes. Small instances

are included in classes E,F and W while classes G,X1,X2 and X3 contain larger instances.

For each class and strategy we present: the number of outer iterations (Iter), the average CPU

time to solve the subproblems (Oracle) and the average total CPU time required for the column

generation (Total). The last row (All) shows the average results considering the 751 modified

instances. Additionally to our usual notation, we have included the number of instances per

class (Inst). From Table 8, we can observe that the strategies have different performances for

the small instances classes and on average each strategy requires less than 2 seconds to solve an

instance from these classes. If we consider the total CPU time, the SCG is slightly better for

classes E and F , and the ACCPM outperforms the other two strategies only in class W . If we

look at the oracle times, we will observe that for small instances the ACCPM and the PDCGM

outperform the SCG due to the reduction in the number of outer iterations. Now, if we observe

the performance in classes containing larger instances (i.e., G, X1, X2 and X3), the PDCGM

outperforms the other two strategies on average. Furthermore, for the 751 instances (All), the

PDCGM reduces the average number of outer iterations and total CPU time when compared

with the ACCPM and the SCG.

17

SCG PDCGM ACCPM(1) Total/Iter (Oracle/Iter)
Time (in s) Time (in s) Time (in s)

Class Inst Iter Oracle Total Iter Oracle Total Iter Oracle Total SCG PDCGM ACCPM
E 58 38.1 0.7 0.7 29.7 0.5 0.9 38.3 0.7 0.8 0.02(0.02) 0.03(0.02) 0.02(0.02)
F 70 33.4 0.6 0.6 28.0 0.5 0.8 40.4 0.7 0.9 0.02(0.02) 0.03(0.02) 0.02(0.02)
W 12 66.4 1.2 1.2 55.3 1.0 1.8 48.6 0.8 1.1 0.02(0.02) 0.03(0.02) 0.02(0.02)
G 71 44.8 6.6 6.6 32.4 3.9 4.7 43.2 5.2 5.6 0.15(0.15) 0.15(0.12) 0.13(0.12)
X1 180 47.5 4.2 4.2 28.8 2.4 3.0 35.2 3.0 3.3 0.09(0.09) 0.10(0.08) 0.09(0.09)
X2 180 42.6 7.4 7.5 20.5 3.5 3.9 27.4 4.6 5.0 0.18(0.17) 0.19(0.17) 0.18(0.17)
X3 180 48.9 12.7 12.8 18.7 4.7 5.2 24.3 6.1 6.7 0.26(0.26) 0.28(0.25) 0.28(0.25)
All 751 44.7 6.6 6.6 25.1 3.0 3.5 32.4 3.9 4.3 0.15(0.15) 0.14(0.12) 0.13(0.12)
(1) A subset of 7 instances could not be solved by the ACCPM using the default accuracy level, δ = 10−6 (4 from
class X2 and 3 from class X3). To overcome this we have used δ = 10−5.

Table 8: CLSPST - Average results on 751 instances adding one column per subproblem at a
time.

SCG PDCGM ACCPM Total/Iter (Oracle/Iter)
Time (in s) Time (in s) Time (in s)

r Iter Oracle Total Iter Oracle Total Iter Oracle Total SCG PDCGM ACCPM
5 27.5 4.7 4.7 11.5 1.5 1.6 22.5 3.1 3.2 0.17(0.17) 0.14(0.13) 0.14(0.14)
10 32.0 62.7 62.7 15.6 20.4 21.0 29.5 49.1 49.5 1.96(1.96) 1.35(1.31) 1.68(1.66)
15 38.4 308.8 308.8 20.0 103.8 106.2 36.4 273.2 274.3 8.04(8.04) 5.31(5.19) 7.54(7.51)
20 45.5 975.6 975.8 25.9 350.5 358.4 42.4 938.7 941.0 21.45(21.44) 13.84(13.53) 22.19(22.14)
All 35.8 337.9 338.0 18.3 119.0 121.8 32.7 316.0 317.0 9.44(9.44) 6.66(6.50) 9.69(9.66)

Table 9: CLSPST - Average results on 11 modified instances adding one column per subproblem
at a time.

In addition to the previous experiment, we have considered a set of more challenging in-

stances. We have taken 3 instances from [41], which were used in [11] as a comparison set, to

test the three column generation strategies. Additionally, we have selected 8 instances from the

sets of larger classes, X2 and X3. This small set of 11 instances1 has been replicated 5, 10, 15

and 20 times following the same procedure described above. The summary of our findings are

presented in Table 9, where column r denotes the factor used to replicate the selected instances.

From the results, we see that for every choice of r, the PDCGM requires fewer outer iterations

and less CPU time on average, when compared with the ACCPM and the SCG. Considering

the 44 instances (11 instances and 4 values for r), the PDCGM is 2.8 and 2.6 times faster than

the SCG and the ACCPM, respectively.

If we consider the average CPU time per iteration for the CLSPST modified instances, the

PDCGM is the most efficient among the studied strategies, while the SCG and the ACCPM have

very similar times per iteration. This observation allows us to think that for some applications

taking optimality and stabilization strategies as separated objectives may not originate any

saving. However, if one can combine both objectives the resulting method can deliver important

savings in terms of CPU time and iterations.

5 Conclusions

In this paper we have presented new developments in theory and applications of the primal-dual

column generation method (PDCGM). The method relies on a primal-dual interior point method

to obtain non-optimal and well-centred solutions of the restricted master problems, leading to

1Instances: G30, G53, G57, X21117A, X21117B, X21118A, X21118B, X31117A, X31117B, X31118A,

X31118B.

18

a more stable approach in relation to the standard column generation technique. Theoretical

support is given to show that the PDCGM converges to an optimum of the master problem, even

though non-optimal dual solutions are used. Also, computational experiments show that the

method is competitive when compared against the standard column generation method (SCG)

and the analytic centre cutting plane method (ACCPM). The experiments were based on linear

relaxations of integer master problems obtained from applying the Dantzig-Wolfe decomposition

to integer programming formulations of three well-known applications, namely the cutting stock

problem (CSP), the vehicle routing problem with time windows (VRPTW) and the capacitated

lot sizing problem with setup times (CLSPST). Different types of master problem formulations

are used on these applications: an aggregated master problem in the CSP, an aggregated master

problem with a set covering structure in the VRPTW, and a disaggregated master problem in

the CLSPST. Additionally, we have tested the addition of different numbers of columns at each

outer iteration, which typically affects the behaviour of the methods.

By analysing the computational results, we conclude that the PDCGM achieves the best

overall performance when compared to the SCG and the ACCPM. Although the SCG is usually

the most efficient for the small instances, we have observed that the relative performance of

the PDCGM improves when larger instances are considered. The comparison of the PDCGM

against the SCG gives and idea of how much can be gained by using non-optimal and well-centred

dual solutions provided by a primal-dual interior point method. One important characteristic of

the PDCGM is that no specific tuning was necessary for each application, while the success of

using a stabilization technique for the SCG and the ACCPM sometimes strongly depends on the

appropriate choice of parameters for a specific application. The natural stabilization available

in the PDCGM due to the use of well-centred interior point solutions is a very attractive feature

of this column generation approach.

Several avenues are available for further studies involving the primal-dual column genera-

tion technique. One of them is to compare the performance of the PDCGM with advanced

column generation methods such as generalized bundle methods and the volume algorithm

[16, 3]. Another, is to combine this technique with a branch-and-bound algorithm to obtain a

branch-and-price framework that is able to solve the original integer programming problems.

Furthermore, since the PDCGM relies on an interior point method, the investigation of new

effective warmstarting strategies applicable in this context is essential for the success of the

framework.

Acknowledgements

The authors are grateful to Dr. Franklina M. B. Toledo for making the instances of the CLSPST

available to us, to Aline A. S. Leão for providing us with the knapsack solver used in the

computational experiments, and to Dr. Raf Jans for facilitating his results of the CLSPST

instances for validation purposes. Also, the authors would like to thank the anonymous referees

for their valuable contributions to this paper.

19

References

[1] D. S. Atkinson and P. M. Vaidya. A cutting plane algorithm for convex programming that

uses analytic centers. Mathematical Programming, 69:1–43, 1995.

[2] F. Babonneau, C. Beltran, A. Haurie, C. Tadonki, and J.-P. Vial. Proximal-ACCPM: A

versatile oracle based optimisation method. In E. J. Kontoghiorghes, C. Gatu, H. Amman,

B. Rustem, C. Deissenberg, A. Farley, M. Gilli, D. Kendrick, D. Luenberger, R. Maes,

I. Maros, J. Mulvey, A. Nagurney, S. Nielsen, L. Pau, E. Tse, and A. Whinston, editors,

Optimisation, Econometric and Financial Analysis, volume 9 of Advances in Computational

Management Science, pages 67–89. Springer Berlin Heidelberg, 2007.

[3] F. Barahona and R. Anbil. The volume algorithm: producing primal solutions with a

subgradient method. Mathematical Programming, 87:385–399, 2000.

[4] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and P. H. Vance.

Branch-and-price: Column generation for solving huge integer programs. Operations Re-

search, 46(3):316–329, 1998.

[5] H. Ben Amor and J. Valério de Carvalho. Cutting stock problems. In G. Desaulniers,

J. Desrosiers, and M. M. Solomon, editors, Column Generation, pages 131–161. Springer

US, 2005.

[6] H. M. T. Ben Amor, J. Desrosiers, and A. Frangioni. On the choice of explicit stabilizing

terms in column generation. Discrete Applied Mathematics, 157(6):1167–1184, 2009.

[7] O. Briant, C. Lemaréchal, P. Meurdesoif, S. Michel, N. Perrot, and F. Vanderbeck. Compar-

ison of bundle and classical column generation. Mathematical Programming, 113:299–344,

2008.

[8] COIN-OR. OBOE: the Oracle Based Optimization Engine, 2010. Available at

http://projects.coin-or.org/OBOE [Accessed 2 October 2010].

[9] M. Colombo and J. Gondzio. Further development of multiple centrality correctors for in-

terior point methods. Computational Optimization and Applications, 41(3):277–305, 2008.

[10] G. B. Dantzig and P. Wolfe. Decomposition principle for linear programs. Operations

Research, 8(1):101–111, 1960.

[11] Z. Degraeve and R. Jans. A New Dantzig-Wolfe Reformulation and Branch-and-Price

Algorithm for the Capacitated Lot-Sizing Problem with Setup Times. Operations Research,

55(5):909–920, 2007.

[12] M. Desrochers, J. Desrosiers, and M. Solomon. A new optimization algorithm for the

vehicle routing problem with time windows. Operations Research, 40(2):342–354, 1992.

[13] O. du Merle, D. Villeneuve, J. Desrosiers, and P. Hansen. Stabilized column generation.

Discrete Mathematics, 194(1-3):229–237, 1999.

20

[14] E. Falkenauer. A hybrid grouping genetic algorithm for bin packing. Journal of Heuristics,

2:5–30, 1996.

[15] D. Feillet, P. Dejax, M. Gendreau, and C. Gueguen. An exact algorithm for the elemen-

tary shortest path problem with resource constraints: application to some vehicle-routing

problems. Networks, 44:216–229, 2004.

[16] A. Frangioni. Generalized bundle methods. SIAM Journal on Optimization, 13:117–156,

May 2002.

[17] P. C. Gilmore and R. E. Gomory. A linear programming approach to the cutting-stock

problem. Operations Research, 9(6):849–859, 1961.

[18] J. L. Goffin, A. Haurie, and J. P. Vial. Decomposition and nondifferentiable optimization

with the projective algorithm. Management Science, 38(2):284–302, 1992.

[19] J.-L. Goffin and J.-P. Vial. Convex nondifferentiable optimization: a survey focused on

the analytic center cutting plane method. Optimization Methods and Software, 17:805–868,

2002.

[20] J. Gondzio. HOPDM (version 2.12) - a fast LP solver based on a primal-dual interior point

method. European Journal of Operational Research, 85:221–225, 1995.

[21] J. Gondzio. Warm start of the primal-dual method applied in the cutting-plane scheme.

Mathematical Programming, 83:125–143, 1998.

[22] J. Gondzio. Interior point methods 25 years later. European Journal of Operational Re-

search, 218(3):587–601, 2012.

[23] J. Gondzio and A. Grothey. Reoptimization with the primal-dual interior point method.

SIAM Journal on Optimization, 13(3):842–864, 2003.

[24] J. Gondzio and A. Grothey. A new unblocking technique to warmstart interior point

methods based on sensitivity analysis. SIAM Journal on Optimization, 19(3):1184–1210,

2008.

[25] J. Gondzio and R. Sarkissian. Column generation with a primal-dual method. Technical

Report 96.6, Logilab, 1996.

[26] J. Homberger and H. Gehring. A two-phase hybrid metaheuristic for the vehicle routing

problem with time windows. European Journal of Operational Research, 162(1):220–238,

2005.

[27] IBM ILOG CPLEX v.12.1. Using the CPLEX Callable Library, 2010.

[28] S. Irnich and G. Desaulniers. Shortest path problems with resource constraints. In G. De-

saulniers, J. Desrosiers, and M. M. Solomon, editors, Column Generation, pages 33–65.

Springer US, 2005.

21

[29] R. Jans and Z. Degraeve. Improved lower bounds for the capacitated lot sizing problem

with setup times. Operations Research Letters, 32(2):185 – 195, 2004.

[30] B. Kallehauge, J. Larsen, O. B. Madsen, and M. M. Solomon. Vehicle routing problem

with time windows. In G. Desaulniers, J. Desrosiers, and M. M. Solomon, editors, Column

Generation, pages 67–98. Springer US, 2005.

[31] A. A. S. Leão. Geração de colunas para problemas de corte em duas fases. Master’s thesis,

ICMC - University of Sao Paulo, Brazil, 2009.

[32] M. E. Lübbecke and J. Desrosiers. Selected topics in column generation. Operations

Research, 53(6):1007–1023, 2005.

[33] R. E. Marsten, W. W. Hogan, and J. W. Blankenship. The boxstep method for large-scale

optimization. Operations Research, 23(3):389–405, 1975.

[34] R. K. Martinson and J. Tind. An interior point method in Dantzig-Wolfe decomposition.

Computers and Operation Research, 26:1195–1216, 1999.

[35] J. Mitchell and B. Borchers. Solving real-world linear ordering problems using a primal-dual

interior point cutting plane method. Annals of Operations Research, 62:253–276, 1996.

[36] J. E. Mitchell. Computational experience with an interior point cutting plane algorithm.

SIAM Journal of Optimization, 10(4):1212–1227, 2000.

[37] J. E. Mitchell. Polynomial interior point cutting plane methods. Optimization Methods

and Software, 18(5):507–534, 2003.

[38] G. Righini and M. Salani. New dynamic programming algorithms for the resource con-

strained elementary shortest path problem. Networks, 51(3):155–170, 2008.

[39] L.-M. Rousseau, M. Gendreau, and D. Feillet. Interior point stabilization for column

generation. Operations Research Letters, 35(5):660–668, 2007.

[40] M. M. Solomon. Algorithms for the vehicle routing and scheduling problems with time

window constraints. Operations Research, 35(2):pp. 254–265, 1987.

[41] W. W. Trigeiro, L. J. Thomas, and J. O. McClain. Capacitated lot sizing with setup times.

Management Science, 35(3):353–366, 1989.

[42] F. Vanderbeck. On Dantzig-Wolfe decomposition in integer programming and ways to

perform branching in a branch-and-price algorithm. Operations Research, 48(1):111–128,

2000.

[43] F. Vanderbeck. Implementing mixed integer column generation. In G. Desaulniers,

J. Desrosiers, and M. M. Solomon, editors, Column Generation, pages 331–358. Springer

US, 2005.

22

[44] F. Vanderbeck and L. A. Wolsey. Reformulation and decomposition of integer programs.

In M. Jünger, T. M. Liebling, D. Naddef, G. L. Nemhauser, W. R. Pulleyblank, G. Reinelt,

G. Rinaldi, and L. A. Wolsey, editors, 50 Years of Integer Programming 1958-2008, pages

431–502. Springer Berlin Heidelberg, 2010.

[45] H. M. Wagner and T. M. Whitin. Dynamic version of the economic lot size model. Man-

agement Science, 5(1):89–96, 1958.

[46] S. J. Wright. Primal-Dual Interior-Point Methods. SIAM, 1997.

23

