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A New Unblocking Technique to Warmstart Interior Point Methods based

on Sensitivity Analysis

Abstract

One of the main drawbacks associated with Interior Point Methods (IPM) is the perceived
lack of an efficient warmstarting scheme which would enable the use of information from
a previous solution of a similar problem. Recently there has been renewed interest in the
subject.

A common problem with warmstarting for IPM is that an advanced starting point which
is close to the boundary of the feasible region, as is typical, might lead to blocking of the
search direction. Several techniques have been proposed to address this issue. Most of these
aim to lead the iterate back into the interior of the feasible region - we classify them as either
“modification steps” or “unblocking steps” depending on whether the modification is taking
place before solving the modified problem to prevent future problems, or during the solution
if and when problems become apparent.

A new “unblocking” strategy is suggested which attempts to directly address the issue
of blocking by performing sensitivity analysis on the Newton step with the aim of increasing
the size of the step that can be taken. This analysis is used in a new technique to warmstart
interior point methods: we identify components of the starting point that are responsible for
blocking and aim to improve these by using our sensitivity analysis.

The relative performance of a selection of different warmstarting techniques suggested in
the literature and the new proposed unblocking by sensitivity analysis is evaluated on the
warmstarting test set based on a selection of NETLIB problems proposed by [1]. Warmstart-
ing techniques are also applied in the context of solving nonlinear programming problems
as a sequence of quadratic programs solved by interior point methods. We also apply the
warmstarting technique to the problem of finding the complete efficient frontier in portfolio
management problems (a problem with 192 million variables - to our knowledge the largest
problem to date solved by a warmstarted IPM). We find that the resulting best combined
warmstarting strategy manages to save between 50%-60% of interior point iterations, con-
sistently outperforming similar approaches reported in current optimization literature.
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1 Introduction

Since their introduction, Interior Point Methods (IPMs) have been recognized as an invaluable
tool to solve linear, quadratic and nonlinear programming problems, in many cases outperform-
ing traditional simplex and active set based approaches. This is especially the case for large
scale problems. One of the weaknesses of IPMs is, however, that unlike their active set based
competitors, they cannot easily exploit an advanced starting point obtained from the preceding
solution process of a similar problem. Many optimization problems require the solution of a se-
quence of closely related problems, either as part of an algorithm (e.g. SQP, Branch & Bound) or
as a direct application to a problem (e.g. finding the efficient frontier in portfolio optimization).
Because of their weakness in warmstarting, IPMs have not made as big an impact in these areas.

Over the years there have been several attempts to improve the warmstarting capabilities of
interior point methods [5, 8, 15, 6, 1, 2, 10]. All of these, apart from [1, 2], involve remembering
a primal/dual iterate encountered during the solution of the original problem and using this (or
some modification of it) as a starting point for the modified problem. All of these papers (apart
from [2]) deal with the LP case, whereas we are equally interested in the QP case.

A typical way in which a ’bad’ starting point manifests itself is blocking: The Newton direction
from this point leads far outside the positive orthant, resulting in only a very small fraction
of it to be taken. Consequently the next iterate will be close to the previous one, and the
search direction will likely block again. In our observation this blocking is usually due only to
a small number of components of the Newton direction. We therefore suggest an unblocking
strategy which attempts to modify these blocking components without disturbing the primal-
dual direction too much. The unblocking strategy is based on performing sensitivity analysis of
the primal-dual direction with respect to the components of the current primal/dual iterate.

As a separate thread to the paper it is our feeling that a wealth of warmstarting heuristics have
been proposed by various authors, each demonstrating improvements over a cold started IPM.
However there has been no attempt at comparing these in a unified environment, or indeed
investigating how these might be combined. This paper will give an overview of some of the
warmstarting techniques that have been suggested and explore what benefit can be obtained
from combining them.

This will also set the scene for evaluating the new unblocking strategy derived in this paper,
within a variety of different warmstarting settings.

We continue by stating the notation used in this paper. In Section 3, we review traditionally
used warmstart strategies. In Section 4 we present the new unblocking techniques based on
sensitivity analysis. Numerical comparisons as to the efficiency of the suggested techniques are
reported in Section 5. In Section 6, we draw our conclusions.

2 Notation & Background

The infeasible primal dual interior point methods applied to solve the quadratic programming
problem

min cT x + 1
2xT Qx

s.t. Ax = b
x ≥ 0.

(1)
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can be motivated from the KKT conditions for (1)

c + Qx − AT y − z = 0 (2a)

Ax = b (2b)

XZe = µe (2c)

x, z ≥ 0, (2d)

where the zero right hand side of the complementarity products has been replaced by the cen-
trality parameter µ > 0. The set of solutions to (2) for different values of µ is known as the
central path. It is beneficial in this context to consider two neighborhoods of the central path,
the N2 neighborhood

N2(θ) := {(x, y, z) : Ax = b, AT y − Qx + z = c, ‖XZe − µe‖2 ≤ θ}

and the wider N−∞ neighborhood

N−∞(γ) := {(x, y, z) : Ax = b, AT y − Qx + z = c, xizi ≥ γµ}.

Assume that at some stage during the algorithm the current iterate is (x, y, z). Our variant of
the predictor-corrector algorithm [4, 7] will calculate a predictor direction (∆xp, ∆yp, ∆zp) as the

Newton direction for system (2) and a small µ-target (µ0 ≈ 0.001xT z
n

):

−Q∆xp + AT ∆yp + ∆zp = c + Qx − AT y − z = ξc

A∆xp = b − Ax = ξb

X∆zp + Z∆xp = µ0e − XZe = rxz

(3)

which can be further condensed by using the third equation to eliminate ∆zp

[
−Q − X−1Z AT

A 0

] [
∆xp

∆yp

]
=

[
rx

ry

]
:=

[
ξc − X−1rxz

ξb

]
(4a)

∆zp = X−1rxz − X−1Z∆xp. (4b)

As in Mehrotra’s predictor-corrector algorithm [13] we calculate maximal primal and dual step-
sizes for the predictor direction

ᾱp = max{α > 0 : x + α∆xp ≥ 0}, ᾱd = max{α > 0 : z + α∆zp ≥ 0}

and determine a target µ-value by

µ =
[(x + ᾱp∆xp)

T (z + ᾱd∆zp)]
3

n(xT z)2
.

With these we compute the corrector direction (∆xc, ∆yc, ∆zc) by

AT ∆yc + ∆zc = 0
A∆xc = 0
X∆zc + Z∆xc = (µ − µ0)e − ∆Xp∆Zpe

(5)

and finally the new primal and dual stepsizes and the new iterate (x+, z+) as

αp = 0.995max{α > 0 : x + α(∆xp + ∆xc) ≥ 0}
αd = 0.995max{α > 0 : z + α(∆zp + ∆zc) ≥ 0}
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x+ = x + αp(∆xp + ∆xc), z+ = z + αd(∆zp + ∆zc).

Our main interest is generating a good starting point for the QP problem (1) - the modified
problem - from the solution of a previously solved similar QP problem

min c̃T x + 1
2xT Q̃x

s.t. Ãx = b̃
x ≥ 0

(6)

the original problem. The difference between the two problems, i.e., the change from the original
problem to the second problem is denoted by

(∆A, ∆Q, ∆c, ∆b) = (A − Ã,Q − Q̃, c − c̃, b − b̃).

3 Warmstart Heuristics

Unlike the situation in the Simplex Method, for Interior Point Methods it is not a good strategy
to use the optimal solution of a previously solved problem as the new starting point for a similar
problem. This is because problems are often ill-conditioned, hence the final solution of the
original problem might be far away from the central path of the modified problem. Furthermore
[9] demonstrates that the predictor direction tends to be parallel to nearby constraints, resulting
in difficulties to drop misidentified nonbasic variables.

Over the years numerous contributions [11, 5, 8, 15, 6] have addressed this problem, with renewed
interest in the subject from [1, 2, 10] over the last year. With the exception of [1, 2] which use an
L1-penalty reformulation of the problem that has better warmstarting capabilities, all remedies
follow a common theme: They identify an advanced center [5], a point close to the central path
of the original problem (usually a non-converged iterate), and modify it in such a manner that
the modified point is close to the central path of the new problem. Further in the first few
iterations of the reoptimization additional techniques which address the issue of getting stuck at
nearby constraints may be employed. In this paper these will be called unblocking heuristics.
The generic IPM warmstarting algorithm is as follows:
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Algorithm: Generic Interior Point Warmstart

1. Solve the original problem (6) by an Interior Point Algorithm. From it choose
one (or a selection of) iterates (x̃, ỹ, z̃, µ̃) encountered during the solution pro-
cess. We will assume that this iterate (or any one of these iterates) satisfies

c̃ + Q̃x̃ − ÃT ỹ − z̃ = 0

b̃ − Ãx̃ = 0

x̃iz̃i ≈ µ̃ ∀i = 1, . . . , n.

2. Modify the chosen iterate to obtain a starting point (x, y, z, µ) for the modified
problem.

3. Solve the modified problem by an Interior Point Algorithm using (x, y, z, µ)
as the starting point. During the first few iterations of the IPM a special
unblocking step might be taken.

The question arises as to what should guide the construction of modification and unblocking
steps. It is well known that for a feasible method (i.e., ξb = ξc = 0), a well centered point (i.e.,
in N2(θ) or N−∞(γ)) and a small target decrease (µ / µ0), the Newton step is feasible. Analysis
by [15] and [6] identifies two factors that lead to the ability of IPMs to absorb infeasibilities
ξb, ξc present at the starting point. Firstly, the larger the value of µ the more infeasibility can
be absorbed in one step. Secondly, the centrality of the iterate: from a well centered point the
IPM can again absorb more infeasibilities. Using these general guidelines, a number of different
warmstarting techniques have been suggested. We review some of them here:
Modification Steps:

• Shift small components: [11] shift x̃, z̃ by hx = εD−1e, hz = εDe, where D = diag{‖aj‖1}
and aj is the j-th column of A to ensure xizi ≥ γµ for some small γ > 0, i.e., improve
centrality by aiming for a point in N−∞(γ).

• [15, 10] suggest a Weighted Least Squares Step (WLS) that finds the minimum step
(with respect to a weighted 2-norm) from the starting point, to a point that is both
primal and dual feasible. The weighted least squares step does not necessarily preserve
positiveness of the iterate. To overcome this, [15] suggest keeping a selection of potential
warmstart iterates and retracing to one corresponding to a large µ, which will guarantee
that the WLS step is feasible. Since we do not want to remember several different points
from the solution of the original problem, we will take a fraction of the WLS step should the
full step be infeasible. Mehrotra’s starting point [13] can be seen as a (damped) weighted
least squares step from the origin.

• [15, 10] further suggest a Newton Modification Step, i.e., an interior point step (3)
correcting only for the primal and dual infeasibilities introduced by the change of problem,
with no attempt to improve centrality: (3) is solved with rxz = 0. Again only a fraction
of this step might be taken.

Unblocking Heuristics
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• Splitting Directions: [6] advocate computing separate search directions aimed at achiev-
ing primal feasibility, dual feasibility, and centrality separately. These are combined into
the complete step by taking the maximum of each step that can be taken without violat-
ing the positivity of the iterates. A possible interpretation of this strategy is to emulate a
gradual change from the original problem to the modified problem where for each change
the modification step is feasible.

• Higher Order Correctors: The ∆Xp∆Zp component in (5) is a correction for the
linearization error in XZe − µe = 0. A corrector of this type can be repeated several
times. [5] employs this idea by additionally correcting only for small complementarity
products to avoid introducing additional blocking. This is used in [6] as an unblocking
technique with the interpretation of choosing a target complementarity vector t̄ ≈ µe in
such a way that a large step in the resulting Newton direction is feasible, aiming to absorb
as much of the primal/dual infeasibility as possible in the first step.

• Change Diagonal Scaling: [9] investigates changing elements in the scaling matrix
Θ = XZ−1 to make nearby constraints repelling rather than attracting to the Newton
step. However, we are not aware of any implementation of this technique in a warmstarting
context.

A number of additional interesting techniques are listed here and described below:

• Dual adjustment: Adjust advanced starting point z̃ to compensate for changes to c, A
and Q in the dual feasibility constraint (2a).

• Additional centering iterations before the advanced starting point is used.

• Unblocking of the step direction by sensitivity analysis.

We will give a brief description of the first two of these strategies. The third (Unblocking by
Sensitivity Analysis) is the subject of Section 4.

Dual adjustment
Using (x̃, ỹ, z̃) as a starting point in problem (1) will result in the initial dual infeasibility

ξc = c + Qx̃ − AT ỹ − z̃ = ∆c + ∆Qx̃ − ∆AT ỹ.

Setting z = z̃ + ∆z, where ∆z = ∆c + ∆Qx̃ − ∆AT ỹ would result in a point satisfying the dual
feasibility constraint (2a). However the conditions z ≥ 0 and xizi ≈ µ are likely violated by this,
so instead we set

zi = max{z̃i + ∆zi,min{√µ, z̃i/2}}
i.e., we try to absorb as much of the dual infeasibility into z as possible without decreasing z
either below

√
µ or half its value.

Adjusting the saved iterate (x̃, ỹ, z̃) in a minimal way to absorb primal/dual infeasibilities is
similar in spirit to the weighted least squares modification step. Unlike this, however, direct
adjustment of z is much cheaper to compute.

Additional centering iterations
The aim of improving the centrality of the saved iterate can also be achieved by performing an
additional pure centering iteration, i.e., choose ξc = ξb = 0, µ0 = xT z/n in (3), in the original
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problem before saving the iterate as a starting point for the new problem. This pure centering
iteration could be performed with respect to the original or the modified problem. In the latter
case, this is similar in spirit to the Newton Modification Step of [15, 10] (whereas [15, 10] use
rxz = 0, we use rxz = µ0e − X̃Z̃ with µ0 = x̃T z̃/n. In the case of a perfectly centered saved
iterate - as we hope to achieve at least approximately by the previous centering in the original
problem - these two are identical). We refer to these as centering iteration at the beginning of
solving the modified problem or at the end of solving the original problem.

In the next section we will derive the unblocking strategy based on sensitivity analysis.

4 Unblocking by Sensitivity Analysis

4.1 Sensitivity Analysis

In this section we will lay the theoretical foundations for our proposed unblocking strategy.
Much of it is based on the observation that the advanced starting information (x, y, z, µ) with
which to start the solution of the modified problem is to some degree arbitrary. It is therefore
possible to treat it as parameters to the solution process and to explore how certain properties
of the solution process change as the starting point is changed. In particular we are interested
in the primal and dual stepsizes that can be taken for the Newton direction computed from this
point.

At some iterate (x, y, z) of the IPM, the primal-dual direction (∆x, ∆y, ∆z) is obtained as the
solution to the system (3) or (4) for some target value µ0. If we think of (x, y, z) as the advanced
starting point, the step (∆x, ∆y, ∆z) can be obtained as a function of the current point (x, y, z).
The aim of this section is to derive a procedure by which the sensitivity of ∆x(x, y, z), ∆y(x, y, z),
∆z(x, y, z), that is the first derivatives of these function can be computed.

First note that the value of y has no influence on the new step ∆x, ∆z. This is because after
substituting for ξb, ξc, rxz in (4a)

[
−Q − X−1Z AT

A 0

] [
∆x
∆y

]
=

[
c + Qx − AT y − µX−1e

b − Ax

]

we can rewrite this as
[
−Q − X−1Z AT

A 0

] [
∆x

y(k+1)

]
=

[
c + Qx − µX−1e

b − Ax

]
(7)

with ∆y = y(k+1)−y. In effect (7) solves for the new value of y(k+1) = y(k)+∆y directly, whereas
all influence of y onto ∆x, ∆z has been removed. Notice also that only the step components in
x, z variables can lead to a blocking of the step, therefore we are only interested in the functional
relationship and sensitivity for the functions ∆x = ∆x(x, z), ∆z = ∆z(x, z). To this end we start
by differentiating with respect to xi in (3):

−Q
d∆x

dxi
+ AT d∆y

dxi
+

d∆z

dxi
= Qei (8a)

A
d∆x

dxi
= −Aei (8b)

X
d∆z

dxi
+ Z

d∆x

dxi
+ ∆Zei = −Zei. (8c)
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Note that this result is independent of the value of µ0 that is used as a target. Similarly
differentiating with respect to yi yields

−Q
d∆x

dyi
+ AT d∆y

dyi
+

d∆z

dyi
= −AT ei (9a)

A
d∆x

dyi

= 0 (9b)

X
d∆z

dyi

+ Z
d∆x

dyi

= 0 (9c)

and finally differentiating with respect to zi yields

−Q
d∆x

dzi
+ AT d∆y

dzi
+

d∆z

dzi
= −ei (10a)

A
d∆x

dzi
= 0 (10b)

X
d∆z

dzi

+ Z
d∆x

dzi

+ ∆Xei = −Xei. (10c)

Taking all three systems together we have




−Q AT I
A 0 0
Z 0 X







d∆x
dx

d∆x
dy

d∆x
dz

d∆y
dx

d∆y
dy

d∆y
dz

d∆z
dx

d∆z
dy

d∆z
dz


 =




Q −AT −I
−A 0 0

−Z − ∆Z 0 −X − ∆X


 . (11)

Under the assumption that A has full row rank, the system matrix is non-singular, therefore



d∆x
dxi
d∆y
dxi
d∆z
dxi


 =




−ei

0
0


 + ∆zi




−Q AT I
A 0 0
Z 0 X



−1 


0
0

−ei


 (12a)




d∆x
dyi
d∆y
dyi
d∆z
dyi


 =




0
−ei

0


 (12b)




d∆x
dzi
d∆y
dzi
d∆z
dzi


 =




0
0

−ei


 + ∆xi




−Q AT I
A 0 0
Z 0 X



−1 


0
0

−ei


 , (12c)

where the system common to (12a/12c)




−Q AT I
A 0 0
Z 0 X







d̃∆x

d̃∆y

d̃∆z


 =




0
0

−ei


 (13)

can be solved by using the third line to substitute for d̃∆z as

[
−Q − X−1Z AT

A 0

][
d̃∆x

d̃∆y

]
=

[
X−1ei

0

]
(14a)

d̃∆z = −X−1Zd̃∆x − X−1ei. (14b)

There are a few insights to be gained from these formulas. First they confirm that the step
(∆x, ∆z) does not depend on y.
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Secondly, the sensitivity of the primal-dual step with respect to the current iterate (x, y, z) -
unlike the step (∆x, ∆y, ∆z) itself - does not depend on the target value µ0 either. We will exploit
this property when constructing a warmstart heuristic that uses the sensitivity information.

Finally we can get the complete sensitivity information with respect to (xi, zi) for a given com-
ponent i by a solving a single system of linear equations with the same augmented system matrix
that has been used to obtain the step (∆x, ∆y, ∆z) (and for which a factorization is available);
the solution of n such systems will likewise retrieve the complete sensitivity information.

Although this system matrix is already factorized as part of the normal interior point algorithm,
and backsolves are an order of magnitude cheaper than the factorization, obtaining the complete
sensitivity information is prohibitively expensive. The aim of the following section is therefore
to propose a warmstarting heuristic that uses the sensitivity information derived above, but
requires only a few, rather than all n backsolves.

4.2 Unblocking the Primal-Dual Direction using Sensitivity Information

Occasionally, despite all our attempts, a starting point might result in a Newton direction that
leads to blocking: i.e., only a very small step can be taken along it. We do not want to abandon
the advanced starting information at this point, but rather try to unblock the search direction.
To this end we will make use of the sensitivity analysis presented in Section 4.1. The following
Lemma 1 gives conditions under which a step (dx, dz) can be expected to unblock based on the
sensitivity analysis.

Lemma 1. A necessary and sufficient condition for a step (dx, dz) to unblock to first order to
a given level ρl, i.e.,

x + dx + ∆x +
d∆x

dx
dx +

d∆x

dz
dz ≥ ρl (15a)

z + dz + ∆z +
d∆z

dx
dx +

d∆z

dz
dz ≥ ρl (15b)

is that there exists vectors dx, dz, tx, ty, tz of appropriate dimensions that satisfy the system of
equations

Atx = 0 (16a)

−Qtx + AT ty + tz = 0 (16b)

Ztx + Xtz = −∆Zdx − ∆Xdz (16c)

tx ≥ −x − ∆x + ρl (16d)

tz ≥ −z − ∆z + ρl (16e)

Proof:
Note that the relations of (11),(12) can be more concisely written as




d∆x
dx

+ I d∆x
dy

d∆z
dz

d∆y
dx

d∆y
dy

+ I d∆y
dz

d∆z
dx

d∆z
dy

d∆z
dz

+ I


 = −




−Q AT I
A 0 0
Z 0 X



−1 


0 0 0
0 0 0

∆Z 0 ∆X


 (17)

Conditions (15) are equivalent to the existence of (dx, dy, dz) such that




d∆x
dx

+ I d∆x
dy

d∆z
dz

d∆y
dx

d∆y
dy

+ I d∆y
dz

d∆z
dx

d∆z
dy

d∆z
dz

+ I







dx

dy

dz


 ≥




−x − ∆x + ρl
−∞

−z − ∆z + ρl


 , (18)
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where dy is an arbitrary vector (note that d∆x
dy

= d∆z
dy

= 0). This on the other hand is satisfied,
if and only if there exists (tx, ty, tz) such that




d∆x
dx

+ I d∆x
dy

d∆z
dz

d∆y
dx

d∆y
dy

+ I d∆y
dz

d∆z
dx

d∆z
dy

d∆z
dz

+ I







dx

dy

dz


 =




tx
ty
tz


 ≥




−x − ∆x + ρl
−∞

−z − ∆z + ρl


 . (19)

Now using (17) to substitute for the matrix of derivatives, multiplying both sides of the equality
with the augmented system matrix and multiplying out we see that (19) is equivalent to




0
0

−∆Xdz − ∆Zdx


 =




−Q AT I
A 0 0
Z 0 X







tx
ty
tz


 ,




tx
ty
tz


 ≥




−x − ∆x + ρl
−∞

−z − ∆z + ρl


 ,

that is to (16). 2

The sensitivity analysis thus gives us conditions that an unblocking direction needs to satisfy.
However it is unclear if a direction (dx, dz) and the corresponding (tx, ty, tz) to satisfy the
conditions of Lemma 1 exist. We can however prove existence of such a direction by assuming
that we know the analytic center p̂ = (x̂, ŷ, ẑ) of the problem (or indeed any strictly primal-dual
feasible point) and denote by p̂, ˆ̄p its largest and smallest component:

0 < p̂ ≤ x̂i, ẑi ≤ ˆ̄p

Lemma 2. For all l : 0 < l < min{p̂/4, 1}, ρ < 1 and fixed µ and γ there exits a c = c(γ, µ)
such that for all starting points (x, y, z) and corresponding blocking step (∆x, ∆y, ∆z) obtained
from (3) with µ0 = µ+ satisfying

xT z/n = µ, xizi ≥ γµ, xi ≤ bu, zi ≤ bu, µ+ ≤ 1

2
γµ, z + ∆z ≥ −le, x + ∆x ≥ −le

there exists a step (dx, dz) : ‖dx, dz‖∞ ≤ c(1 + ρ)l that unblocks to first order to level ρL, i.e.,
that satisfies conditions (15).

Proof:
With α = 2(1 + ρ)l/p̂ set

tx = α(x̂ − (x + ∆x))

ty = α(ŷ − (y + ∆y))

tz = α(ẑ − (z + ∆z))

We will show that (tx, ty, tz) satisfies (16a/b/d/e), that we can construct a corresponding (dx, dz)
satisfying (16c) and finally that (tx, ty, tz), (dx, dz) = O((1 + ρ)l):

First we notice that both p̂ = (x̂, ŷ, ẑ) and (x + ∆x, y + ∆y, z + ∆z) are primal and dual fea-
sible (although in the latter case of course not positive). Hence their difference (and therefore
(tx, ty, tz)) satisfies (16a/b).

To proof (16d) we need to distinguish the two cases: xi + ∆xi < ρl and xi + ∆xi ≥ ρl. In the
first case xi + ∆xi < ρl we have

x̂i − (xi + ∆xi) ≥ p̂ − ρl ≥ 1

2
p̂,



An Unblocking Technique to Warmstart IPMs 10

where the last inequality is due to ρ ≤ 1 and l ≤ p̂/4. Then

tx,i =
2(1 + ρ)l

p̂
(x̂i − (xi + ∆xi)) ≥

2(1 + ρ)l

p̂

1

2
p̂ = (1 + ρ)l ≥ −xi − ∆xi + ρl.

In the second case xi + ∆xi ≥ ρl we note that x̂i ≥ p̂ ≥ 4l ≥ ρl. Since 2(1 + ρ) ≤ 4 we have
0 < α ≤ 1 and hence

xi + ∆xi + α(x̂i − (xi + ∆xi)) = (1 − α)(xi + ∆xi) + αx̂i ≥ ρl

which proves (16d). (16e) is proven in the same manner.

Next we establish a bound for ‖tx‖, ‖tz‖: Since µ+ < γµ/2 we have from the last equation of
(3):

xi∆zi + zi∆xi = µ+ − xizi ≤
1

2
γµ − γµ = −1

2
γµ < 0 (20)

and hence at least one of ∆xi, ∆zi must be negative. Assume w.l.o.g. that ∆xi < 0. Then
xi + ∆xi ≥ −l implies

|∆xi| = −∆xi ≤ l + x ≤ l + bu.

We can make no further assumptions on the sign of ∆zi. If ∆zi < 0 then |∆zi| is bounded in
the same way as ∆xi. If on the other hand ∆zi ≥ 0, then (20) together with xi ≥ γ/zi > γ/bu

implies
∆zi < −zi∆xi/xi < bu(l + bu)bu/γ = b2

u(l + bu)/γ.

Since we can reasonably assume that b2
u/γ > 1 we have

‖∆x‖, ‖∆z‖ ≤ b2
u(1 + bu)/γ.

From this we get

‖tx‖ = α‖x̂ − (x + ∆x)‖ ≤ 2(1 + ρ)l

p̂
(ˆ̄p + bu + b2

u(1 + bu)/γ) = c1(1 + ρ)l,

where c1 = c1(γ) = 2(ˆ̄p + bu + b2
u(1 + bu)/γ)/p̂. ‖tz‖ ≤ c1(1 + ρ)l follows in the same manner.

Finally we know from (20) that for all i at least one of xi∆zi, zi∆xi must be less than −γµ/4.
Assume w.l.o.g. zi∆xi < −γµ/4, then we get

∆xi < − γµ

4zi

< 0. (21)

Therefore we can set

dz,i = −zitx,i + xitz,i

∆xi

, dx,i = 0 (22)

(and vice versa if xi∆zi < −γµ/4) to construct a direction (dx, dz) that satisfies (16c). It remains
to be shown that (dx, dz) = O((1 + ρ)l):

From (21) we know

|∆xi| = −∆xi >
γµ

4zi

>
γµ

4bu

hence (22) gives

|dz,i| ≤ (buc1(1 + ρ)l + buc1(1 + ρ)l)/
γµ

4bu

=
8b2

uc1

γµ
(1 + ρ)l := c(1 + ρ)l
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with c = c(γ, µ) = (8b2
uc1)/(γµ). 2

We can now proof the main result of this section

Theorem 1. There exists L > 0 such that for all l : 0 < l < L and all starting points (x, y, z)
and their corresponding blocking step (∆x, ∆y, ∆z) obtained from (3) with µ0 = µ+ that satisfy

xT z/n = µ, xizi ≥ γµ, xi, zi ≤ bu, µ+ <
1

2
γµ, x + ∆x ≥ −le, z + ∆z ≥ −le

there is a step (dx, dz) that unblocks, i.e.,

x + dx + ∆x(x + dx, z + dz) ≥ 0

z + dz + ∆z(x + dx, z + dz) ≥ 0

Proof:
Set ε = 1

10c
. From differentiability of ∆x(x, z), ∆z(x, z) there exists a δ such that for all (dx, dz) :

‖(dx, dz)‖∞ ≤ δ:

‖∆x(x + dx, z + dz) − ∆x − d∆x
dx

dx − d∆x
dz

dz‖ ≤ ε‖(dx, dz)‖
‖∆z(x + dx, z + dz) − ∆z − d∆z

dx
dx − d∆z

dz
dz‖ ≤ ε‖(dx, dz)‖

(23)

Now set ρ = 1
4 and L = min{ p̂

4 , 4
5

δ
c
}. Then from Lemma 2 there exists (dx, dz) : ‖(dx, dz)‖∞ ≤

c5
4 l ≤ δ such that

x + dx + ∆x +
d∆x

dx
dx +

d∆x

dz
dz ≥ ρle =

1

4
le

z + dz + ∆z +
d∆z

dx
dx +

d∆z

dz
dz ≥ ρle =

1

4
le

and therefore

xi + dx,i +∆xi(x + dx, z + dz)

= xi + dx,i + ∆xi + d∆xi

dx
dx + d∆xi

dz
dz − (∆xi + d∆xi

dx
dx + d∆xi

dz
dz − ∆xi(x + dx, z + dz))

≥ 1
4 l − ε‖(dx, dz)‖ = 1

4 l − 1
10c

‖(dx, dz)‖
≥ 1

4 l − 1
10c

c5
4 l ≥ 1

8 l > 0

and the same for the z components. 2

The insight gained from this Lemma is that our proposed unblocking strategy is sound in prin-
ciple: If the negative components of the prospective next iterate (x + ∆x, z + ∆z) are bounded
in size by L, then there exists an unblocking perturbation (dx, dz) of the current iterate. The
size of this perturbation is O(L). Unfortunately the construction of (dx, dz) relies on the knowl-
edge of the analytic center p̂ of the problem (or at least any other strictly primal/dual feasible
point). Therefore the construction used in the proof can not be implemented in practice. In the
following section we will derive an implementable heuristic.

4.3 Implementation

There is a principle difficulty with finding a solution to the unblocking equations (16). Theorem 1
guarantees that a solution (of bounded size) exist. The system (15):

x + dx + ∆x +
d∆x

dx
dx +

d∆x

dz
dz ≥ ρL

z + dz + ∆z +
d∆z

dx
dx +

d∆z

dz
dz ≥ ρL
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seems to imply that we could gather the complete sensitivity information ( d∆x
dx

, d∆x
dz

, d∆z
dx

, d∆z
dz

),
requiring n backsolves to do so, and find dx, dz to satisfy

[
d∆x
dx

+ I d∆x
dz

d∆z
dx

d∆z
dz

+ I

] [
dx

dz

]
≥

[
−x − ∆x + ρL
−z − ∆z + ρL

]
. (24)

However, the system matrix in (24) is singular (actually of rank n) as can be seen from (17),
hence it is unclear if a solution (dx, dz) exists at all.

In the results of Theorem 1 we get around this difficulty by assuming the knowledge of the
analytic center, something that does not hold in practice. The only solution we cab suggest is
to use the sensitivity information in a heuristic targeted at unblocking the search direction:

The idea is based on the observation that typically only a few components of the Newton
step (∆x, ∆z) are blocking seriously and that these can be effectively influenced by changing the
corresponding components of (x, z) only. One potential danger of aiming solely at unblocking the
step direction is that we might have to accept a significant worsening of centrality or feasibility
of the new iterate, which is clearly not in our interest. The proposed strategy attempts to avoid
this as well by minimizing the perturbation (dx, dz) to the current point.

The heuristic that we are proposing is based on the assumption that a change in the i-th
component xi, zi will have a strong influence on the i-th component of the step ∆xi, ∆zi, so
changing only xi, zi components corresponding to blocking components of the step might be
sufficient. Indeed our strategy will identify a (small) index set I of most blocking components,
obtain the sensitivity information with respect to these components and attempt to unblock
each (∆xi, ∆zi) by changes to component i of (x, z) only. Since usually only ∆xi or ∆zi but not
both are blocking, allowing perturbations in both xi or zi leaves one degree of freedom, which
will be used to minimize the size of the required unblocking step.

The assumption made above can be justified as follows: according to equations (12), the sensi-
tivity d(∆x, ∆z)/dxi (and similarly d/dzi) is made up of two components: the i-th unit vector
ei and the solution to (13), which according to (14) is the weighted projection of the i-th unit
vector onto the null-space of A.

Our implemented unblocking strategy is thus as follows:

Algorithm: Unblocking Strategy

1) Choose the size of the unblocking set |I|, a target unblocking level t > 1 and bounds
0 < γ < 1 < γ̄ on the acceptable change to a component.

2) find the set I of most blocking components (in x or z)

for all i in 10% most blocking components do

3) find sensitivity of (∆x, ∆z) with respect to (xi, zi)

4) find the change (dx,i, dz,i) needed in xi or zi to unblock component i

5) change either xi or zi depending on where the change would be more effective.

next i

6) update x = x + dx and z = z + dz and re-compute the affine scaling direction
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Steps 4) and 5) of the above algorithm need further clarification:

For each blocking component xi (or zi) we have xi + αx∆xi < 0 for small positive values of αx,
or ∆xi/xi � −1. From the sensitivity analysis we know d∆xi

dxi
, the rate of change of ∆xi when

xi changes. We are interested in the necessary change dx,i to xi such that the search direction
is unblocked, that is say

∆xi + d∆xi

dxi
dx,i

xi + dx,i
≥ −t, (t ≈ 5),

in other words a step of αp ≥ 1/t (1/t ≈ 0.2) will be possible. From this requirement we get the
provisional change

d̃x,i = − txi + ∆xi

t + d∆xi

dxi

We need to distinguish several cases

• d∆xi

dxi
≤ ∆xi

xi
:

A step in positive direction would lead to even more blocking. A negative step will unblock.
However we are not prepared to let xi + dx,i approach zero, hence we choose

dx,i = max{d̃x,i, (γ − 1)xi}

• d∆xi

dxi
> ∆xi

xi
:

A positive step would weaken the blocking. However if d∆xi

dxi
< −t the target unblocking

level −t can never be reached (and the provisional d̃x,i is negative). In this case (and also

if the provisional d̃x,i is very large) we choose the maximal step which we are prepared to
take:

dx,i =

{
dmax if d̃x,i < 0

min{d̃x,i, dmax} otherwise

with dmax = (γ̄ − 1)xi.

Alternatively we can unblock a blocking ∆xi by changing zi. The required provisional change
d̃z,i can be obtained from

∆xi + d∆xi

dzi
dz,i

xi
≥ −t

as

d̃z,i = − txi + ∆xi

d∆xi

dzi

.

In this case d̃z,i indicates the correct sign of the change, but for d∆xi

dzi
close to zero the provisional

step might be very large. We apply the same safeguards as for the step in x to obtain

dz,i =

{
max{d̃z,i, (γ − 1)zi} d̃z,i < 0

min{d̃z,i, dmax} d̃z,i ≥ 0

where dmax = (γ̄ − 1)zi. Since our aim was to reduce the blocking level from −∆xi/xi to t, we
can evaluate the effectiveness of the suggested changes dx,i, dz,i by

px =
(old blocking level) − (new blocking level)

(old blocking level) − (target blocking level)
=

−∆xi

xi
+

∆xi+
d∆xi
dxi

dx,i

xi+dx,i

−∆xi

xi
+ t
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and

pz =
−∆xi

xi
+

∆xi+
d∆xi
dzi

dz,i

xi

−∆xi

xi
+ t

.

Given these quantities we use px/|dx,i|, pz/|dz,i| as measures of the relative effectiveness of chang-
ing the xi, zi component. Our strategy is to first change the component for which this ratio is
larger, and, should the corresponding px, pz be less than 1, add a proportional change in the
other component, i.e if px/|dx,i| > pz/|dz,i|:

dx,i = dx,i

dz,i = min{(1 − px)/pz, 1}dz,i

An analogous derivation can be performed to unblock the z-component ∆zi of the search direc-
tion.

The analysis in the previous section was aimed at unblocking the primal-dual direction corre-
sponding to a fixed target value µ0. We are however interested in using this analysis in the
context of a predictor-corrector method. This seems to complicate the situation, since the
predictor-corrector direction is now the result of a two-step procedure. As pointed out earlier,
however, while the primal-dual direction and subsequently the length of the step that can be
taken along it does depend on the target µ0 value, the sensitivity of this step does not de-
pend on µ0. This leads us to the following strategy: We obtain the sensitivity with respect to
the most blocking components after the predictor step and use these to unblock the combined
predictor-corrector (and higher order corrector steps) separately following the above heuristic.

5 Numerical results

In order to evaluate the relative merit of the suggested warmstarting schemes we have run a
selection of numerical tests. In the first instance we have used a warmstarting setup based on
the NETLIB LP test set as described in [1, 10] to evaluate a selection of the described heuristics.

In a second set of tests we have used the best warmstart settings from the first set and used
these to warmstart the NETLIB LP test set, a selection of QP problems from [12] as well as
some large scale QP problems arising from the problem of finding the efficient frontier in port-
folio optimization and solving a nonlinear capacitated Multi-commodity Network Flow problem
(MCNF).

All warmstarting strategies have been implemented in our interior point solver OOPS[7]. For
all tests we save the first iterate in the original problem solution process that satisfies

relative duality gap =
(cT x + 0.5xT Qx) − (bT y − 0.5xT Qx)

(cT x + 0.5xT Qx) + 1
=

xT z

(cT x + 0.5xT Qx) + 1
≤ 0.01

for use as warmstarting point. We do not attempt to find an ’optimal’ value for µ̄: our motivation
is primarily to evaluate unblocking techniques in order to recover from ’bad’ warmstarting
situations, furthermore it is likely that the optimal µ̄ is highly problem (and perturbation)
dependent. On the contrary, we assume that a 2-digit approximate optimal solution of the
original problem should be a good starting point for the perturbed problem.
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5.1 The NETLIB warmstarting test set

In order to compare our results more easily to other contributions we use the NETLIB warm-
starting testbed suggested by [1]. This uses the smaller problems from the NETLIB LP test set
as the original problems and considers changes to the right hand side b, the objective vector c,
the system matrix A, and different perturbation sizes δ. The perturbed problem instances are
randomly generated as follows:

For perturbations to b and c we first generate a uniform-[0,1] distributed random number for
every vector component. Should this number be less than min{0.1, 20/n} (n being the dimension
of the vector) this component is marked for modification. That is we modify on average 10%
(but at most 20) of the components. For all marked components we will generate a second
uniform-[-1,1] distributed random number r. The new component b̃i is generated from the old
one bi as

b̃i =

{
δr |bi| ≤ 10−6

(1 + δr)bi otherwise.

For perturbations to A we proceed in the same manner, perturbing the vector of nonzero elements
in A as before. For the results presented in this paper we have solved each problem for each
warmstart strategy for 10 random perturbations of each type (b, c, and A). We will use these
to evaluate the merit of each of the considered modifications and unblocking heuristics. A list
of the considered NETLIB problems can be obtained from Tables 6-9.

In the numerical test performed we were guided by two objectives: first to evaluate if and how
the various warmstarting strategies presented in Section 3 can be combined, and secondly to
evaluate the merit of the proposed unblocking strategy. In order to save on the total amount of
computation we will use the following strategy: Every warmstarting heuristic is tested against
a base warmstarting code and against the best combination found so far. If a heuristic is found
to be advantageous it will be added to the best benchmark strategy for the future tests.

5.1.1 Higher Order Correctors

We investigate the use of higher-order correctors as an unblocking device. The interior point
code OOPS applied for these calculations uses higher-order correctors by default if the Mehrotra
corrector step (5) has been successful (i.e., it leads to larger stepsizes αP , αD than the predictor
step). When using higher order correctors as an unblocking device we will attempt them even if
the Mehrotra corrector has been rejected. Table 1 gives results with and without forcing higher
order correctors (hoc and base respectively). The numbers reported are the average number
of iterations of the warmstarted problem over all problems in the test set and all 10 random
perturbations. Problem instances which are infeasible or unbounded after the perturbation
have been discarded. Clearly the use of higher order correctors is advantageous. We therefore

b c A
0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001 total

base 6.4 5.6 6.1 14.5 8.5 6.4 10.2 7.0 7.2 8.1
hoc 6.0 5.4 5.6 11.3 7.6 6.3 8.6 6.5 6.8 7.2

Table 1: Higher Order Correctors as Unblocking Device

recommend the use of higher order correctors in all circumstances in the context of warmstarting.
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All following tests are performed with the use of higher order correctors.

5.1.2 Centering Steps

We explore the benefit of using centering steps as a technique to facilitate warmstarting. These
are performed either at the end of the solution process for the original problem before the
advanced center is returned (end) or at the beginning of the modified problem solution, before
any reduction of the barrier µ is applied (beg). As pointed out earlier the latter corresponds to
the Newton corrector step of [15]. We have tested several settings of end and beg corresponding
to the number of steps of this type being taken. The additional centering iterations are included
in the numbers reported. Results are summarized in Table 2.

b c A
0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001 total

base beg=0, end=0 6.4 5.6 6.1 14.5 8.5 6.4 10.2 7.0 7.2 8.1
beg=0, end=1 6.3 5.3 5.2 15.4 8.5 6.3 11.6 6.9 6.9 8.2
beg=1, end=0 6.1 5.4 5.9 13.9 7.9 6.3 9.7 6.7 7.1 7.8
beg=1, end=1 6.1 5.0 5.2 14.7 8.4 6.2 10.8 7.0 6.9 8.0
beg=1, end=2 6.1 5.0 5.0 14.9 8.7 6.2 11.5 7.0 6.6 8.0

best beg=0, end=0 6.0 5.4 5.6 11.3 7.6 6.3 8.6 6.5 6.8 7.2
beg=1, end=0 6.0 5.3 5.5 10.9 7.4 6.1 8.4 6.6 7.0 7.1
beg=0, end=1 6.0 4.9 5.1 11.9 7.6 5.9 9.2 6.4 6.5 7.2
beg=1, end=1 5.7 5.0 5.1 11.8 7.4 5.9 9.2 6.6 6.5 7.2
beg=1, end=2 5.7 4.7 5.2 11.6 7.1 5.8 9.4 6.4 6.5 7.0

Table 2: Additional Centering Iterations

Compared with the base, strategy (1, 0) is the best, whereas compared to the best (which just
includes higher-order correctors at this point), strategy (1, 2) is preferable. Due to the theoretical
benefits of working with a well centered point, we will use centering strategy (1, 2) in the best
benchmark strategy for the following tests.

5.1.3 z-Adjustment/WLS-Step

We have evaluated the benefit of attempting to absorb dual infeasibilities into the z value of
the warmstart vector, together with the related WLS heuristic (which attempts to find a least
squares correction to the saved iterate such that the resulting point is primal/dual feasible).
The results are summarized in Table 3. Surprisingly there is a clear advantage of the simple
z-adjustment heuristic, whereas the (computationally more expensive and more sophisticated)
WLS step (WLS-0.01) hardly improves on the base strategy. Our only explanation for this
behavior is that for our fairly low saved µ-value (2-digit approximate optimal solution to the
original problem) the full WLS direction is usually infeasible, so only a fractional step in it can
be taken. The z-adjustment on the other hand has a more sophisticated fall-back strategy which
considers adjustment for each component separately, so is not quite as easily affected by blocking
in the modification direction. [15] suggest employing the WLS step together with a backtracking
strategy, which saves several iterates from the original problem for different µ and chooses one
for which the WLS step does not block. We have emulated this by trying the WLS step for a
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b c A
0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001 total

base no-adj 6.4 5.6 6.1 14.5 8.5 6.4 10.2 7.0 7.2 8.1
z-adj 6.3 5.5 5.8 12.5 7.7 6.3 9.2 7.1 7.1 7.6
WLS-0.01 6.3 5.5 6.1 14.0 8.3 6.4 9.9 7.0 7.1 8.0
WLS-0.1 7.0 6.6 6.9 12.7 9.1 7.4 8.1 7.1 8.5 8.1

best no-adj 5.7 4.7 5.2 11.6 7.1 5.8 9.4 6.4 6.5 7.0
z-adj 5.7 4.8 5.1 10.5 6.8 5.7 8.8 6.3 6.4 6.8
WLS-0.01 5.7 4.8 5.2 11.6 7.0 5.9 9.3 6.4 6.5 7.0
WLS-0.1 6.3 5.9 5.9 10.0 7.9 6.8 7.4 6.7 7.7 7.2

Table 3: z-Adjustment as Modification Step

larger µ (WLS-0.1). Any gain of a larger portion of the WLS step being taken, however, is offset
by the starting point now being further away from optimality, resulting in an increase of the
number of iterations. We have added the z-adjustment heuristic to our best benchmark strategy.

5.1.4 Splitting Directions

This analyzes the effectiveness of using the computations of separate primal, dual, and centrality
correcting directions as in [6] as an unblocking strategy. The results given in Table 4 correspond
to different numbers of initial iterations in the solution process of the modified problem using
this technique.

b c A
0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001 total

base it=0 6.4 5.6 6.1 14.5 8.5 6.4 10.2 7.0 7.2 8.1
it=1 6.3 5.5 6.1 14.4 8.6 6.5 10.1 6.9 7.2 8.1
it=2 6.3 5.5 6.1 14.3 8.6 6.5 10.1 6.9 7.2 8.1

best it=0 5.7 4.8 5.1 10.5 6.8 5.7 8.8 6.3 6.4 6.8
it=1 5.7 4.8 5.1 10.5 6.8 5.8 8.7 6.3 6.4 6.8
it=2 5.8 4.8 5.1 10.4 6.7 5.7 8.7 6.4 6.4 6.8

Table 4: Splitting Directions

As can be seen there is no demonstrable benefit from using this unblocking technique, we have
therefore left it out of all subsequent tests.

5.1.5 Unblocking by Sensitivity

Finally we have tested the effectiveness of our unblocking scheme based on using sensitivity
information. We are considering employing this heuristic for up to the first three iterations.
The parameters we have used are |I| ≤ 0.1n (i.e., the worst 10% of components are unblocked),
t = 5 and γ̄ = 10, γ = 0.1. Results are summarized in Table 5. Unlike the other tests, we
have not only tested the unblocking strategy against the base and the best but also against two
further setups to evaluate the effectiveness of the strategy to recover from blocking in different
environments.
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b c A
0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001 total

base

unblk=0 6.4 5.6 6.1 14.5 8.5 6.4 10.2 7.0 7.2 8.1
unblk=1 6.1 5.5 6.0 13.2 8.2 6.4 9.7 7.0 7.1 7.8
unblk=2 6.1 5.3 5.9 12.1 8.1 6.1 9.2 6.8 6.9 7.5
unblk=3 6.0 5.6 6.1 11.4 8.0 6.2 9.0 7.4 7.1 7.5

best: hoc, beg=1, end=2, z-adj

unblk=0 5.7 4.8 5.1 10.5 6.8 5.7 8.8 6.3 6.4 6.8
unblk=1 5.6 4.8 5.1 9.8 6.5 5.7 8.3 6.4 6.4 6.6
unblk=2 5.7 5.1 5.5 9.4 6.8 5.9 8.2 6.4 6.1 6.7
unblk=3 5.6 5.1 5.7 9.5 6.8 5.8 8.2 6.2 6.5 6.7

beg=0, end=0, z-adj

unblk=0 6.1 5.0 5.0 14.9 8.7 6.2 11.5 7.0 6.6 8.0
unblk=1 5.9 4.9 5.0 13.2 7.9 6.0 10.4 6.8 6.7 7.6
unblk=2 5.8 5.0 5.0 11.9 8.0 6.1 9.7 6.7 6.9 7.4
unblk=3 5.8 5.2 5.1 11.5 7.7 5.8 9.7 6.8 6.8 7.3

hoc, beg=0, end=0, z-adj

unblk=0 5.7 4.7 5.2 11.6 7.1 5.8 9.4 6.4 6.5 7.0
unblk=1 5.5 4.8 5.3 10.7 6.9 5.6 9.1 6.5 6.4 6.8
unblk=2 5.8 4.9 5.1 9.8 7.4 5.7 8.7 6.7 5.4 6.7
unblk=3 5.6 5.0 5.5 9.4 6.7 5.7 9.0 6.3 5.5 6.6

Table 5: Sensitivity Based Unblocking Heuristic

As can be seen there is a clear benefit in employing this heuristic in all tests. The results are less
pronounced when comparing against the best strategy, but even here there is a clear advantage
of performing one iteration of the unblocking strategy.

5.2 Results for best warmstart strategy

After these tests we have combined the best setting for all of the considered warmstart heuristics
and give more detailed results on the NETLIB test set as well as for a selection of large scale
quadratic programming problems.

Tables 6/7/8/9 compare the best combined warmstarting strategy for all test problems with a
cold start. We give in each case the average number of iterations over 10 random perturba-
tions. Column red gives the average percentage iteration reduction achieved by employing the
warmstart. An entry ’-’ denotes that all corresponding perturbations of the problem were either
infeasible or unbounded. As can be seen we are able to save between 50% and 60% of iterations
on all considered problems.

5.3 Comparison with LOQO results

To judge the competitiveness of our best combined warmstarting strategy we have compared the
results on the NETLIB test set with those reported by [1] which use a different warmstarting
methodology. Figure 1 gives a summary of this comparison. The four lines on the left graph
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Figure 1: Results of LOQO and OOPS on warmstarting NETLIB problems

give the number of iterations needed for each of the 30 NETLIB problems reported in Tables 6-9
averaged over all perturbations for OOPS and LOQO[1], using a warmstart and a coldstart. As
can be seen the default version of OOPS (solid line) needs fewer iterations than LOQO (dotted
line). The warmstarted versions of each code (solid and dotted lines with markers respectively)
need significantly fewer iterations on average than their cold started siblings, with warmstarted
OOPS being the most effective strategy over all. This plot only indicates the best combination
of interior point code and warmstarting strategy without giving any insight into the relative
effectiveness of the warmstarting approaches themselves. In order to measure the efficiency of
the warmstart approaches, the second plot in Figure 1 compares the number of iterations saved
by each warmstarting strategy as compared with its respective cold started variant. As can be
seen our suggested warmstart implemented in OOPS is able to save around 50-60% of iterations,
outperforming the LOQO warmstart which averages around 30% saved iterations.

5.4 Medium Scale QP Problems

We realize that the NETLIB testbed proposed in [1] only includes small LP problems. While
this makes it ideal for the extensive testing that we have reported in the previous section,
there is some doubt over whether the achieved warmstarting performance can be maintained
for quadratic and (more realistic) large scale problems. In order to counter such criticism we
have conducted warmstarting tests on two selection of small to medium scale QP problems as
well as two sources of large scale quadratic programming. For the small and medium scale tests
we have used the quadratic programming collection of Maros and Meszaros [12]. This includes
QP problems from the CUTE test set as well as quadratic modifications of the NETLIB LP
test set used in the previous comparisons. We have excluded problems that either have free
variables (since OOPS currently has no facility to deal with free variables effectively), or where
random perturbations of the problem data yield the problem primal or dual infeasible. The same
methodology in perturbing the problems as for the NETLIB LP test set has been used, apart
that perturbations in the objective function will now perturb random elements of c and Q. The
results are displayed in Table 10. As for the LP case we list for each problem and perturbation
the average number of iterations needed by OOPS when coldstarted and when warmstarted with
the best strategy found in section 5.1 over the 10 random runs and 3 perturbation sizes. We
also state the percentage of iterations saved by the warmstart. A blank entry indicates that all
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30 random perturbations lead to primal or dual infeasible problems. The results demonstrate a
similar performance of our best combined warmstarting strategy as obtained earlier for the LP
problems.

Problem b c and Q A
cold warm red cold warm red cold warm red

AUG2DCQP 10.0 5.2 48.1 10.0 5.1 49.1 10.9 6.8 37.7
AUG2DQP 10.0 4.1 59.0 10.0 4.1 59.1 10.7 7.0 34.6
AUG3DCQP 8.0 4.0 50.0 8.0 3.8 53.0 8.0 3.7 53.9
AUG3DQP 11.0 5.1 53.4 10.2 5.2 48.9 10.9 4.8 56.3
CVXQP1 S 11.2 5.3 52.9 11.0 5.1 53.8 11.2 5.4 51.7
CVXQP2 M 15.1 4.8 68.1 15.0 5.3 64.5 15.1 5.0 67.1
CVXQP2 S 11.9 6.1 49.2 12.0 6.1 49.0 12.0 6.1 49.4
CVXQP3 M - - - - - - - - -
CVXQP3 S 10.5 6.6 37.1 10.0 5.0 49.9 10.2 6.4 37.2
DUAL1 10.0 4.9 51.2 10.0 5.1 48.6 9.9 5.2 47.6
DUAL2 10.0 5.3 47.1 10.0 4.9 51.1 9.7 4.8 50.7
DUAL3 11.0 6.1 44.1 10.8 5.6 48.0 10.7 5.7 46.5
DUAL4 9.0 4.8 46.9 9.0 5.1 43.1 9.0 5.2 42.2
DUALC1 21.9 3.8 82.6 22.0 4.2 81.1 22.6 4.0 82.4
DUALC2 22.0 3.8 82.6 21.9 3.9 82.0 21.5 3.9 82.0
DUALC5 12.0 3.9 67.9 12.0 4.1 65.4 12.2 3.8 68.4
DUALC8 14.6 3.9 73.2 15.0 4.2 72.3 15.2 3.9 74.5
GOULDQP2 6.0 4.9 18.3 8.0 7.8 2.5 6.0 5.1 14.3
GOULDQP3 9.0 5.0 44.4 9.0 5.1 43.3 9.0 4.9 45.3
HS118 9.0 3.7 59.1 9.0 3.6 59.8 9.0 4.2 53.1
HS21 17.0 6.9 59.5 16.8 6.7 60.3 17.0 7.0 58.7
HS35MOD 9.9 5.8 41.2 9.8 6.0 39.0 9.8 5.9 40.3
HS35 7.0 4.4 37.8 7.1 4.1 42.3 7.0 3.9 44.5
HS53 6.0 5.3 11.9 6.0 5.2 13.7 6.1 4.9 18.6
HS76 7.0 4.1 40.8 7.0 4.1 41.2 7.0 4.0 43.6
HUES-MOD 14.8 5.2 64.6 15.0 4.9 67.5 17.4 12.1 30.4
LOTSCHD 7.9 5.6 29.4 8.0 5.6 29.9 7.6 5.5 28.0
MOSARQP1 7.0 3.9 44.5 7.0 4.1 41.2 7.0 4.4 37.8
MOSARQP2 8.0 4.1 49.2 8.1 4.5 44.2 8.0 3.8 52.0
QPCBOEI1 35.3 23.0 34.8 34.0 22.9 32.4 35.2 23.1 34.3
QPCBOEI2 - - - 20.8 7.2 65.4 28.1 12.3 56.0
STCQP1 - - - 15.0 5.7 61.9 - - -
STCQP2 - - - 15.0 7.1 52.7 15.0 6.9 54.1
TAME 6.0 2.2 63.9 6.0 1.9 67.6 6.0 1.9 68.7
ZECEVIC2 7.0 4.8 32.3 7.1 5.2 26.8 7.0 5.3 24.9
25FV47 38.0 7.5 80.3 38.3 7.3 80.8 38.0 8.2 78.4
ADLITTLE 10.6 5.6 47.4 10.2 5.9 42.6 10.2 5.8 43.4
AFIRO 15.1 4.7 69.2 15.0 6.9 54.0 15.0 4.2 72.0
BEACONFD - - - 10.0 4.2 58.2 10.0 4.2 57.9
BORE3D - - - 15.3 4.7 69.0 15.5 4.1 73.5
BRANDY - - - 12.8 5.5 57.3 14.3 14.3 0.1
E226 14.6 7.3 50.11 14.0 7.9 43.7 13.8 5.0 63.5
ETAMACRO - - - 31.9 10.8 66.0 39.5 18.9 52.2
FFFFF800 63.1 8.6 86.4 61.3 7.0 88.7 56.9 6.6 88.3
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GROW15 14.0 5.4 61.6 18.4 13.6 26.1 19.6 10.9 44.5
GROW22 15.9 4.8 69.7 15.6 6.3 59.5 17.0 7.4 56.6
GROW7 15.0 4.9 67.3 21.7 11.5 47.1 17.5 6.5 62.6
ISRAEL 18.9 5.1 73.2 20.1 5.5 72.4 18.4 5.2 71.6
SC205 16.8 7.1 57.6 18.9 19.3 -2.5 17.2 6.9 59.6
SCAGR25J 11.0 4.0 64.1 11.0 3.8 65.3 11.3 4.8 57.2
SCAGR25 11.1 5.0 55.3 11.2 5.2 53.8 11.6 5.3 54.5
SCAGR7 12.4 5.1 59.3 11.8 5.1 56.7 12.0 5.0 58.3
SCFXM1 21.0 7.4 64.6 20.8 7.1 66.0 21.5 7.3 66.1
SCFXM2 23.9 10.7 55.1 23.6 10.5 55.4 24.1 10.8 55.2
SCFXM3 26.6 13.5 49.2 24.5 13.2 46.2 27.8 13.6 51.1
SCORPION - - - 12.1 3.1 74.3 - - -
SCRS8 19.6 8.6 56.1 19.6 5.4 72.5 20.0 8.1 59.4
SCSD1 10.8 6.8 36.4 10.2 5.3 48.2 10.2 5.3 47.6
SCSD6 10.9 7.1 34.6 11.4 4.8 58.3 11.1 7.0 37.3
SCSD8 9.0 4.0 55.2 11.3 6.0 46.7 11.4 11.5 -0.2
SCTAP1 13.9 5.5 60.3 15.7 6.5 58.7 15.0 7.5 49.6
SCTAP2 16.0 4.4 72.2 17.9 6.0 66.1 15.1 4.7 68.9
SCTAP3 16.9 5.2 69.5 17.9 6.6 63.1 16.5 5.6 66.2
SEBA 53.3 24.3 54.3 53.7 22.8 57.6 53.5 23.7 55.6
SHARE1B 20.1 6.2 69.2 20.6 6.5 68.6 19.2 6.6 65.8
SHARE2B 24.9 15.1 39.2 24.3 14.9 39.0 25.9 16.8 35.2
SHELL 20.0 7.5 62.3 20.1 6.9 65.8 20.5 9.6 53.4
SHIP04L - - - 11.9 3.7 68.7 11.6 12.0 -3.7
SHIP04S - - - 12.0 4.0 66.8 11.6 11.1 4.3
SHIP08L - - - 11.0 5.0 54.1 11.1 13.3 -19.7
SHIP08S - - - 11.0 4.1 62.4 11.1 9.3 16.4
SHIP12L - - - 16.0 5.1 67.8 14.7 11.4 22.3
SHIP12S - - - 14.4 6.1 57.7 14.2 15.0 -5.1
SIERRAJG - - - 37.4 5.5 85.3 - - -
SIERRA - - - 38.3 5.1 86.7 - - -
STANDATA 23.0 17.8 22.7 17.4 5.2 70.0 17.9 4.9 72.8

Average 11.5 5.3 53.9 11.8 5.6 52.5 11.9 5.9 50.4
Table 10: Results QP (Best Warmstart) - all perturbations

5.5 Large Scale QP Problems

Finally we have evaluated our warmstart strategy in the context of two sources of large scale
quadratic problems. In the first instance we have solved the capacitated Multi-commodity
Network Flow (MCNF) problem

min
∑

(i,j)∈E
xij

Kij−xij

s. t.
∑

k∈D

x
(k)
ij ≤ Kij , ∀(i, j) ∈ E ,

Nx(k) = d(k), ∀k ∈ D,

x(k) ≥ 0, ∀k ∈ D.

(25)



An Unblocking Technique to Warmstart IPMs 22

where N is the node-arc incidence matrix of the network, d(k), k ∈ D are the demand points, Kij

is the capacity of each arc (i, j) and xij is the flow along the arc. This is a nonlinear problem
formulation. We have solved it by SQP using the interior point code OOPS as the QP solver
and employing our best combined warmstart strategy between QP solutions. We have tested
this on 9 different MCNF models using between 4-300 nodes, up to 600 arcs, and up to 7021
commodities. The largest problem in the selection has 353, 400 variables. All solutions have
required more than 10 SQP iterations. Table 11 gives the average number of IPM iterations for
each SQP iteration both for cold and warmstarting the IPM.

As before we achieve between 50%-60% reduction in the number of interior point iterations.

Our last test example consists of calculating the complete efficient frontier in a Markowitz
Portfolio Selection problem (see [14]). A Portfolio Selection problem aims to find the optimal
investment strategy in a selection of assets over time. If the value of the portfolio at the end
of the time horizon is denoted by the random variable X, the Markowitz formulation of the
portfolio selection problem requires to maximize the final expected wealth IE(X) and minimize
the associated risk, measured as the variance Var(X) which are combined into a single objective:

min−IE(X) + ρVar(X) (26)

which leads to a QP problem. We use the multistage stochastic programming version of this
model (described in [7]). This formulation leads to very large problem sizes.

The parameter ρ in (26) is known as the Risk Aversion Parameter and captures the investor’s
attitude to risk. A low value of ρ will lead to a riskier strategy with a higher value for the final
expected wealth, but a higher risk associated with it.

Often the investor’s attitude to risk is difficult to capture a-priori in a single parameter. A
better decision tool is the efficient frontier, a plot of IE(X) against the corresponding Var(X)
values for different settings of ρ. Computing the efficient frontier requires the solution of a
series of problems for different values of ρ. Apart from this all the problems in the sequence
are identical, which makes them prime candidates for a warmstarting strategy (although see [3]
for a different approach). Table 12 gives results for four different problem sizes with up to 192
million variables and 70 million constraints. For each problem the top line gives the number of
iterations a cold started IPM needed to solve the problem for a given value of ρ, whereas the
middle line gives the number of iterations when warmstarting each problem from the one with
the next lowest setting of ρ. The last line gives the percentage saving in IPM iterations. Again
we are able to save in the range of 50%-60% of IPM iterations. As far as we are aware these are
the largest problems to date for which an interior point warmstart has been employed.

6 Conclusions

In this paper we have compared the effectiveness of various interior point warmstarting schemes
on the NETLIB base test set suggested by [1]. We have categorized warmstarting strategies into
modification strategies and unblocking strategies. Modification strategies are aimed at modifying
an advanced iterate from a previous solution of a nearby problem before it is used to warmstart
an IPM, whereas unblocking strategies aim to directly address the negative effect known as
blocking which typically affects a ’bad’ warmstart in the first few iterations. We suggest a new
unblocking strategy based on sensitivity analysis of the step direction with respect to the current
point. In our numerical tests we obtain an optimal combination of modification and unblocking
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strategies (including the new strategy based on sensitivity analysis) and are subsequently able
to save an average of 50%-60% of interior point iterations on a range of LP and QP problems
varying from the small scale NETLIB test set to problems with over 192 million variables.
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Problem 0.1 0.01 0.001
cold warm red cold warm red cold warm red

ADLITTLE 10.0 6.0 40.0 10.0 5.0 50.0 11.4 6.0 47.3
AFIRO 10.1 4.2 58.4 10.1 4.3 57.4 10.1 4.3 57.4
AGG2 16.1 4.6 71.4 16.2 4.0 75.3 16.1 4.0 75.1
AGG3 15.7 5.6 64.3 15.5 5.0 67.7 16.0 5.0 68.7
BANDM 13.8 8.2 40.5 14.0 4.1 70.7 13.5 4.0 70.3
BEACONFD - - - - - - - - -
BLEND 9.0 4.0 55.5 9.0 4.3 52.2 9.0 4.2 53.3
BOEING1 19.3 7.2 62.6 21.5 8.3 61.3 19.1 5.1 73.2
BORE3D - - - - - - - - -
BRANDY - - - - - - - - -
DEGEN2 - - - - - - - - -
E226 16.0 12.8 20.0 15.8 5.0 68.3 15.0 4.8 68.0
GROW15 13.0 4.0 69.2 13.0 4.0 69.2 13.0 4.0 69.2
GROW7 12.0 4.0 66.6 12.0 4.0 66.6 12.0 4.0 66.6
ISRAEL 21.0 6.9 67.1 20.5 4.0 80.4 19.9 4.0 79.8
KB2 17.7 5.0 71.7 17.4 5.0 71.2 17.2 5.0 70.9
LOTFI 19.3 6.8 64.7 20.0 5.7 71.5 20.0 5.8 71.0
RECIPELP 14.0 7.0 50.0 14.0 7.0 50.0 14.5 10.8 25.5
SC105 12.0 5.0 58.3 12.0 5.1 57.5 12.0 5.0 58.3
SC205 12.0 5.2 56.6 12.0 5.0 58.3 12.0 5.0 58.3
SC50A 11.0 4.0 63.6 11.0 4.0 63.6 11.0 4.0 63.6
SC50B 10.0 4.2 58.0 10.0 4.0 60.0 12.1 14.2 -17.3
SCAGR25 12.0 4.8 60.0 11.9 4.1 65.5 12.7 4.0 68.5
SCAGR7 10.1 4.1 59.4 9.9 4.0 59.5 9.8 4.0 59.1
SCFXM1 14.6 5.0 65.7 15.2 5.8 61.8 14.1 4.1 70.9
SCSD1 9.9 9.5 4.0 10.3 5.9 42.7 10.2 5.1 50.0
SCTAP1 14.7 6.0 59.1 14.9 5.0 66.4 15.6 5.3 66.0
SHARE1B 21.5 5.8 73.0 20.8 5.4 74.0 21.3 5.0 76.5
SHARE2B 9.3 5.2 44.0 9.2 5.1 44.5 9.1 5.1 43.9
STOCFOR1 13.5 5.4 60.0 13.0 5.1 60.7 15.4 5.3 65.5

Average 13.8 5.8 56.3 13.8 4.9 62.6 13.9 5.3 60.0

Table 6: Results (Best Warmstart) - perturbations in b
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Problem 0.1 0.01 0.001
cold warm red cold warm red cold warm red

ADLITTLE 10.3 7.3 29.1 10.1 5.2 48.5 10.4 5.0 51.9
AFIRO 10.3 5.3 48.5 10.3 4.8 53.3 10.7 4.8 55.1
AGG2 16.7 6.6 60.4 16.4 4.8 70.7 16.0 4.1 74.3
AGG3 16.0 6.9 56.8 16.0 5.3 66.8 15.9 4.9 69.1
BANDM 13.7 14.2 -3.6 13.9 5.2 62.5 13.6 4.0 70.5
BEACONFD 10.1 4.7 53.4 10.0 4.0 60.0 11.0 4.8 56.3
BLEND 9.4 7.3 22.3 9.0 4.6 48.8 9.0 4.3 52.2
BOEING1 19.6 24.2 -23.4 19.6 8.6 56.1 19.1 5.8 69.6
BORE3D 12.9 6.1 52.7 13.2 4.4 66.6 13.2 4.2 68.1
BRANDY 15.2 8.7 42.7 15.5 4.3 72.2 15.3 4.0 73.8
DEGEN2 9.8 4.5 54.0 10.0 4.8 52.0 10.0 5.0 50.0
E226 15.6 15.0 3.8 15.2 9.0 40.7 15.1 4.5 70.1
GROW15 22.9 13.7 40.1 22.9 9.2 59.8 17.7 11.0 37.8
GROW7 18.9 14.3 24.3 19.9 12.4 37.6 23.6 17.5 25.8
ISRAEL 20.4 7.7 62.2 21.0 4.2 80.0 21.1 4.3 79.6
KB2 17.8 6.8 61.7 17.9 5.0 72.0 18.0 5.0 72.2
LOTFI 19.0 30.7 -61.5 23.0 20.9 9.1 22.4 12.7 43.3
RECIPELP - - - - - - - - -
SC105 11.4 15.4 -35.0 11.8 5.9 50.0 11.5 5.0 56.5
SC205 12.7 20.9 -64.5 13.1 18.2 -38.9 12.1 6.7 44.6
SC50A 11.2 6.8 39.2 11.0 4.1 62.7 11.0 4.0 63.6
SC50B 10.3 7.2 30.0 10.0 4.4 56.0 10.0 4.0 60.0
SCAGR25 12.0 4.7 60.8 12.4 4.4 64.5 13.0 4.0 69.2
SCAGR7 10.1 4.8 52.4 9.9 4.1 58.5 10.0 4.0 60.0
SCFXM1 14.4 7.4 48.6 14.0 4.0 71.4 14.0 4.0 71.4
SCSD1 9.5 5.2 45.2 9.2 5.0 45.6 9.0 5.0 44.4
SCTAP1 16.2 6.6 59.2 16.1 5.8 63.9 15.8 6.0 62.0
SHARE1B 22.6 8.9 60.6 21.9 6.0 72.6 20.9 5.5 73.6
SHARE2B 9.2 7.2 21.7 9.0 5.0 44.4 9.1 5.0 45.0
STOCFOR1 12.8 5.0 60.9 13.0 5.0 61.5 14.4 5.0 65.2

Average 14.2 9.8 31.1 14.3 6.5 54.1 14.2 5.7 59.8

Table 7: Results (Best Warmstart) - perturbations in c
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Problem 0.1 0.01 0.001
cold warm red cold warm red cold warm red

ADLITTLE 10.8 9.4 12.9 10.5 5.0 52.3 10.4 5.0 51.9
AFIRO 10.1 5.0 50.4 10.0 4.1 59.0 10.0 4.0 60.0
AGG2 15.9 5.3 66.6 16.0 4.2 73.7 16.2 4.0 75.3
AGG3 15.2 6.3 58.5 15.7 5.2 66.8 16.1 5.0 68.9
BANDM 13.8 7.9 42.7 13.8 4.4 68.1 13.4 4.1 69.4
BEACONFD 10.1 4.8 52.4 10.0 4.0 60.0 10.0 4.0 60.0
BLEND 9.0 9.5 -5.5 9.2 5.3 42.3 9.0 4.4 51.1
BOEING1 19.3 5.2 73.0 19.6 5.0 74.4 19.8 5.0 74.7
BORE3D 15.0 4.0 73.3 13.9 4.0 71.2 13.6 4.0 70.5
BRANDY 14.2 14.1 0.7 17.8 15.4 13.4 28.1 18.8 33.0
DEGEN2 11.1 13.4 -20.7 29.2 30.5 -4.4 93.0 86.0 7.5
E226 15.5 10.2 34.1 15.1 4.9 67.5 15.0 4.1 72.6
GROW15 20.2 12.9 36.1 15.3 11.3 26.1 13.4 5.0 62.6
GROW7 24.0 16.1 32.9 17.1 8.8 48.5 13.5 6.4 52.5
ISRAEL 19.8 5.4 72.7 20.0 4.0 80.0 19.9 4.0 79.8
KB2 18.2 15.3 15.9 18.2 5.1 71.9 17.8 5.0 71.9
LOTFI 20.0 7.1 64.5 25.8 12.3 52.3 50.1 36.2 27.7
RECIPELP 13.9 7.1 48.9 13.9 6.6 52.5 14.0 6.0 57.1
SC105 11.8 7.1 39.8 11.5 5.0 56.5 12.0 5.0 58.3
SC205 12.6 7.7 38.8 12.0 5.0 58.3 12.0 5.0 58.3
SC50A 11.1 7.1 36.0 11.0 4.0 63.6 11.0 4.0 63.6
SC50B 10.0 5.1 49.0 10.0 4.0 60.0 10.0 4.0 60.0
SCAGR25 11.7 9.4 19.6 11.8 4.3 63.5 12.5 4.3 65.6
SCAGR7 10.1 6.5 35.6 10.0 4.0 60.0 9.7 4.0 58.7
SCFXM1 15.2 8.0 47.3 14.9 4.6 69.1 14.4 5.0 65.2
SCSD1 9.1 6.3 30.7 9.3 5.2 44.0 9.2 4.8 47.8
SCTAP1 14.2 9.5 33.0 15.6 6.2 60.2 15.1 5.2 65.5
SHARE1B 21.0 9.4 55.2 21.2 7.0 66.9 22.1 5.6 74.6
SHARE2B 9.6 9.9 -3.1 9.2 5.7 38.0 9.0 5.0 44.4
STOCFOR1 11.5 5.8 49.5 12.3 5.2 57.7 12.1 5.1 57.8

Average 14.1 8.4 38.0 14.7 6.7 55.8 17.7 8.9 58.9

Table 8: Results (Best Warmstart) - perturbations in A



An Unblocking Technique to Warmstart IPMs 27

Problem b c A
cold warm red cold warm red cold warm red

ADLITTLE 10.4 5.6 46.1 10.2 5.8 43.1 10.5 6.4 39.0
AFIRO 10.1 4.2 58.4 10.4 4.9 52.8 10.0 4.3 57.0
AGG2 16.1 4.2 73.9 16.3 5.1 68.7 16.0 4.5 71.8
AGG3 15.7 5.2 66.8 15.9 5.7 64.1 15.6 5.5 64.7
BANDM 13.7 5.4 60.5 13.7 7.8 43.0 13.6 5.4 60.2
BEACONFD - - - 10.3 4.5 56.3 10.0 4.2 58.0
BLEND 9.0 4.1 54.4 9.1 5.4 40.6 9.0 6.4 28.8
BOEING1 19.9 6.8 65.8 19.4 12.8 34.0 19.5 5.0 74.3
BORE3D - - - 13.1 4.9 62.5 14.1 4.0 71.6
BRANDY - - - 15.3 5.6 63.3 20.0 16.1 19.5
DEGEN2 - - - 9.9 4.7 52.5 44.4 43.3 2.4
E226 15.6 7.5 51.9 15.3 9.5 37.9 15.2 6.4 57.8
GROW15 13.0 4.0 69.2 21.1 11.3 46.4 16.3 9.7 40.4
GROW7 12.0 4.0 66.6 20.8 14.7 29.3 18.2 10.4 42.8
ISRAEL 20.4 4.9 75.9 20.8 5.4 74.0 19.9 4.4 77.8
KB2 17.4 5.0 71.2 17.9 5.6 68.7 18.0 8.4 53.3
LOTFI 19.7 6.1 69.0 21.4 21.4 0.0 31.9 18.5 42.0
RECIPELP 14.1 8.2 41.8 - - - 13.9 6.5 53.2
SC105 12.0 5.0 58.3 11.5 8.7 24.3 11.7 5.7 51.2
SC205 12.0 5.0 58.3 12.6 15.2 -20.6 12.2 5.9 51.6
SC50A 11.0 4.0 63.6 11.0 4.9 55.4 11.0 5.0 54.5
SC50B 10.7 7.4 30.8 10.1 5.2 48.5 10.0 4.3 57.0
SCAGR25 12.2 4.3 64.7 12.4 4.3 65.3 12.0 6.0 50.0
SCAGR7 9.9 4.0 59.5 10.0 4.3 57.0 9.9 4.8 51.5
SCFXM1 14.6 4.9 66.4 14.1 5.1 63.8 14.8 5.8 60.8
SCSD1 10.1 6.8 32.6 9.2 5.0 45.6 9.2 5.4 41.3
SCTAP1 15.0 5.4 64.0 16.0 6.1 61.8 14.9 6.9 53.6
SHARE1B 21.2 5.4 74.5 21.8 6.8 68.8 21.4 7.3 65.8
SHARE2B 9.2 5.1 44.5 9.1 5.7 37.3 9.2 6.8 26.0
STOCFOR1 13.9 5.2 62.5 13.4 5.0 62.6 11.9 5.3 55.4

Average 13.8 5.3 59.6 14.2 7.3 48.4 15.5 8.0 50.9

Table 9: Results (Best Warmstart) - all perturbations

iter 1 2 3 4 5 6 7 8 9 10

cold 12.7 11.9 13.7 15.8 16.2 15.6 14.9 14.6 14.5 15.0
warm 12.7 7.0 6.0 5.8 6.4 7.0 7.0 6.7 6.2 6.0
red 0.0 41.2 56.2 63.3 60.5 55.1 53.0 54.1 57.2 60.0

Table 11: Capacitated MCNF solved by warmstarted IPM-SQP
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constraints variables ρ = 1e-3 5e-3 0.01 0.05 0.1 0.5 1 5 10

223.321 76.881 cold 14 14 14 14 14 13 17 16 17
warm 14 5 5 5 4 5 5 8 8
red 0.0 64.2 64.2 64.2 71.4 61.5 70.5 50.0 52.9

533.725 198.525 cold 14 14 14 14 14 15 18 18 17
warm 14 5 5 5 6 5 5 9 10
red 0.0 64.3 64.3 64.3 57.1 66.7 72.2 50.0 41.2

5.982.604 16.316.191 cold 24 23 24 23 25 22 24 23 24
warm 24 8 11 13 11 13 12 12 14
red 0.0 65.2 54.2 43.5 56.0 40.9 50.0 47.8 41.7

70.575.308 192.478.111 cold 52 53 45 43 44 42 44 46 46
warm 52 13 13 15 15 16 16 23 25
red 0.0 75.5 71.1 65.1 65.9 61.9 63.6 50.0 45.6

Table 12: Computation of Efficient Frontier with IPM warmstarts


