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Abstract

At the heart of Newton based optimization methods is a sequence of symmetric linear sys-

tems. Each consecutive system in this sequence is similar to the next, so solving them separately

is a waste of computational effort. Here we describe automatic preconditioning techniques for

iterative methods for solving such sequences of systems by maintaining an estimate of the in-

verse system matrix. We update the estimate of the inverse system matrix with quasi-Newton

type formulas based on what we call an action constraint instead of the secant equation. We im-

plement the estimated inverses as preconditioners in a Newton-CG method and prove quadratic

termination. Our implementation is the first parallel quasi-Newton preconditioners, in full and

limited memory variants. Tests on logistic Support Vector Machine problems reveal that our

method is very efficient, converging in wall clock time before a Newton-CG method without

preconditioning. Further tests on a set of classic test problems reveal that the method is robust.

The action constraint makes these updates flexible enough to mesh with trust-region and active

set methods, a flexibility that is not present in classic quasi-Newton methods.

Keywords: quasi-Newton method, inexact Newton method, preconditioners, linear systems,

conjugate gradients, balancing preconditioner.

1 Introduction

1.1 Motivation

Second order methods for unconstrained nonlinear optimization display several advantages: they

deliver a high accuracy of computations and enjoy a fast (quadratic) local convergence. However,

these benefits may sometimes come at too high a cost. Indeed, evaluating the full Hessian and

solving equations with it is sometimes very expensive and occasionally prohibitive. Several ap-

proaches have been designed over the years to remove some of the drawbacks of the second order

methods while preserving their main advantages. Those include the inexact Newton methods [11]

and a family of quasi-Newton methods [5, 6, 14].

The inexact Newton method admits a (controlled) error in solving the Newton system and

therefore allows to employ matrix-free iterative solvers that only apply the system matrix as an
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operator. These iterative methods only sample the action of the system operator, circumventing

the cost of calculating the entire Hessian matrix. Quasi-Newton methods follow a completely

different logic: they build an approximation of the inverse Hessian using low-rank updates derived

from information on how the Hessian operates along a given direction.

The motivation behind this paper is to combine these two approaches: Use samples of the

Hessian’s action made available from an iterative solver to build an approximation to the inverse

Hessian. This approximation is then used to precondition and solve the subsequent Newton system,

and the process is repeated. The methods proposed in this paper and their analysis are based on

the quasi-Newton literature.

The development of quasi-Newton methods was pioneered by Davidon in the late 50’s [10] and

culminated in the BFGS method, named to honour the independent developments of Broyden [5],

Fletcher [13], Goldfarb [19] and Shanno[37] over the 60’s and early 70’s. Nowadays, these methods

are frequently referred to as members of the Broyden family [5, 6, 14].

Quasi-Newton methods obtain/improve an estimateGk+1 ∈ Sn of the Hessian matrix∇2fk+1 :=

∇2f(xk+1), where Sn is the set of symmetric matrices in Rn×n, f ∈ C2(Rn) and xk+1 ∈ Rn. Their

input is a previous estimate Gk and a desired action for the new estimate Gk+1 : δk → γk, that is

γk = Gk+1δk,

where δk = xk+1 − xk and γk = ∇fk+1 −∇fk. From the fundamental theorem of calculus

γk =

(∫ 1

0
∇2f(xk + tδk)dt

)
δk,

so Gk+1 has the same action as
∫ 1

0 ∇
2f(xk + tδk)dt applied to δk. Alternatively, to obtain an

estimate of the (pseudo-)inverse Hessian, the action is inverted and imposed as Gk+1 : γk → δk.

This setup can produce approximate Hessians (or their inverse) from any observed action,

in particular, when samples of the Hessian’s action d → ∇2fk+1d, with d ∈ Rn, are available.

Though this limitation of incorporating only a 1-dimensional action is a hindrance when meshing

quasi-Newton methods with inexact Newton methods because, in contrast, inexact solvers make

available the sampled action of the Hessian on a subspace (most often with more dimensions than

one). This mismatch has resulted in two strategies:

(i) Limit the inflow of new information to using only the action of the Hessian on a single

direction per iteration [4, 3].

(ii) Use a basis for the subspace and associated Hessian’s action, to sequentially update the

approximation [28]. This is costly and cannot be parallelized.

We present a generalization of quasi-Newton methods which overcomes this drawback.

Instead of sampling the Hessian’s action on a single direction, we sample it on a low dimensional

subspace. This guarantees a much faster influx of information and produces better approximations.

Using a set of directions at one time also allows us to perform updates that exploit block-matrix

operations which can be executed in parallel.
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Since the new methods exploit the Hessian’s action along a set of directions, we call them the

quasi-Newton Action Constrained methods, quNac for short.

The motivation to develop quNac comes from the need to solve large and difficult problems.

Therefore all computational aspects of the method are taken into serious consideration. In par-

ticular, we embed quNac into a Newton-CG scheme. We discuss several variants of a possible

implementation of quNac and provide preliminary computational results which demonstrate its

efficiency on non-trivial medium scale problems.

The next section contains the problem formulation and introduces the notation used in the

paper. From this initial motivation, we have broadened our scope to include preconditioning

techniques for solving a sequence of (slowly) changing symmetric systems of equations as opposed

to focusing on a sequence of Newton systems. Throughout the development we embrace two

possible cases; when quNac approximations are developed either for estimating the system matrix

or its inverse.

1.2 Background

Consider the problem of sequentially solving in dk ∈ Rn the symmetric systems

Qkdk = bk, for k = 1, 2, . . . , (1)

where Qk ∈ Sn and bk ∈ Rn. Here the Qk’s are “slowly changing” in the sense that ‖Qk+1 −Qk‖
is relatively small in some matrix norm. We make no assumption on the {bk} sequence. Such

slowly changing target matrices {Qk} can arise from evaluating a continuous matrix field over

neighboring points, such as is the case with the Hessian matrix in Newton type methods when

step sizes are small. Sequences of symmetric systems also appear when solving nonlinear systems

with the Newton-Raphson method and the Jacobian is symmetric, such as discretizations of the

Nonlinear Schrödinger [39] and the complex Ginzburg-Landau equation [1].

Solving a single system in (1) through iterative methods involves calculating Qk+1Sk, the action

of Qk+1 over a low dimensional sampling matrix Sk ∈ Rn×q, as opposed to requiring the entire

matrix Qk+1. This raises a question of how can one estimate the target matrix Qk+1, or its inverse,

from this sampled action.

Our strategy is to maintain an estimate matrix Gk ∈ Sn of Qk, and use the sampled action

Sk → Qk+1Sk to update Gk and to produce a new estimate Gk+1 ∈ Sn. To determine a unique

Gk+1, and exploit that ‖Qk+1 − Qk‖ is small, we minimize ‖Gk+1 − Gk‖ subject to an action

constraint

Gk+1Sk = Qk+1Sk,

and a symmetry constraint

Gk+1 = GTk+1.

This is known as the least change strategy in the quasi-Newton literature, first proposed by

Greenstadt in 1969 [23]. We henceforth refer to the problem of determining Gk+1 under these

constraints and the least change objective as the least change problem. As the constraint set
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{G ∈ Rn×n |G = GT , GSk = Qk+1Sk} is a subspace of Rn×n, the resulting solution Gk+1 of the

least change problem is a projection of Gk onto this constraint set. This characterization as a pro-

jection is useful for including additional constraints as shown in the classic quasi-Newton setting

by Dennis and Schnabel [12].

The sampled action also offers information on the (pseudo-)inverse of Qk+1 when it exists as

Q−1
k+1(Qk+1Sk) = Sk.

Thus with an estimate Hk ∈ Rn×n of the (pseudo-)inverse of Qk, a new estimate can be obtained

by minimizing the least change objective, imposing the following action constraint

Hk+1(Qk+1Sk) = Sk,

and the symmetry constraint. We use the same technique to calculate the direct or inverse estimate,

the difference being which action we impose, Qk+1Sk → Sk or Sk → Qk+1Sk.
As our main application, we build estimates of inverse Hessian matrices to act as preconditioners

in the Newton-CG method. In the unconstrained minimization of a function f ∈ C2(Rn,R), given

an initial x0 ∈ Rn, the Newton-CG method approximately solves systems,

∇2fkdk = −∇fk,

using the Conjugate Gradient method [24], where ∇2fk := ∇2f(xk) is the Hessian matrix and

∇fk := ∇f(xk), the gradient evaluated at xk ∈ Rn. A line search is then performed to calculate a

step size ak ∈ R+ and iterate

xk+1 = xk + akdk.

In the Conjugate Gradient method, the action of the Hessian matrix is sampled on a low dimen-

sional Krylov subspace. With this sampled action we construct an estimate Gk that is used to

precondition the next Newton system Hk∇2fk+1dk+1 = −Hk∇fk+1.

1.3 Format of the paper

After examining previous work and connections to our own in Section 1.4, in Section 2.1 we solve

the least change problem with a weighted Frobenius norm. Then we explore properties of the

approximation matrices, such as sufficient conditions on the sampling matrix and target matrix to

ensure the quadratic hereditary property and positive definiteness, both important in the context

of preconditioning and in nonlinear optimization. This is followed by Proposition 2.3 that shows

when is the quNac update equivalent to applying a sequence of rank-2 updates. This is used to

establish the connection between sequential BFGS and DFP updates and quNac updates.

We then specialize this updating scheme to Hessian matrices in Section 3 and develop a family

of methods analogous to the Broyden family [5]. In Section 4 we recap the Preconditioned Conju-

gate Gradients (PCG) method, followed by Section 5 where we detail a preconditioned Newton-CG

method which employs quNac in a full or limited memory variant that guarantee descent direc-

tions. We contrast our limited memory quNac implementation to Morales and Nocedal’s L-BFGS
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preconditioner [28], showing that the former is a parallel version of the latter. The quadratic

hereditary of this Newton-PCG method is proved in Section 5.1, followed by promising numerical

tests in Section 6, comparing the new method to Newton-CG, BFGS and L-BFGS on academic

problems and regularized logistic regression problems with real data. Finally we summarize our

findings in Section 7.

1.4 Prior work and Connections

A member of the quNac methods apparently first appeared in domain decomposition methods for

solving PDE’s [27] where it is referred to as a balancing preconditioner. The domain decomposition

methods give rise to a single large linear system which is block structured. After solving systems

defined by the individual blocks, often in the least-squares sense, the balancing preconditioner

aggregates these solutions into a symmetric preconditioner for the original large system. Our

results enrich the balancing preconditioners by showing that they are a projection of a first guess

preconditioner (the Neumman-Neumman preconditioner) onto the space of matrices with desirable

properties (symmetric and having the same action as the (pseudo-)inverse over the direct sum of

the nullspaces of the block matrices). Furthermore, we show that the balancing preconditioner is

but one of a family of preconditioners that have these properties.

The balancing preconditioner has been taken out of the PDE context and tested as a general

purpose preconditioner for solving a single linear system and systems with changing right hand

side by Gratton, Sartenaer and Ilunga [22]. Gratton et al. prove favourable spectral properties of

the balancing preconditioner and study its relation to multiple BFGS updates. Our analysis of the

quadratic hereditary property indicates how one might sequentially update a preconditioner using

the balancing preconditioner formula, which in turn allows us to extend the method to solving

sequences of linear systems where the system matrix also changes.

The problem of solving sequences of linear systems has also been addressed by recycling Krylov

subspace methods [33, 16, 26] and in [18] when only the right-hand side changes. In these methods,

a selected Krylov subspace is retained from a previous system solve that serves as an approximate

eigenspace to improve the conditioning of the next system.

Alternatively, updating a factorized preconditioner is possible, such as partial LU decomposi-

tion for nonsymmetric systems [40] and constraint preconditioners [2].

Building a preconditioner through Frobenius norm probing [25] for a single linear system has

a similar flavour to our preconditioning method, where Hk+1 is obtained by approximately mini-

mizing ‖Hk+1Qk+1 − I‖F subject to an additional action constraint that is incorporated into the

objective function as a penalty. These aforementioned approaches, and addressed problems, are

notably distinct from ours. Rather, our setup is heavily borrowed from that of quasi-Newton

methods.

Schnabel [36] shows how to build estimate matrices that satisfy multiple secant equations, and

in doing so, obtains generalizations of the Powell-Symmetric-Broyden (PSB), BFGS and DFP

formulas. He then goes on to show that these generalizations are the solutions of the least change

problem with a particular weighted Frobenius norm. By swapping multiple secant updates for an
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action constraint, Schnabel’s generalized BFGS and DFP are equivalent to our inverse and direct

quNac method presented in Section 3.

The least change problem was first proposed and solved for the standard quasi-Newton updates

[23, 19] but to the best of our knowledge this paper is the first that solves the problem with a

general action constraint and for any positive definite weighting matrix in the Frobenius norm.

Outside of the preconditioning literature, our proposed matrix optimization problem has con-

nections to low rank matrix completion [7]. With a previous estimate Gk = 0, one can view the

action constraint as a sampling of the target matrix through its action on a subspace. The least

change solution Gk+1 then leads to low rank solutions of at most three times the number of columns

in the sampling matrix.

2 The quasi-Newton action constrained methods

2.1 The least change problem

We now deduce the solution to the least change problem for a general action constraint and

weighted Frobenius norm. This includes and extends Schnabel’s generalized BFGS, DFP and PSB

methods [36].

Given an estimate matrix Gk ∈ Sn, our objective is to calculate an update matrix Ek ∈ Sn

such that Gk + Ek is an estimate of the target matrix Qk+1 ∈ Sn. To ensure that the update

matrix is the least change to Gk, it is obtained by minimizing a weighted Frobenius norm

‖W−1/2
k EkW

−1/2
k ‖2F := Tr

(
W−1
k EkW−1

k ETk
)
, (2)

where Wk ∈ Sn is a positive definite weighting matrix. To impose that Gk+1 remains symmetric,

we use a symmetry constraint

Ek = ETk . (3)

The action constraint is imposed as

EkSk = (Qk+1 −Gk)Sk, (4)

where Sk ∈ Rn×q, q an integer considerably smaller than n and Sk is full rank.

Dropping the iteration index k, collecting the objective function (2), symmetry constraint (3)

and the action constraint (4) we have the least change problem that characterizes our update

min
E

1

2
Tr
(
W−1EW−1ET

)
(5)

ES = RS (6)

E = ET , (7)

where R ∈ Sn is a given symmetric matrix. We now deduce the solution to the least change

problem which is one of the central results of this article. A key definition we repeatedly use is

projWS := S(STWS)−1ST ,
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thus projWS W is an oblique projection onto the space spanned by the columns of S. The following

demonstration is not necessary for the development of the remainder of the article, and the reader

may jump ahead to the solution (16).

The objective function of the least change problem (5) is a convex quadratic function of E and

the constraints are linear. Thus the solution is unique and characterized by the KKT conditions.

The Lagrangian of our least change problem is given by

Φ(E,Λ,Γ) =
1

2
Tr
(
W−1EW−1ET

)
+ Tr

(
ΛT (E −R)S

)
+ Tr

(
Γ(E − ET )

)
,

where Λ ∈ Rn×q and Γ ∈ Rn×n. Differentiating (for a comprehensive list of formulas on matrix

differentiation please consult [35]) in E we have

DEΦ(E,Λ,Γ) =W−1EW−1 + ΛST + ΓT − Γ.

Setting DEΦ(E,Λ,Γ) to zero and isolating E gives

E =W(Γ− ΛST − ΓT )W. (8)

Using the symmetry constraint (7) of E we find that

Γ− ΓT =
1

2

(
ΛST − SΛT

)
.

Substituting back into (8) gives

E = −1

2
W
(
SΛT + ΛST

)
W. (9)

The solution E is now solely determined by ΛST , and we focus on obtaining this matrix. Right

multiplying by S and using the action constraint (6) then left multiplying by W−1 gives

W−1RS = −1

2

(
SΛT + ΛST

)
WS. (10)

If the columns of S are linearly independent then STWS is invertible. Isolating Λ

Λ = −
(
SΛTWS + 2W−1RS

)
(STWS)−1. (11)

Right multiplying by ST we find that

ΛST = −
(
SΛTW + 2W−1R

)
projWS . (12)

From (12) we see that ΛST is equal to an unknown matrix times the matrix projWS . This is a fact

we shall use later on in the demonstration. Left multiplying by STW in (11), we get

STWΛ = −STW
(
SΛTWS + 2W−1RS

)
(STWS)−1,

transposing

ΛTWS = −(STWS)−1
(
STWΛST + 2STRW−1

)
WS.
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Substituting this into (11) we get

Λ =
(
S(STWS)−1

(
STWΛST + 2STRW−1

)
WS − 2W−1RS

)
(STWS)−1

= projWS WΛ + 2
(
projWS RS −W−1RS

)
(STWS)−1.

Right multiplying by ST and isolating ΛST gives

(I − projWS W)ΛST = 2
(
S(STWS)−1STR−W−1R

)
S(STWS)−1ST

= −2
(
I − projWS W

)
W−1RprojWS .

The above gives the
(
I − projWS W

)
projection of ΛST . It remains to find the projWS W projection

of ΛST . Decomposing ΛST according to these projections we find

ΛST = −2
(
I − projWS W

)
W−1RprojWS + projWS WΛST . (13)

From (12) we know that there exists Ψ ∈ Rn×n such that ΛST = ΨprojWS , thus

ΛST = −2
(
I − projWS W

)
W−1RprojWS + projWS WΨprojWS . (14)

Inserting (14) into (12), after some elimination, we find that

2projWS RprojWS = −projWS (WΨ + (WΨ)T )projWS .

The solution is Ψ = −W−1R, upto additions in the nullspace of S. This reduces (13) to

ΛST =
(
projWS W − 2I

)
W−1RprojWS .

Inserting the above in (9) we obtain the solution

E = −1

2

((
WprojWS − 2I

)
RprojWS W +WprojWS R

(
projWS W − 2I

))
=WprojWS R

(
I − projWS W

)
+RprojWS W. (15)

Picking up the iteration index k again, identifying R = Qk+1 −Gk, the projection of Gk onto

the subspace of symmetric matrices that satisfy the action constraint is given by

Gk + Ek = Qk+1 +
(
I −WkprojWk

Sk

)
(Gk −Qk+1)

(
I − projWk

Sk Wk

)
, (16)

which is a rank-3q update applied to Gk that only requires knowing Qk+1Sk and WkSk. The up-

dates (16) include generalization of quasi-Newton methods, analogous to Schnabel’s generalization

with an action constraint in the place of multiple secant equations. The generalized DFP and

Powell-Symmetric-Broyden (PSB) method are recovered by substituting Wk = Qk and Wk = I,

respectively. The generalized BFGS method for estimating the inverse target matrix is recovered

by substituting Wk = Qk and swapping the occurrences of QkSk and Sk, so that QkSk → Sk is

the imposed action constraint. Different from Schnabel’s proof of the generalized BFGS updates,

our solution does not assume that Gk is invertible.

We now move on to sufficient conditions that guarantee the quadratic hereditary property and

positive definiteness of the resulting approximation matrix.
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2.2 The quadratic hereditary property

Iteratively updating an estimate Gk using (16), we would like the estimate matrices to gradually

converge to the target matrices. Though updating Gk using (16) results in an estimate with the

desired action, this update might have a destructive interference on the overall convergence. When

the target matrices change little from one iteration to the next, the key to promoting convergence

is guaranteeing that the new estimate Gk+1 inherits the action of the previous estimate Gk. In

the Proposition below, we prove that this convergence occurs if the target matrix is constant for

a number of iterations, say ρ ∈ N iterations.

For simplicity, assume that we have a sequence of full rank sampling matrices Si ∈ Rn×qi and

ρ, qi ∈ N for i = 1, . . . , ρ such that
∑ρ

i=1 qi = n.

Proposition 2.1 (Quadratic Hereditary) Let G0 ∈ Sn and Gk+1 = Gk + Ek defined by (16)

with Qk = Q ∈ Sn and Wk � 0 for k = 0, . . . , ρ. If STkWkSi = 0 for every i < k ≤ ρ then

Gk+1Si = QSi, for i ≤ k ≤ ρ, (17)

and Gρ+1 = Q.

Proof: The proof is by induction on k that (17) is true. For k = 0, our hypothesis becomes

G1S0 = QS0 which is equivalent to the action constraint (4) with k = 0. Suppose our hypothesis is

true for k−1 and let us analyse the k case. For i = k, (17) is equivalent to the action constraint (4).

For i ≤ k − 1, as STkWkSi = 0, we have

projWk
Sk WkSi = 0.

Using (16) to substitute Gk+1, we have

Gk+1Si = QSi +
(
I −WkprojWk

Sk

)
(Gk −Q)

(
I − projWk

Sk Wk

)
Si

= QSi +
(
I −WkprojWk

Sk

)
(Gk −Q)Si [by induction GkSi = QSi, for i ≤ k.]

= QSi.

This concludes the induction.

To prove Gρ+1 = Q, we need to show that the horizontal concatenation

S1:ρ := [S1, . . . ,Sρ] ,

is nonsingular. To see this, let αi ∈ Rqi , for i = 0, . . . , ρ be such that

ρ∑
i=0

Siαi = 0.

Left multiplying by αρSTρWρ eliminates all terms except αTρ STρWρSραρ = 0, from which the positive

definiteness ofWρ and full rank of Sρ implies that αρ = 0. The same procedure with αρ−1STρ−1Wρ−1
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shows that αρ−1 = 0 and so forth. Therefore, S1:ρ has an inverse. By induction (17) is true for

k = ρ, thus

Gρ+1S1:ρ = QS1:ρ.

Right multiplying the inverse of S1:ρ on both sides shows that Gρ+1 = Q.

To illustrate the proposition, consider the case where Wk = I in (16) which is a generalization

of the PSB method. If the sampling matrices Si for i = 0, . . . , k have mutually orthogonal columns,

then Proposition 2.1 states that by updating using the PSB method the resulting Gk+1 satisfies

the quadratic Hereditary property. One way to achieve this would be to use residuals of a Krylov

method to form the columns of the sampling matrices. Alternatively, if the weighting matrix

satisfies the action constraint, then quadratic hereditary is guaranteed when the columns of the

sampling matrix and resulting action matrix are orthogonal.

Corollary 2.1 If STk QSi = 0 for i < k and WiSi = QSi for i ≤ k then due to Proposition 2.1,

the estimate matrix Gk+1 satisfies the quadratic Hereditary property.

The equivalent statements and proofs when the inverse action constraint QSk → Sk is imposed

follow verbatim by swapping the labels of sampling matrix Sk and the sampled action QSk. For

example, after this label swap, Corollary 2.1 remains true though the weighting matrix need satisfy

WiQSi = Si and the resulting quadratic hereditary is Hk+1QSi = Si for i ≤ k.

In the following section, we prove a sufficient condition for the solutions of the least change

problem (16) to be positive definite.

2.3 Positive definiteness

To apply the approximation matrix as a preconditioner, certain solvers require that it be positive

definite. Positive definiteness is also important in unconstrained minimization: when we replace

the Hessian matrix by an estimate matrix and solve the resulting quasi-Newton system, the search

direction is dk = −Hk∇fk. If Hk is positive definite and we are not at a stationary point ∇fk 6= 0

then dk is guaranteed to be a descent direction as

−∇fTk dk = ∇fTk Hk∇fk > 0.

The next Lemma and Proposition are the main tools for proving positive definiteness of approxi-

mation matrices.

Lemma 2.1 (Action Constrained Positive Definite Matrix) Let P,A,B ∈ Rn×n where A

and B are positive definite over Range(P ) := {Px |x ∈ Rn} and Range(I − P ) respectively, then

the matrix

G = P TAP + (I − P T )B(I − P ),

is positive definite.
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Proof: Let x ∈ Rn, then

xTGx = xTP TAPx+ xT (I − P )TB(I − P )x ≥ 0.

If xTGx = 0 then Px = 0 and (I − P )x = 0 consequentially x = Px+ (I − P )x = 0.

With Lemma 2.1, we characterize when a subset of estimate matrices that result from (16) are

positive definite, namely those with a weighting matrix that satisfies the action constraintWkSk =

Qk+1Sk. With such a weighting matrix, the update (16) takes the form of the update (quNac),

further down the page. Such a weighting matrix always exists when STk Qk+1Sk is positive definite.

To see this, let P = proj
Qk+1

Sk Qk+1 and let

Wk = Qk+1P + (I − P )T (I − P ).

The projection matrix guarantees that WkSk = Qk+1Sk and, by noting that Qk+1P = P TQk+1P,

Lemma 2.1 guarantees that the matrix Wk is positive definite.

Proposition 2.2 (Positive Definite quNac) If G0 is positive definite and the product of the

sampling matrix with the resulting action STk Qk+1Sk is positive definite for k = 0, . . . , ρ ∈ N and

Gk+1 = Qk+1proj
Qk+1

Sk Qk+1 +
(
I −Qk+1proj

Qk+1

Sk

)
Gk

(
I − proj

Qk+1

Sk Qk+1

)
, (quNac)

then Gk is positive definite for k = 0, . . . , ρ+ 1.

Proof: By induction on k, suppose that Gk is positive definite. The first term on the right hand

side of (quNac) can be re-written as

Qk+1proj
Qk+1

Sk Qk+1 = Qk+1proj
Qk+1

Sk Qk+1proj
Qk+1

Sk Qk+1.

In the context of Lemma 2.1, let P = proj
Qk+1

Sk Qk+1, A = Qk+1 and B = Gk, and by noting that

Range(P ) = Range(Sk) then Gk+1 is positive definite.

We call the estimates resulting from (quNac) the quasi-Newton action constrained estimates.

Different from (16) which is a rank-3q update, each quNac estimate is a rank-2q update. Next we

prove an essential Lemma used to connect quNac methods to the BFGS and DFP methods.

From this point on, we apply (quNac) as a function by explicitly referring to the previous

estimate and desired action Gk+1 =quNac(Gk,Sk → Qk+1Sk). In particular, in order the estimate

an inverse matrix, we apply the update Hk+1 =quNac(Hk, Qk+1Sk → Sk) where the order of the

action constraint has been switched. Applying the positive definite Propositions to Hk+1 is simply

a matter of switching the labels of Qk+1Sk and Sk in the statements and proofs.

2.4 Unravelling quNac into sequential rank 2 updates

Under orthogonality conditions between the columns of the sampling matrix and associated action,

the rank-2q quNac update is equivalent to sequentially applying the quNac update built from the

action on the q individual columns of the sampling matrix. This has already been proved for the

BFGS update in [22]. We call this unravelling the quNac update.

For this Proposition and henceforth, we say that V,U ∈ Rn×j , j ∈ N, are A−orthogonal, for

A ∈ Sn, when V TAU = UTAV = 0.

11



Proposition 2.3 (Unraveling) If the columns of Sk := [s1, . . . , sq] are Qk+1−orthogonal, then

Gk+1 = quNac(Gk,Sk → Qk+1Sk) is equal to Gqk where G1
k := Gk and

Gi+1
k = quNac(Gik, si → Qk+1si), for i = 1, . . . q.

Proof: Borrowing Nocedal’s notation [31] for multiple BFGS updates, multiple quNac updates

applied to Gk to obtain Gqk is equivalent to

Gqk = (V1 · · ·Vq)TGk(V1 · · ·Vq)

+ (V2 · · ·Vq)TQk+1proj
Qk+1
s1 Qk+1(V2 · · ·Vq)

+ (V3 · · ·Vq)TQk+1proj
Qk+1
s2 Qk+1(V3 · · ·Vq)

+ · · ·

+Qk+1proj
Qk+1
sq Qk+1, (18)

where Vi = I − proj
Qk+1
si Qk+1 for i = 1, . . . , q. As si and sj are Qk+1−orthogonal for i 6= j,

ViVj = (I − proj
Qk+1
si Qk+1)(I − proj

Qk+1
sj Qk+1)

= (I − proj
Qk+1
sj Qk+1 − proj

Qk+1
si Qk+1)

= (I − proj
Qk+1

[sj ,si]
Qk+1),

where [sj , si] is the column concatenation of sj and si. This applied recursively yields

(Vi+1 · · ·Vq)TQk+1proj
Qk+1
si Qk+1(Vi+1 · · ·Vq)

=
(
I −Qk+1proj

Qk+1

[si+1,...,sq ]

)
Qk+1proj

Qk+1
si Qk+1

(
I − proj

Qk+1

[si+1,...,sq ]Qk+1

)
= Qk+1proj

Qk+1
si Qk+1.

These observations applied to (18) reveal

Gqk = Qk+1

q∑
i=1

proj
Qk+1
si Qk+1 +

(
I −Qk+1proj

Qk+1

[s1,...,sq ]

)
Gk

(
I − proj

Qk+1

[s1,...,sq ]Qk+1

)
= Qk+1proj

Qk+1

Sk Qk+1 +
(
I −Qk+1proj

Qk+1

Sk

)
Gk

(
I − proj

Qk+1

Sk Qk+1

)
which is the quNac update quNac(Gk,Sk → Qk+1Sk).

Proposition 2.3 is used to bridge quNac updates with sequentially applying Broyden family

updates. Next we determine two practical quNac methods that generalize the DFP and BFGS

methods.

3 The inverse and direct quNac methods

Based on (quNac), we determine two methods for estimating the Hessian matrix ∇fk+1 and its

(pseudo-) inverse. The least change objective in the quNac framework can be justified when f is

twice continuously differentiable, that is, ∇2f : x→ ∇2f(x) is a continuous matrix field.

12



With a given estimateGk ≈ ∇2fk, we define the direct quNac update asGk+1 = quNac(Gk,Sk → ∇2fk+1 Sk).
Positive definiteness is guaranteed by Proposition 2.2 when Gk � 0 and when STk ∇2fk+1Sk � 0.

Using the Woodbury formula [41], in the Appendix 8 we show that much like the DFP method,

one can update the inverse when Hk = G−1
k exists and work solely with Hk through the formula

Hk+1 = Hk + proj
∇2fk+1

Sk −Hk∇2fk+1proj
∇2fk+1Hk∇2fk+1

Sk ∇2fk+1Hk. (19)

Alternatively, we can use the quNac update to estimate the inverse Hessian without the need to

go through the Woodbury formula. To build an estimate matrix Hk+1 ∈ Sn of the inverse Hessian

with the appropriate action Hk+1 : ∇2fk+1Sk → Sk, we simply invert the order of the arguments

Sk and ∇2fk+1Sk in the quNac function so that Hk+1 = quNac(Hk,∇2fk+1Sk → Sk). This results

in the inverse quNac update

Hk+1 = proj
∇2fk+1

Sk +
(
I − proj

∇2fk+1

Sk ∇2fk+1

)
Hk

(
I −∇2fk+1proj

∇2fk+1

Sk

)
. (20)

In this inverse perspective, ∇2fk+1Sk is the sampling matrix and Sk the resulting action. Positive

definiteness of Hk+1 follows by Proposition 2.2 when Hk � 0 and when the product of the sampling

matrix and associated action is positive definite, that is, when STk ∇2fk+1Sk � 0.

The BFGS and DFP methods are instances of the inverse and direct quNac, respectively. When

Sk = s ∈ Rn is comprised of a single column, then the inverse (direct) quNac update is equivalent

to applying a BFGS (DFP) update with the action ∇2fk+1s → s
(
s→ ∇2fk+1s

)
which can be

re-written as

Hk+1 =
ssT

sT∇2fk+1s
+

(
I − ssT∇2fk+1

sT∇2fk+1s

)
Hk

(
I − ∇

2fk+1ss
T

sT∇2fk+1s

)
= proj

∇2fk+1
s +

(
I − proj

∇2fk+1
s ∇2fk+1

)
Hk

(
I −∇2fk+1proj

∇2fk+1
s

)
.

That is, applying the BFGS and DFP update using the pair δk, γk ∈ Rn is equivalent to applying

the update quNac(Hk, γk → δk) and quNac(Gk, δk → γk), respectively. Thus we can apply Proposi-

tions 2.2 and 2.1 to show that the resulting estimate is positive definite when Hk � 0, γTk δk > 0 and

quadratic Hereditary holds when {δ1, . . . , δk} are Q−orthogonal where Q is the constant Hessian

matrix. These sufficient conditions are well known for the BFGS and DFP methods, but it is nice

to see how they are derived using the same tools for quNac methods.

Furthermore, when the columns of Sk are ∇2fk+1−orthogonal, then according to Proposi-

tion 2.3 applying the inverse (direct) quNac update is equivalent to sequentially applying BFGS

(DFP) updates built from the ith column of Sk and ∇2fk+1Sk, for i = 1, . . . , q. We use this

observation to implement a new parallelizable method for applying a L-BFGS preconditioner.

We now digress from the main flow of the article to show that, much like the Broyden family,

the direct and inverse quNac methods can be combined to generate a family of methods.

3.1 A Family of quNac methods

We can update a given Hk estimate using a combination

Hλ
k+1 = λkH

D
k+1 + (1− λk)HI

k+1,
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where HI
k+1 and HD

k+1 are given by the inverse (20) and direct (19) estimate, respectively, and

λk ∈ [0, 1]. Manipulating the formulas for HD
k+1 and HI

k+1 we find

Hλ
k+1 = HI

k+1 + λkproj
∇2fk+1

Sk ∇2fk+1Hk

(
I −∇2fk+1proj

∇2fk+1

Sk

)
(21)

+ λHk∇2fk+1

(
proj

∇2fk+1

Sk − proj
∇2fk+1Hk∇2fk+1

Sk ∇2fk+1Hk

)
= HI

k+1 − λkVkV T
k , (22)

where

Vk =
(

proj
∇2fk+1

Sk ∇2fk+1 − I
)
Hk∇2fk+1Sk(STk ∇2fk+1Hk∇2fk+1Sk)−1/2 ∈ Rn×q,

thus analogously to the Broyden family, each member of the quNac family is at most a rank-q

matrix in distance from each other. When HD
k+1 and HI

k+1 are positive definite, then so is Hλ
k+1

as it is a positive sum of two positive definite matrices.

The resulting Hλ
k+1 also satisfies the action constraint as(
λkH

D
k + (1− λk)HI

k

)
∇2fk+1Sk = λSk + (1− λ)Sk = Sk. (23)

When the quadratic Hereditary property holds for HD
k+1 and HI

k+1, it also holds for Hλ
k+1 using

the same observation as in (23) though with Si for i = 1, . . . , k, in the place of Sk.
To implementing a Newton-CG method with a quNac preconditioner we need the details of the

PCG method. Readers familiar with the PCG method can jump to the Restarting Preconditioner

Lemma 4.1.

4 Conjugate Gradients

The conjugate gradients method, developed by Magnus Hestenes and Eduard Stiefel [24], is an

iterative method for finding the solution to

min
x
φ(x) := min

x

1

2
xTQx− xT b, (24)

where x, b ∈ Rn and Q ∈ Sn is a positive definite matrix which guarantees that the critical point

defined by

∇φ(x) = Qx− b = 0, (25)

is the unique solution. With a given x0 ∈ Rn, the method iteratively finds xk, the minimum of φ(x)

restricted to x0 ⊕ Kk, where Kk = span
{
∇φ(x0), Q∇φ(x0), . . . , Qk−1∇φ(x0)

}
is the kth Krylov

subspace. This construction implies that if v ∈ Kk then Qv ∈ Kk+1. The Krylov subspaces are

nested, in that Kk ⊂ Kk+1, thus each xk+1 tends to be an improvement over the previous xk. As

xk is a constrained optima, the gradient rk := ∇φ(xk), which is the residual in equation (25) at

xk, is in K⊥k , the orthogonal complement of Kk.
The CG method searches the Krylov spaces by using Q−orthogonal directions, which are also

known as the conjugate directions. The first conjugate direction is set to p0 := −r0. An exact line
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search is then performed with α0 := arg min{α |φ(x0+αp0)} to obtain a new iterate x1 = x0+α0p0.

For this reason r1 is orthogonal to K1 =span{p0}. Then recursively from xk, a conjugate direction

in Kk+1 is determined by applying the Gram-Schmidt orthogonalization process with inner product

〈·, ·〉Q to −rk,

pk = −rk +
〈rk, pk−1〉Q
〈pk−1, pk−1〉Q

pk−1. (26)

Only the component of rk in the pk−1 direction is removed as rk ∈ K⊥k ⊂ (QKk−1)⊥ which

guarantees that the inner product of rk with each Qp0, . . . , Qpk−2 is zero. An exact line search

over pk is then performed to find xk+1

xk+1 = xk + αkpk, (27)

where αk = −〈rk, pk〉 / 〈pk, pk〉Q . Finally, as φ(x) is a quadratic function, the gradient can be

calculated iteratively

rk+1 = rk + αkQpk. (28)

If a preconditioner M ∈ Sn with M � 0 is used, in other words, if an equivalent positive definite

system to M−1Qx = M−1b is solved, then the Gram-Schmidt process is applied to the sequence

M−1rk instead of rk resulting in

p0 = −M−1r0, (29)

pk = −M−1rk +

〈
M−1rk, pk−1

〉
Q

〈pk−1, pk−1〉Q
pk−1, k > 0. (30)

Before moving on, we need a Lemma that is fundamental in proving the quadratic Hereditary

property of our forthcoming Newton-PCG implementation. The Lemma establishes sufficient

conditions on the preconditioner and a new starting point such that after stopping then starting

the PCG method at this new point, the PCG method continues to build Q-orthogonal search

directions.

Lemma 4.1 (Restarting Preconditioner) Let p0 . . . pk−1 be a set of Q−orthogonal directions.

Let x̄0 ∈ Rn with gradient ∇f(x̄0) such that pTj ∇f(x̄0) = 0, for j = 1, . . . , k − 1. Let M ∈ Rn be a

symmetric positive definite matrix such that

M−1Qpj = pj , for j = 1, . . . , k − 1. (31)

Then by executing t iterations of the PCG method on the system Qx = b, where k+ t+ 1 ≤ n, with

initial point x̄0 and M−1 as a preconditioner, the conjugate directions calculated, namely p̄0, . . . , p̄t,

are such that

{p0 . . . pk−1, p̄0, . . . , p̄t},

is a Q−orthogonal set.
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Proof: Let r̄0, . . . , r̄t be the residual vectors associated with the conjugate directions p̄0, . . . , p̄t,

where r̄0 := ∇f(x̄0). We use induction on t, where our induction hypothesis is that p̄Ti Qpj = 0

and r̄Ti pj = 0 for 1 ≤ j ≤ k − 1 and 0 ≤ i ≤ t. For t = 0, as p̄0 = −M−1r̄0,

p̄T0 Qpj = −r̄T0 M−1Qpj (using (31))

= −r̄T0 pj = 0, for j = 1, . . . , k − 1.

Supposing the induction hypothesis is true for t− 1 and all 0 ≤ j ≤ k − 1, using (28) to calculate

the next residual r̄t, then by induction

r̄Tt pj = r̄Tt−1pj −
〈r̄t−1, p̄t−1〉
〈p̄t−1, p̄t−1〉Q

p̄Tt−1Qpj

= r̄Tt−1pj

= 0.

Using (30) to substitute p̄t

p̄Tt Qpj = −r̄Tt M−1Qpj +

〈
M−1r̄t, p̄t−1

〉
Q

〈p̄t−1, p̄t−1〉Q
p̄Tt−1Qpj

= −r̄Tt M−1Qpj (applying (31))

= −r̄Tt pj
= 0, for j = 1, . . . , k − 1.

We refer to x̄0 and M−1 of Lemma 4.1 as a restart point and restarting preconditioner, respectively.

For further reading on the Preconditioned Conjugate Gradients (PCG) method see [38] for a

pedagogic explanation and [21] for a description that uses oblique projections.

5 Implementing a Newton-PCG quNac method

We use the inverse quNac formula (20) to update a preconditioner within a Newton-PCG method

for finding local minima of f ∈ C2(Rn), where f is possibly non-convex, see Algorithm 5.1.

The inputs are an initial point x0, initial estimate H0 and max q; the maximum number of

columns allowed in Sk at each iteration k. In the first iteration, k = 0, the search direction

d0 = −H0∇f0 is used. To determine xk+1, a line search is used that first checks to see if ak = 1

meets the line search criteria. In our implementation we use a sufficient descent criteria

f(xk + akdk)− f(xk) ≤ c1αkd
T
k∇fk, (32)

with c = 10−4.

The PCG method Algorithm 5.2 is then called with Hk as a preconditioner to approximately

solve ∇2fk+1dk+1 = −∇fk+1 with the number of iterations capped by max q. Further limiting the

number of PCG iterations is a tolerance

PCG tol = min
{

0.01, ‖∇f(xk+1)‖1/2
}
,
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which corresponds to the “super-linear” choice in inexact Newton methods [11]. The conjugate di-

rections calculated during the PCG execution, which we denote by [pq(k), . . . , pq(k+1)−1] henceforth,

are saved to form the columns of Sk. Specifically, the columns of Sk are the ∇2fk+1−normalized

conjugate directions

Sk =

[
pq(k)

‖pq(k)‖∇2fk+1

, . . . ,
pq(k+1)−1

‖pq(k+1)−1‖∇2fk+1

]
. (33)

This normalization is done to simplify calculations, as with this choice proj∇
2fk
Sk = SkSTk . So that

the resulting estimate is positive definite, we only collect conjugate directions so long as negative

curvature is not encountered, line 7 of Algorithm 5.2. This ensures that STk ∇2fk+1Sk � 0. There is

a safeguard for non-convex functions on line 8 of Algorithm 5.2. If negative curvature is encountered

on the first PCG iteration, then the first conjugate direction p0 = −Hk∇fk+1 is returned as the

search direction. Before moving onto the next iteration, the estimate matrix is updated by either

a full or limited memory inverse quNac (20) update, detailed in Sections 5.1 and 5.2, respectively.

In line 6 of Algorithm 5.2, we need to calculate a Hessian-vector product. This can be done

efficiently through reverse AD (Automatic Differentiation) [9]. Naturally there also exist problems

and applications where fast Hessian-vector products are readily available, such as Fast-Fourier

transform, Neural Networks [34] or obvious structure prevailing in the Hessian matrix. As a final

option, the user would be required to write an efficient subroutine for calculating Hessian-vector

products.

Algorithm 5.1: Newton-PCG quNac

Input: H0, x0 ∈ R, max q ∈ N.

1 k = 0, d0 = −H0∇f0
2 while |∇fk|/|∇f0| > ε or |∇fk| > ε do

3 Determine ak through a line-search on {a |xk + adk} starting with ak = 1

4 xk+1 = xk + akdk

5 [S,∇2fk+1S, dk] =PCG (∇2fk+1, Hk, xk+1,max q, PCG tol)

6 Hk+1 = quNac(Hk,∇2fk+1S → S), using Algorithm 5.3

7 k = k + 1
Output: xk.

5.1 Full memory Inverse quNac

Both the limited and full memory variants of the inverse quNac update have been implemented

in a way that promotes parallel linear algebra through Matrix multiplication. To derive these

two variants, let Sk = ∇2fk+1Sk be the n × q matrix stored from executing PCG method in

Algorithm 5.2. With the normalization (33) of Sk, the inverse quNac update can be calculated by

Ek = proj
∇2fk+1

Sk + proj
∇2fk+1

Sk ∇2fk+1Hk(∇2fk+1proj
∇2fk+1

Sk − I)−Hk∇2fk+1proj
∇2fk+1

Sk

= SkSTk + SkSTkHk(SkST − I)−HkSkSTk
= Sk

(
Ip×p + STkHkSk

)
STk −HkSkSTk − SkSTkHk.
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Algorithm 5.2: PCG(A,M−1, y0,max q, PCG tol)

1 r0 = ∇f(y0)

2 z0 = M−1(r0)

3 p0 = −z0
4 y0 = 0

5 for i = 0, . . . ,max q − 1 do

6 ci = 〈Api, pi〉
7 if ci ≤ 0 then

8 if i > 0 then break else y0 = p0

9 αi =
〈ri, zi〉
ci

10 yi+1 = yi + αipi

11 ri+1 = ri + αiApi

12 zi+1 = M−1ri+1

13 βi =
〈ri+1, zi+1〉
〈ri, zi〉

14 pi+1 = −zi+1 + βipi

15 if ‖ri+1‖/‖r0‖ <PCG tol then

16 q = i+ 1

17 break

18 q = min{max q, i}
Output: S =

[
c
−1/2
0 p0, . . . , c

−1/2
0 pq−1

]
, AS, yq.
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This has been coded in Algorithm 5.3 and costs O(n2q) operations. Line 1 is the bottleneck

as it involves a multiplication of a possibly dense n × n matrix with a n × q matrix. The cost of

sequentially applying q BFGS updates is also O(n2q), the important difference is that Algorithm 5.3

can greatly benefit from multithreading and parallel linear algebra, while there is no obvious

parallelism in applying BFGS updates. In fact, if q processors are available in a shared memory

architecture, then the wall clock time of Algorithm 5.3 is O(n2) plus additional overheads of the

parallel paradigm (such as creating and destroying threads).

Algorithm 5.3: Scaled Inverse quNac(H,S → S) update

Input: H ∈ Rn×n and S,S ∈ Rn×q

1 H = HS
2 H = HST

3 E = S
(
Ip×p + STH

)
ST −H −HT

Output: E.

The next Corollary shows that when Algorithm 5.1 uses quNac updates, the resulting precon-

ditioners satisfy the quadratic Hereditary property. Thus when Algorithm 5.1 is applied to convex

quadratic problems, the method terminates after a total of n inner steps of the PCG method.

Due to this following Corollary, we chose to update the preconditioner with all available conju-

gate directions. This is in contrast with the strategies mentioned in [28], where the last conjugate

directions or a uniform sampling of conjugate directions are used to perform L-BFGS updates.

Corollary 5.1 (Quadratic Hereditary for quNac Preconditioner) Assume Algorithm 5.1 is

applied to a convex quadratic function φ(x) with ∇2φ(x) ≡ Q ∈ Rn×n, and consider its kth major

iteration, k ≥ 1. Then Hk+1QSi = Si for i = 0, . . . , k.

Proof: We prove this using the Restarting Preconditioner Lemma 4.1 to show that {p0, . . . , pq(k+1)−1}
is a Q−orthogonal set, then apply Corollary 2.1 and the comment after Corollary 2.1 to prove

quadratic hereditary. The proof is by induction where our hypothesis is that the set {p0, . . . , pq(k)−1}
is a Q−orthogonal set and pTj ∇φ(xk) = 0 for all 0 ≤ j ≤ q(k − 1)− 1.

The base case of our induction is k = 2. The set of vectors {p0, . . . , pq(1)−1} calculated by the

first PCG call are Q−orthogonal by construction. At iteration k = 1, as x1 +d1 is the minimum of

the quadratic φ(x) over x1⊕Kq(1)−1, the step parameter a1 = 1 is accepted. Therefore x2 = x1+d1,

∇φ(x2) ∈ K⊥q(1)−1 and pTj ∇φ(x2) = 0, for j = 0, . . . q(1) − 1. This proves, together with the

action constraint H1Qpj = pj for j = 0, . . . , q(1)− 1, that x2 and H1 are a restarting point and a

restarting preconditioner, respectively, and by Lemma 4.1 the set {p0, . . . , pq(1)−1, pq(1), . . . , pq(2)−1}
is Q−orthogonal. This concludes the proof of our induction hypothesis for k = 2.

Suppose that pTj ∇φ(xk) = 0 for all 0 ≤ j ≤ q(k−1)−1 and {p0, . . . , pq(k)−1} are Q−orthogonal.

ThisQ−orthogonality guarantees by Corollary 2.1 thatHk satisfies the hereditary propertyQHkpi =

pi for i = 0, . . . , q(k)− 1.

At the kth iteration ak = 1 is accepted as xk+dk is the minimum of xk⊕ span{pq(k−1), . . . , pq(k)−1},
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thus pTj ∇φ(xk+1) = 0 for q(k − 1) ≤ j < q(k). For j < q(k − 1) we have

pTj ∇φ(xk+1) = pTj (∇φ(xk) +Qdk)

= pTj

∇φ(xk) +Q

 q(k)−1∑
i=q(k−1)

αipi


= pTj ∇φ(xk) +

q(k)−1∑
i=q(k−1)

αiαjp
T
j Qpi (applying the induction hypothesis)

= 0 + 0.

Thus xk+1 and Hk are a restarting point and a restarting preconditioner, respectively, and by

Lemma 4.1 the vectors {p0 . . . pq(k+1)−1} are Q−orthogonal, which concludes the induction. Fi-

nally, the columns of the sampling matrices are scalar multiples of the conjugate directions, thus

Corollary 2.1 and the comment that follow it guarantees the quadratic hereditary of Hk+1 is

Algorithm 5.1.

5.2 Limited memory quNac

To implement a limited memory variant of the inverse quNac update (20), instead of updating

Hk, in line 6 of Algorithm 5.1, we initiate Hk = Hk+1
0 which is a user specified initial estimate

approximation (or simply the identity in the lack there of). Both Hk+1
0 and Hk+1 must be coded

as operators acting on vectors in Rn instead of explicit matrices. In Algorithm 5.4 we show how

to execute the operation v → Hk+1
0 (v) + Ek(v) without the need to store a matrix. Let Sk and

Sk = ∇2fk+1Sk be the n×q matrices stored from the previous PCG call. Then to calculate Hk+1v

we have

(Hk+1
0 + Ek)v = proj

∇2fk+1

Sk + (I − proj
∇2fk+1

Sk ∇2fk+1)Hk(I −∇2fk+1proj
∇2fk+1

Sk ) (34)

= SkSTk v + (I − SkSTk )Hk+1
0 (I − SkSTk )v

= (Hk+1
0 (v − Sk(STk v)) + Sk

(
(STk v)− STk

(
Hk+1

0 (v − Sk(STk v))
))

,

which can be calculated efficiently by Algorithm 5.4. As the columns of Sk are∇2fk+1−orthogonal,

Proposition 2.3 proves that Algorithm 5.4 has the same result, in exact precision, as applying the

L-BFGS two-loop recursion [31] to the columns of Sk and Sk. To compare the two methods for

applying a preconditioner operator, we have placed the L-BFGS two-loop recursion and LquNac

side-by-side in Figure 1. The only difference between them is that v and r in Algorithm 5.5 are

replaced by a new variable z in Algorithm 5.4. This small change removes the dependency between

the two lines in each for loop in Algorithm 5.5 so that the loops can be calculated as matrix-vector

products instead. Matrix-vector multiplications can be easily sped up through multithreading and

shared memory parallelism, while the two for loops in Algorithm 5.5 are essentially sequential.

As of MATLAB version 7.4 (R2007a), MATLAB automatically multithreads matrix-vector

multiplication, and tests on our quad-core Desktop comparing the time taken to perform a L-BFGS
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Figure 1: Comparing the L-BFGS two-loop recursion with the parallel LquNac.

Input H0 : Rn → Rn,S = [s1, . . . , sq] ,S =
[
s1 . . . sq

]
and v ∈ Rn.

Algorithm 5.4: LquNac

1

2 vS ← ST v;

3 z ← v − SvS ;

4 r ← H0(z);

5

6 rS ← ST r;
7 z ← r + S(vS − rS) ;

Output: z

Algorithm 5.5: two-loop recursion

1 . . . for i = 1, . . . , q do

2 vSi ← sTi v;

3 v ← v − vSi di;
4 r ← H0(v);

5 for i = q, . . . , 1 do

6 rS ← dTi r;

7 r ← r + si(v
S
i − rS);

Output: r

two-loop recursion as compared to the LquNac update revealed that the speed-up can be more

than four fold when there is sufficient number of columns in Sk and Sk, see Figure 2. This speed is

specially important as applying this L-BFGS preconditioner is the bottle-neck in the PCG iteration.

There are a number of outliers in Figure 2 that are difficult to investigate as multithreading is

performed implicitly. To have finer control and better exploit this parallelism an explicit parallel

paradigm needs to be implemented, something we leave for future work. Though we only consider

this limited memory implementation that uses conjugate directions from the previous iteration,

certainly other implementations are possible, for instance, by retaining conjugate directions from

other iterations.

6 Numerical Tests

In our tests we compare five methods. The first two methods are the full and limited memory

inverse quNac update detailed in Algorithms 5.1. We have labelled the two quNac methods

by InverseQuNac and InverseLQuNac, when the full memory variant in Algorithm 5.3 and the

limited variant in Algorithm 5.4 are used to update the estimate, respectively. The third method

is Newton CG implemented according to Algorithm 6.1 of [32] though with an additional maximum

number of CG iterations set to the dimension n of the problem. The last two approaches are the

BFGS and L-BFGS [31] methods. To compare the methods, we embed them in the same line

search framework with a sufficient descent criteria (32) that initially checks if ak = 1 can be

accepted. Though a line search that guarantees the Wolfe conditions is often advised for quasi-

Newton methods, we found this to be inefficient when applied to non-convex functions, as an almost

exhaustive search for correct parameter ak would often occur. The initial Hessian approximation

was set to

H0 =
∇fT0 ∇f0

∇fT0 ∇2f0∇f0
I.
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Figure 2: Time taken by Applying the L-BFGS two-loop recursion in Algorithm 5.5 with the

LquNac update 5.4 where S,S ∈ R500×q is randomly generated and q is increased from 1 to 100

and H0 = I.

In all the limited memory methods the maximum memory, max q in the quNac methods, was set

to 20.

Our MATLAB implementation “quNac” can be downloaded from the Edinburgh Research

Group in Optimization website: http://www.maths.ed.ac.uk/ERGO. In this package one can test

different line search criteria, including Wolfe-conditions, and different initial Hessian H0 approxi-

mations.

We have run tests on a Desktop with 64bit quad-core Intel(R) Core(TM) i5-2400S CPU @

2.50GHz with 6MB cache size with a Scientific Linux release 6.4 (Carbon) operating system.

6.1 Linear SVM with logistic loss

Our first set of tests consists of convex Support Vector Machine (SVM) problems. SVMs have

become a widely successful machine learning method for classification, and thanks to Chih-Chung

Chang and Chih-Jen Lin LIBSVM collection [8], have readily available data sets. We have selected

all data sets for binary classification with less than or equal to 50′000 features (dimensions).

The linear binary SVM problem consists of finding a separating hyperplane fw(x) = 〈w, x〉
with w ∈ Rn that is able to predict the classification of x ∈ X ⊂ Rn, namely, fw(x) > 0 and

fw(x) ≤ 0 for the first and second class, respectively. To this end, known data pairs (xi, yi) are

collected where xi ∈ Rn are feature vectors and yi ∈ {−1, 1} are labels, where yi indicates the

class of xi for i = 1, . . . ,m. The linear classifier w is then selected based on these data pairs by

minimizing a loss function, where a popular choice [42] is the logistic loss function

Lw(y,X) =
m∑
i=1

ln
(
1 + exp(−yi

〈
xi, w

〉
)
)
.

We use one of two regularizers, the `2 norm

R2(w) = ‖w‖22,
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or the pseudo-Huber norm

Rµ(w) = µ

n∑
i=1

√1 +
x2
i

µ2
− 1

 ,

where µ < 1. The pseudo-Huber norm is an approximation to the `1 norm as µ→ 0, and has been

shown to be successful in promoting sparsity in convex regularized problems [15]. The resulting

unconstrained optimization problem is given by

min
w
Lw(y,X) + λRµ(w),

where λ is the regularizer parameter and has been set to λ = 1 in all our tests. Our interest was in

encountering the unique solution to these convex problems thus we solved the SVM problem with a

precision of ε = 10−7. We found through sampling a number of the problems that when increasing

the precision, the solution would become increasingly sparse up to approximately ε = 10−7. Though

optimizing to a high tolerance raises the question of over-fitting, this is not an issue here as the

number of data points far exceeds the number of unknowns features, with the exception of the

problem colon-cancer (62 data points and 2000 features) and duke breast cancer (44 data

points and 7129 features).

In Tables 1 and 2 we have the run times of each method to reach the unique solution with a `2

and pseudo-Huber regularizer, respectively. In each table, “ss” represents “small step”, in that the

method takes steps smaller than ε2 = 10−14 before reaching the solution. While “TO” represents

“Timeout” in that the method exceeded the maximum time allowed, which we set to 10min. Each

row corresponds to a problem and the highlighted cells in the row indicate the smallest run time

among all methods, while the boxed cell is the fastest among the limited memory methods. The

last rows contain the standard deviation and average for each method across all solved problems,

though as each method failed to solve a number of problems, these statistics have to be interpreted

with care.

On the `2 and pseudo-Huber regularized problems, InverseQuNac was the fastest method on

most of the problems. Among the limited memory implementations, when tested on the `2 regu-

larized problems of Table 1, Newton-CG was the fastest on 23, InverseLQuNac was the fastest on

5 and L-BFGS was the fastest on 16 of the 44 problems tested. Though InverseLQuNac was the

most robust, failing to converge on only one problem and with the lowest standard deviation and

average. For the pseudo-Huber regularized problems of Table 2 the Newton-CG, InverseLQuNac

and L-BFGS had the smallest run time on 11, 12 and 20 of the total 44 problems, respectively.

The InverseLQuNac was the robust out of the limited memory methods, failing only to converge

on 3 problems, while Newton-CG and L-BFGS failed on 8 and 6 problems, respectively.

With the pseudo-Huber regularizer, as the sparse solution is approached, the Hessian becomes

ill-conditioned [15]. This affected the stability of Newton CG method. The InverseQuNac and

InverseLQuNac seemed to be the least affected by this ill-conditioning.

To appraise the rate of convergence of each method, in Figure 3 we have plotted the evolution

of the error through time for each method applied to the epsilon normalized problem. The

epsilon normalized problem is the most challenging of our SVM problems. Originating from the
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# features # data InverseQuNac inverseLQuNac Newton CG BFGS LBFGS

problem Time(s) Time(s) Time(s) Time(s) Time(s)

a1a 119 1605 0.90 0.22 0.17 1.74 0.38

a2a 119 2265 0.14 0.24 0.19 2.07 0.48

a3a 122 3185 0.16 0.31 0.27 2.69 0.58

a4a 122 4781 0.18 0.43 0.33 3.12 0.90

a5a 122 6414 0.25 0.52 0.45 4.20 1.09

a6a 122 11220 0.41 0.87 0.72 6.58 2.10

a7a 122 16100 0.60 1.32 1.23 9.71 3.49

a8a 123 22696 0.86 2.57 2.00 14.36 5.56

a9a 123 32561 1.31 4.13 3.46 21.89 9.48

australian 14 690 0.08 0.14 0.10 0.75 1.00

australiansc 14 690 0.05 0.07 0.06 0.21 0.12

breast-cancer 10 683 0.02 0.02 0.02 0.01 0.05

breast-cancersc 10 683 0.12 0.17 0.15 0.20 0.08

cod-rna 8 59535 0.91 1.63 1.99 8.09 8.73

cod-rna.r 8 157413 2.80 4.44 4.66 20.17 16.26

colon-cancer 2000 62 1.65 0.24 0.26 42.68 0.23

covtype.binary 54 581012 10.38 16.36 20.56 2.24 9.70

covtype.binarysc 54 581012 12.22 19.83 19.56 35.45 9.25

diabetes 8 768 0.03 0.04 0.32 0.20 0.18

diabetessc 8 768 0.03 0.04 0.04 0.13 0.05

fourclass 2 862 0.02 0.03 0.02 0.04 0.03

fourclasssc 2 862 0.02 0.02 0.02 0.03 0.02

german.numer 24 1000 0.06 0.12 0.12 0.99 2.31

german.numersc 24 1000 0.04 0.07 0.06 0.40 0.13

gisettesc 5000 6000 84.31 146.27 214.69 TO 161.39

heart 13 270 0.07 0.08 0.06 0.51 168.18

heartsc 13 270 0.02 0.04 0.04 0.15 0.06

ionospheresc 34 351 0.04 0.07 0.06 0.34 0.13

liver-disorders 6 345 0.05 0.07 0.06 0.08 0.05

liver-disorderssc 6 345 0.04 0.07 0.06 0.11 0.03

mushrooms 112 8124 0.18 0.24 0.24 0.76 0.17

sonarsc 60 208 0.04 0.08 0.07 0.25 0.61

splice 60 1000 0.05 0.09 0.09 0.46 ss

splicesc 60 1000 0.04 0.06 0.06 0.13 0.06

svmguide1 4 3089 TO TO TO 0.09 0.10

svmguide3 22 1243 0.04 0.07 0.06 0.40 0.21

w1a 300 2477 0.16 0.20 0.14 1.79 0.13

w2a 300 3470 0.17 0.25 0.20 2.28 0.17

w3a 300 4912 0.21 0.28 0.27 2.47 0.24

w4a 300 7366 0.25 0.37 0.34 3.14 0.32

w5a 300 9888 0.29 0.48 0.46 3.76 0.41

w6a 300 17188 0.54 0.89 0.77 5.87 0.73

w7a 300 24692 0.78 1.28 1.44 8.75 1.12

w8a 300 49749 1.73 3.10 3.50 19.74 2.73

standard deviation 12.94 22.42 32.78 9.44 34.89

average 2.84 4.83 6.50 5.33 9.51

Table 1: Binary classification with `2 regularizer and ε = 10−7 and memory= 20. TO = TimeOut

and ss = small step. The highlighted cells contain the fastest run time, while the boxed cells

contain the fastest run time among the limited memory implementations
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# features # data InverseQuNac inverseLQuNac Newton CG BFGS LBFGS

problem Time(s) Time(s) Time(s) Time(s) Time(s)

a1a 119 1605 3.10 15.98 33.44 6.38 ss

a2a 119 2265 2.89 12.34 54.95 6.41 ss

a3a 122 3185 4.22 13.60 119.53 6.47 7.02

a4a 122 4781 4.03 38.26 176.66 9.05 6.46

a5a 122 6414 3.96 16.34 77.39 11.20 7.43

a6a 122 11220 6.45 18.89 118.58 17.13 10.00

a7a 122 16100 7.82 25.54 188.65 18.51 18.45

a8a 123 22696 8.26 20.89 TO 25.02 30.30

a9a 123 32561 12.14 27.44 TO 34.28 16.68

australian 14 690 0.10 0.14 0.12 0.80 0.93

australiansc 14 690 0.04 0.07 0.07 0.42 0.15

breast-cancer 10 683 0.02 0.02 0.02 0.01 0.05

breast-cancersc 10 683 0.36 0.94 1.61 0.40 0.23

cod-rna 8 59535 0.99 1.87 3.41 7.51 7.21

cod-rna.r 8 157413 2.35 3.96 5.05 17.08 13.44

colon-cancer 2000 62 58.73 26.77 319.28 261.38 436.45

covtype.binary 54 581012 9.24 14.40 18.32 1.95 8.57

covtype.binarysc 54 581012 563.51 TO TO TO 210.94

diabetes 8 768 0.04 0.05 0.36 0.21 0.19

diabetessc 8 768 0.06 0.10 0.12 0.25 0.12

fourclass 2 862 0.03 0.03 0.02 0.03 0.03

fourclasssc 2 862 0.02 0.03 0.03 0.05 0.03

german.numer 24 1000 0.08 0.18 0.16 1.02 2.48

german.numersc 24 1000 0.10 0.16 0.15 0.64 0.23

gisettesc 5000 6000 TO TO TO TO TO

heart 13 270 0.07 0.09 0.08 0.57 0.82

heartsc 13 270 0.08 0.16 0.15 0.36 0.19

ionospheresc 34 351 0.26 0.67 2.29 1.10 ss

liver-disorders 6 345 0.16 0.52 0.64 0.32 0.15

liver-disorderssc 6 345 0.20 1.50 0.88 0.33 0.11

mushrooms 112 8124 11.88 27.17 284.39 11.24 5.36

sonarsc 60 208 0.80 4.54 5.94 ss ss

splice 60 1000 0.13 0.24 0.18 0.62 0.39

splicesc 60 1000 0.11 0.20 0.18 0.47 0.18

svmguide1 4 3089 TO TO TO 0.42 0.17

svmguide3 22 1243 0.78 127.34 5.86 1.79 ss

w1a 300 2477 9.62 30.97 469.14 23.72 46.92

w2a 300 3470 10.30 26.77 236.00 26.79 24.87

w3a 300 4912 15.43 52.27 458.37 32.16 25.74

w4a 300 7366 18.99 58.65 189.74 42.56 47.68

w5a 300 9888 23.30 44.99 TO 32.60 32.83

w6a 300 17188 23.28 38.59 355.64 48.79 46.40

w7a 300 24692 28.32 82.81 TO 81.88 61.41

w8a 300 49749 61.45 124.26 TO 147.90 74.72

standard deviation 86.82 30.85 137.86 47.13 77.27

average 21.28 20.97 86.87 21.46 30.14

Table 2: Binary classification with pseudo-Huber regularizer and ε = 10−7 and memory= 20. TO

= TimeOut and ss = small step. The highlighted cells contain the fastest run time, while the

boxed cells contain the fastest run time among the limited memory implementations
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Newton CG

Figure 3: The epsilon normalized problem with pseudo-Huber regularizer has 400, 000 data

points and 2000 features.

Pascal Large Scale Learning Challenge 20081, epsilon normalized is very ill-conditioned. The

L-BFGS and InversequNac enjoyed the fastest convergence, though the L-BFGS method suffered

from some oscillation thus the quality of its solution depends on when the algorithm is terminated.

In Figure 4a we have plotted the evolution of the error through time for the full memory

methods: InverseQuNac, BFGS, and Newton-CG, applied to cod-rna.r with an `2 regularizer. In

this plot, the InverseQuNac method converges first in just over 2 seconds followed by Newton CG

in 4 seconds. The BFGS method needs more than 16 seconds to converge.

To not forget the benefits of limited memory implementations, we have tested two additional

large-scale problems, rcv1 train-binary and duke breast-cancer, whose dimensions do not

permit a full memory implementation. In Figures 4c and 4b we have plotted the evolution of the

error through time for InverseLQuNac, Newton CG and L-BFGS.

The three methods had similar results on the rcv1 train-binary though the L-BFGS con-

verged first. While on the duke breast-cancer, the InverseLQuNac converged in just over 60

seconds, Newton-CG stagnated at a very high error of 0.4 and L-BFGS rapidly decreased the error

initially, but stagnated at an error of 10−6.

6.2 Classic Academic functions

We selected a number of academic unconstrained problems from [29] based solely on scalability

of the function and availability of the MATLAB code, in that, together with their derivatives

1http://largescale.ml.tu-berlin.de/about/

26

http://largescale.ml.tu-berlin.de/about/


(a) The evolution of the error through time for each method applied to

SVM with `2 regularizer on the cod-rna.r2 problem. The error is on a

logarithmic scale.

(b) The duke breast-cancer problem with

pseudo-Huber regularizer has 44 data points and

7129 features.

(c) The rcv1 train-binary problem with `2

regularizer has 20242 data points and 47236 fea-

tures.

Figure 4: The evolution of error through time for each limited memory method applied to SVM

LR problem
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Problem Description

The Watson function quartic function

The Penalty Function #1 quartic penalty function

The Penalty Function #2 nonlinear penalty function

The Trigonometric Function squared sum of trig. Functions

The Extended Rosenbrock parabolic valley #1 indefinite Hessian matrix

The Extended Powell Singular Quartic Singular Hessian matrix

The Chebyquad Function quadrature of Chebyshev polynomials with no known solution

The Gregory and Karney Tridiagonal Matrix Ill-conditioned positive definite quadratic

The Hilbert Matrix Function Ill-conditioned positive definite quadratic

Table 3: Unconstrained test set description

were readily coded thanks to John Burkardt (http://people.sc.fsu.edu/~jburkardt/m_src/

test_opt/test_opt.html), see Table 3. Among these tests were two convex quadratic functions

with ill-conditioned Q ∈ Rn×n Hessian matrices; The Hilbert matrix QHij = 2/(i + j − 1) for

1 ≤ i, j ≤ n and the Gregory and Karney Tridiagonal Matrix where Q11 = 4, Q12 = −2, Qii = 2,

Qi(i+1) = −2 = Qi(i−1) for i = 2, . . . , n.

Each test specifies an initial starting point from which we run each method until ‖∇f(x)‖/‖∇f(x0)‖ <
ε, which we set to ε = 10−8, or until 10 minutes of time was exhausted. As a number of these

problems were not convex, we employed a resetting and curvature criteria. Before taking a step in

the dk direction, line 4 of Algorithm 5.1, we verify if

− 〈dk,∇fk〉
‖dk‖‖∇fk‖

> ε,

otherwise we reset the estimate Hk = H0 and set dk = −H0∇fk. As many of these test functions

have indefinite Hessian matrices, we terminate the PCG method at line 7 of Algorithm 5.2 when

negative curvature 〈Api, pi〉 < 0 is encountered. If no direction of positive curvature is encountered,

the estimate matrix is not updated, and we repeat the use of the previous estimate matrix Hk+1 =

Hk. This idea of repeating a previous estimate has been analysed in detail and tested in [17].

In Table 4 we report times taken to attain a stationary point for each method. The Newton CG

method was the fastest on 31 out of the 66 problems, while InverseQuNac, InverseLQuNac, BFGS

and L-BFGS methods were the fastest on 15, 5, 7 and 8 problems, respectively. Comparing only

the limited memory methods, Newton-CG, InverseLQuNac and L-BFGS methods were the fastest

on 36, 20 and 8 problems, respectively. The InverseQuNac is the most stable, in that, it reached

a stationary point on the largest number of problems; 65 out of 66. The results show that this

particular adaptation of the quNac method for general non-convex functions was very robust.
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Problem dimension InverseQuNac inverseLQuNac Newton CG BFGS LBFGS

The Penalty Function #2 100 0.16 0.18 0.24 0.59 0.06

125 0.25 0.19 0.28 1.32 0.09

150 0.33 0.26 0.38 2.35 0.12

The Penalty Function #1 100 0.06 0.06 0.05 0.06 0.05

200 0.08 0.06 0.05 0.11 0.05

300 0.10 0.06 0.05 0.17 0.05

400 0.12 0.06 0.05 0.23 0.05

500 0.18 0.07 0.05 0.32 0.05

600 0.22 0.06 0.05 0.39 0.05

700 0.28 0.07 0.05 0.51 0.05

800 0.35 0.07 0.05 0.64 0.05

900 0.45 0.07 0.05 0.79 0.05

1000 0.56 0.07 0.05 0.98 0.05

Rosenbrock # 1 100 0.07 0.09 0.07 0.09 0.08

200 0.09 0.10 0.07 0.19 0.09

300 0.13 0.11 0.08 0.27 0.09

400 0.17 0.11 0.08 0.39 0.10

500 0.25 0.12 0.09 0.52 0.10

600 0.31 0.12 0.09 0.68 0.11

700 0.40 0.12 0.09 0.85 0.11

800 0.50 0.12 0.10 1.05 0.11

900 0.63 0.13 0.10 1.31 0.11

1000 0.77 0.13 0.11 1.64 0.11

The Extended Powell 100 0.08 0.08 0.07 0.12 0.16

200 0.09 0.08 0.08 0.28 0.11

300 0.12 0.09 0.08 0.41 0.11

400 0.15 0.09 0.09 0.58 0.30

500 0.20 0.10 0.09 0.78 0.31

600 0.28 0.10 0.10 1.00 0.32

700 0.33 0.10 0.11 1.24 0.33

800 0.42 0.10 0.11 1.52 0.33

900 0.53 0.11 0.11 1.95 0.34

1000 0.67 0.11 0.12 2.45 0.36

The Watson function 100 1.07 2.43 6.27 0.93 TO

200 7.73 15.35 20.31 1.68 TO

300 9.43 60.54 63.27 2.78 TO

400 65.36 95.45 74.20 3.42 TO

500 97.53 311.24 344.94 5.01 TO

600 71.71 328.34 163.18 6.69 TO

The Chebyquad Function 10 0.28 0.42 0.45 0.20 0.60

20 0.15 0.77 0.74 ss ss

30 0.81 TO 23.21 ss ss

Tridiagonal Matrix Function 100 0.05 0.07 0.02 ss TO

200 0.08 0.14 0.05 ss TO

300 0.17 0.24 0.07 ss TO

400 0.27 0.35 0.10 ss TO

500 0.55 0.48 0.13 ss TO

600 0.75 0.57 0.17 ss TO

700 1.05 0.69 0.20 ss TO

800 1.42 0.82 0.24 ss TO

900 2.18 0.97 0.27 ss TO

1000 3.12 1.13 0.31 ss TO

The Hilbert Matrix Function 100 0.03 0.04 0.05 0.30 19.71

200 0.07 0.08 0.18 0.93 162.88

300 0.12 0.29 0.47 2.15 TO

400 0.21 0.54 0.69 3.46 TO

500 0.34 0.83 1.70 6.07 549.74

600 0.46 1.31 2.30 8.28 538.13

700 0.60 1.78 3.15 11.06 TO

800 0.79 2.28 4.53 14.16 TO

900 1.03 2.97 5.17 17.84 TO

1000 1.22 3.53 5.70 21.76 TO

The Trigonoestimate Function 100 ss 2.44 2.34 ss ss

200 0.61 ss ss ss ss

300 1.50 ss ss ss ss

400 1.70 23.45 17.36 ss ss

standard deviation 16.72 57.71 48.44 4.55 124.76

Table 4: Tests on Academic functions from Table 3 with ε = 10−8 and memory= 20. TO = TimeOut and

ss = small step. The highlighted cells contain the fastest run time, while the boxed cells contain the fastest

run time among the limited memory implementations
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7 Conclusion

We have developed a family of updating schemes that generates a sequence of symmetric matrices

which approximate a desired target sequence of symmetric matrices, where only the action of our

target matrices on certain subspaces is known. Furthermore, the updates have small rank, with

rank at most three times that of the given subspace dimension. This setup allows us to estimate the

inverse of a matrix field, such as the inverse Hessian matrix, only by sampling its action and never

explicitly calculating the inverse. Sufficient conditions for positive definiteness and the quadratic

hereditary property of the estimates are established in this general setting.

The application we focus on is solving sequences of Newton systems; a common building block

of many optimization methods. In this setting, we match the action of our estimate matrix to

that of the Hessian (or inverse) on a Krylov basis of directions of positive curvature. This choice

guarantees positive definiteness of the estimate matrices.

Additionally, we present an implementation for these methods in Algorithm 5.1 and a limited

memory variant in Algorithm 5.4 in a Newton-CG framework. Both update variants exploit parallel

linear algebra, essentially performing multiple BFGS updates in parallel. This is apparently the

first such parallel implementations of BFGS and L-BFGS updates. Quadratic hereditary is proved

for the full memory implementation. Tests of linear SVM problems with Logistic Loss and a

regularizer have shown the inverse quNac method to be very promising, while our tests on Classic

academic problems indicate that it is robust. Certainly more exhaustive tests are required.

The flexibility afforded by the action constraint could potentially be used to incorporate these

methods into various optimization frameworks, such as active set methods where the sampling

matrix is the basis of kernel of active linear constraints. Furthermore, using positive curvature

is not the only possibility. Directions of negative curvature could be explored in a trust region

model [20, 30].

Acknowledgements and funding: The authors would like to thank Felix Lieder for his

suggestions on constructing positive definite matrices, and Artur Gower for proof reading the

manuscript.

References

[1] Igor S Aranson and Lorenz Kramer, The world of the complex Ginzburg-Landau equa-
tion, Reviews of Modern Physics, 74 (2002), pp. 99–143.

[2] Stefania Bellavia, Valentina De Simone, Benedetta Morini, and Daniela di Ser-
afino, On the update of constraint preconditioners for regularized KKT systems, Optimization
Online, (2014).

[3] L. Bergamaschi, R. Bru, A. Mart́ınez, and M. Putti, Quasi-Newton preconditioners
for the inexact Newton method, Electronic Transactions on Numerical Analysis, 23 (2006),
pp. 76–87.

[4] E. G. Birgin and J. M. Mart́ınez, Structured minimal-memory inexact quasi-Newton
method and secant preconditioners for augmented Lagrangian optimization, Computational
Optimization and Applications, 39 (2007), pp. 1–16.

30



[5] CG Broyden, A class of methods for solving nonlinear simultaneous equations, Mathematics
of computation, 19 (1965), pp. 577–593.

[6] C. G. Broyden, The Convergence of a Class of Double-rank Minimization Algorithms 1.
General Considerations, J. Inst. Maths Applics, 76 (1970), pp. 76–90.

[7] Emmanuel J. Candès and Benjamin Recht, Exact Matrix Completion via Convex Opti-
mization, Foundations of Computational Mathematics, 9 (2009), pp. 717–772.

[8] Chih-Chung Chang and Chih-Jen Lin, Libsvm, ACM Transactions on Intelligent Systems
and Technology, 2 (2011), pp. 1–27.

[9] Bruce Christianson, Automatic Hessians by reverse accumulation, IMA J. Numer. Anal.,
12 (1992), pp. 135–150.

[10] W. C Davidon, Variable metric method for minimization, tech. report, A.E.C. Research and
Development Report, ANL-5990, 1959.

[11] Ron S. Dembo, Stanley C. Eisenstat, and Trond Steihaug, Inexact Newton Methods,
SIAM Journal on Numerical Analysis, 19 (1982), pp. 400–408.

[12] J. E. Jr. Dennis and R. B. Schnabel, Least Change Secant Updates for Quasi-Newton
Methods, SIAM Review, 21 (1979), pp. 443–459.

[13] By R Fletcher and M J D Powell, A rapidly convergent descent method for minimiza-
tion, The Computer Journal, 6 (1963), pp. 163—-168.

[14] Rodger Fletcher, A new approach to variable metric algorithms, The Computer Journal,
13 (1970), pp. 317–323.

[15] Kimon Fountoulakis and Jacek Gondzio, A Second-Order Method for Strongly Convex
l1-regularization Problems, tech. report, Technical Report ERGO-13-011., 2013.
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8 Appendix: Updating the Inverse with the Direct approach

Dispensing the iteration subscript k, to find the inverse (G+ E)−1 when a direct quNac update
quNac(G,S → Q S). is applied to G, we use the Woodbury formula [41]

(G+ E)−1 = G−1 −G−1U(I + V G−1U)−1V G−1,

where G,E ∈ Rn×n and E = UV with U, V T ∈ Rn×q. First we express the direct quNac update
as two rank-p updates G+ E1 + E2 where

(G+ E) = G+ (Q−G)projQSQ︸ ︷︷ ︸
E1

−QprojQSG
(
I − projQSQ

)
︸ ︷︷ ︸

E2

, (35)

The first E1 can be split up as E1 = U1V 1 with

U1 = (Q−G)D, V 1 = (STQS)−1STQ.

Applying the Woodbury formula where H ≡ G−1 we get

(G+ E1)−1 = H −H(Q−G)S
(
I + (STQS)−1STQH(Q−G)S

)−1
(STQS)−1STQH

= H −H(Q−G)S
(

(STQS)−1STQHQS
)−1

(STQS)−1STQH

= H −H(Q−G)S
(
STQHQS

)−1 STQH

= H −H(Q−G)projQHQS QH.

The second update can be split up as E2 = U2V 2 with

U2 = −QS(STQS)−1 = (V 1)T , V 2 = STG
(
I − projQSQ

)
.

If we let H̄ = (G+ E1)−1, then applying the Woodbury formula again

((G+ E1) + E2)−1 = H̄

+ H̄QS(STQS)−1︸ ︷︷ ︸
I

I − STG(I − projQSQ
)
H̄QS(STQS︸ ︷︷ ︸

II

)−1


−1

STG
(
I − projQSQ

)
H̄︸ ︷︷ ︸

III

.

When substituting in H̄, simplifications arise such as

H̄QS =
(
H −H(Q−G)projQHQS QH

)
QS

= (HQS −H(Q−G)S)

= S.

Thus

I = H̄QS(STQS)−1 = S(STQS)−1,
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and

II = I − STG
(
I − projQSQ

)
H̄QS(STQS)−1

= I − STG
(
I − projQSQ

)
D(STQS)−1

= I − STG(S − S)(STQS)−1 = I.

For the final part, take note that

STQH̄ = STQ
(
H −H(Q−G)projQHQS QH

)
= STQH − STQ(HQ− I)projQHQS QH

= STQH + STQprojQHQS QH − STQH

= STQprojQHQS QH.

Furthermore

STGH̄ = STG
(
H −H(Q−G)projQHQS QH

)
= ST

(
I + (G−Q)projQHQS QH

)
Thus

III = STG
(
I − projQSQ

)
H̄

= STGH̄ − STGD(STQS)−1STQH̄

= STGH̄ − STGprojQHQS QH

= ST
(
I + (G−Q)projQHQS QH

)
− STGprojQHQS QH

= ST
(
I −QprojQHQS QH

)
.

Bringing all this together yields

(G+ E)−1 =

H̄︷ ︸︸ ︷
H −H(Q−G)projQHQS QH +

I · II · III︷ ︸︸ ︷
projQS

(
I −QprojQHQS QH

)
= H − (HQ− I)projQHQS QH + projQS − projQHQS QH

= H + projQS −HQprojQHQS QH.

With indices

(Gk + Ek)
−1 = Hk + proj

Qk+1

Sk −HkQk+1proj
Qk+1HkQk+1

Sk Qk+1Hk. (36)
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