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Abstract

A parallel implementation of Support Vector Machine training for
problems involving nonlinear kernels has been developed. The kernel
matrix is approximated by a partial Cholesky decomposition. Theo-
retical issues associated with constructing the best possible (and yet
computationally efficient) approximation are discussed in detail and
implemented in OOPS. The structure of the augmented system ma-
trix is exploited to partition data and computations amongst parallel
processors efficiently. The new implementation has been applied to
solve problems which involve very large data sets. Excellent parallel
efficiency was observed on such problems.

1 Introduction

Support Vector Machines (SVMs) are powerful machine learning techniques
for classification and regression, and they offer state-of-the-art performance.
The training of an SVM is computationally expensive and relies on opti-
mization. The core of the approach is a dense convex quadratic optimization
problem (QP), which for a general-purpose QP solver scales cubically with
the number of data points (O(n3)). This complexity result makes applying
SVMs to large scale data sets challenging, and in practise the optimization
problem is intractable by general purpose optimization solvers.
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The standard approach to handle this problem is to build a solution
by solving a sequence of small scale problems, e.g. Decomposition (Osuna
et al., 1997) or Sequential Minimal Optimization (Platt, 1999). State-of-the-
art software such as SVMlight (Joachims, 1999) and SVMTorch (Collobert
and Bengio, 2001) use these techniques. These are basically active-set tech-
niques, which work well when the separation into active and non-active
variables is clear, in other words when the data is separable by a hyper-
plane. Empirical computation time measurements on SVMTorch show that
training time grows much closer to O(n2) than O(n3) of a general purpose
QP solver, but with noisy data, the set of support vectors is not so clear, and
the performance of these algorithms deteriorates (Woodsend and Gondzio,
2007).

The standard active set technique is essentially sequential, choosing a
small subset of variables to form the active set at each iteration, based
upon the results of the previous selection. Improving the computation time
through parallelization of the algorithm is difficult due to dependencies be-
tween subsequent iterations, and it is not clear how to implement this effi-
ciently.

Parallelization schemes so far proposed have involved splitting the train-
ing data to give smaller, separable optimization sub-problems which can be
distributed amongst the processors. Dong et al. (2003) used a block-diagonal
approximation of the kernel matrix to derive independent optimization prob-
lems. The resulting SVMs were used to filter out samples that were likely
not to be support vectors. A SVM was then trained on the remaining sam-
ples, using the standard serial algorithm. Collobert et al. (2002) proposed
a mixture of multiple SVMs where single SVMs are trained on subsets of
the training set and a neural network is used to assign samples to different
subsets.

Another approach is to use a variation of the standard SVM algorithm
that is better suited to a parallel architecture. Tveit and Engum (2003)
developed an exact parallel implementation of the Proximal SVM, which
modifies the standard SVM formulation to remove the single constraint in
the dual and give an unconstrained QP. It is not clear how applicable this
formulation is to real-world data sets.

There have only been a few parallel methods in the literature which train
a standard SVM on the whole of the data set. We briefly survey the methods
of Zanghirati and Zanni (2003), Graf et al. (2005) and Chang et al. (2007).

In an approach similar to SVMlight, the algorithm of Zanghirati and
Zanni (2003) decomposes the SVM training problem into a sequence of
smaller, though still dense, QP sub-problems. Zanghirati and Zanni imple-
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ment the inner solver using a technique called variable projection method,
which is able to work efficiently on relatively large dense inner problems,
and is suitable for implementing in parallel. The performance of the inner
QP solver was improved in Zanni et al. (2006). Scalar performance was
competitive with SVMlight, and parallel efficiency was reasonable.

In the cascade algorithm introduced by Graf et al. (2005), the SVMs are
layered. The support vectors given by the SVMs of one layer are combined
to form the training sets of the next layer. The support vectors of the
final layer are re-inserted into the training sets of the first layer at the next
iteration, until the global KKT conditions are met. The authors show that
this feedback loop corresponds to standard SVM training.

Another family of approaches to QP optimization are based on Interior
Point Method (IPM) technology, which works by delaying the split between
active and inactive variables for as long as possible. IPMs generally work well
on large-scale problems. A straight-forward implementation of the standard
SVM dual formulation would have complexity O(n3), and be unusable for
anything but the smallest problems. Chang et al. (2007) use IPM technol-
ogy for the optimizer, and avoid the problem of inverting the dense Hessian
matrix by generating a low-rank approximation of the kernel matrix using
partial Cholesky decomposition with pivoting. The dense Hessian matrix
can then be efficiently inverted implicitly using the low-rank approximation
and the Sherman-Morrison-Woodbury (SMW) formula. Moreover, a large
part of the calculations at each iteration can be distributed amongst the pro-
cessors effectively. The SMW formula has been widely used in interior point
methods; however, sometimes it runs into numerical difficulties. Goldfarb
and Scheinberg (2005) constructed data sets where an SMW-based algo-
rithm required many more iterations to terminate, and in some cases stalled
before achieving an accurate solution. They also showed that this situation
arises in real-world data sets.

This paper has two essential contributions:

• For non-linear SVMs, the data is preprocessed to give a partial Cholesky
decomposition. We propose to use the approximation LLT +D rather
than the standard LLT , allowing outliers to be more efficiently ap-
proximated.

• We propose a parallel SVM algorithm that trains the SVM using the
full data set, using an interior point method to give efficient optimiza-
tion, and Cholesky decomposition to give good numerical stability.

For the partial Cholesky decomposition of non-linear kernel matrices,
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error bounds resulting from the approximation are analyzed. From our
observation that choosing outliers to form columns of L does not reduce
the error bounds substantially, we construct a greedy heuristic for choosing
pivots. We provide evidence that approximations using explicit diagonal
terms (LLT +D) require significantly fewer vectors to be included in matrix
L than approximations which do not add diagonal terms (LLT ). Since the
complexity of IPM SVMs depends on the square of the number of columns
included in L (but does not depend on the number of nonzero elements
included in the D part), we observe spectacular improvements resulting from
the use of LLT + D approximations. In addition, we describe an algorithm
for performing this decomposition, without requiring explicit storage of the
kernel matrix.

Our parallel SVM algorithm distributes the data evenly amongst the
processors. We use an interior point method to give efficient optimization of
the QP that is the core of SVM training, but unlike previous approaches we
use Cholesky decomposition to give good numerical stability and efficient
memory caching. Our approach directly tackles the most computationally
expensive part of the optimization, namely the inversion of the dense Hessian
matrix, through providing an efficient implicit inverse representation of an
approximation to the Hessian. By exploiting the structure of the problem,
we show how this can be parallelized with excellent parallel efficiency. The
resulting implementation is significantly faster at SVM training than can be
achieved using state-of-the-art active set methods implemented serially.

The structure of the rest of this paper is as follows. Section 2 provides a
short description of support vector machines. Section 3 gives an outline of
interior point method for optimizing quadratic programs. Then in Section 4
we describe our approach to training linear and non-linear SVMs efficiently.
Our algorithm for choosing pivots for the partial Cholesky decomposition is
described in Section 5. The parallel algorithm that exploits the structure of
the QP is given in Section 6, along with numerical performance results.

We now briefly describe the notation used in this paper. xi is the at-
tribute vector for the ith data point, and it consists of the observation values
directly. There are n observations in the training set, and k attributes in
each vector xi. X is the n × k matrix whose rows are the attribute row
vectors xT

i associated with each point. The classification label for each data
point is denoted by yi ∈ {−1, 1}. The variables w ∈ Rk and z ∈ Rn are used
for the primal variables (“weights”) and dual variables (α in SVM literature)
respectively, and w0 ∈ R for the bias of the hyperplane. Scalars and column
vectors are denoted using lower case letters, while upper case letters denote
matrices. D,S, U, V, Y and Z are the diagonal matrices of the corresponding
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lower case vectors.

2 Support vector machines

In this section we briefly outline the formulations for Support Vector Ma-
chines used for classification problems. In particular, we draw attention to
the relationship between the primal weight variables w ∈ Rk and the dual
variables z ∈ Rn, as we will use it later to develop new formulations for each
of the problems described here.

A Support Vector Machine (SVM) is a classification learning machine
that learns a mapping between the features and the target label of a set of
data points known as the training set, and then uses a hyperplane wT x +
w0 = 0 to separate the data set and predict the class of further data points.
The labels are the binary values “yes” or “no”, which we represent using
the values +1 and −1. The objective is based on the Structural Risk Mini-
mization (SRM) principle, which aims to minimize the risk functional with
respect to both the empirical risk (the quality of the approximation to the
given data, by minimising the misclassification error) and maximize the
confidence interval (the complexity of the approximating function, by max-
imising the separation margin) (Vapnik, 1998, 1999). A fuller description is
also given in Cristianini and Shawe-Taylor (2000).

For a linear kernel, the attributes in the vector xi for the ith data point
are the observation values directly, while for a non-linear kernel the obser-
vation values are transformed by means of a (possibly infinite dimensional)
non-linear mapping Φ.

Training an SVM has at its core a convex quadratic optimization prob-
lem. For a linear SVM classifier using a 2-norm for the hyperplane weights w
and a 1-norm for the misclassification errors ξ ∈ Rn this takes the following
form:

min
w,w0,ξ

1
2
wT w + τeT ξ

s.t. Y (Xw + w0e) ≥ e− ξ (1)
ξ ≥ 0

where e is the vector of all ones, and τ is a positive constant that parame-
terizes the problem.

Due to the convex nature of the problem, a Lagrangian function associ-
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ated with (1) can be formulated,

L(w,w0, ξ, z, µ) =
1
2
wT w + τeT ξ −

n∑
i=1

zi[yi(wT xi + w0)− 1 + ξi]− µT ξ

where z ∈ Rn is the vector of Lagrange multiplers associated with the in-
equality constraint, and µ ∈ Rn is the vector of Lagrange multipliers associ-
ated with the non-negativity constraint on ξ. The solution to (1) will be at
the saddle point of the Lagrangian. Partially differentiating the Lagrangian
function gives relationships between the primal variables w, w0 and ξ, and
the dual variables z at optimality:

w = (Y X)T z

yT z = 0 (2)
0 ≤ z ≤ τe.

Substituting these relationships back into the Lagrangian function gives the
dual problem formulation

min
z

1
2
zT Y XXT Y z − eT z

s.t. yT z = 0 (3)
0 ≤ z ≤ τe.

Non-linear kernels are a powerful extension to the Support Vector Ma-
chine technique. Attribute vectors x are transformed into some feature space
through a non-linear mapping x → Φ(x). This allows SVMs to handle data
sets that are not linearly separable, but which can be separated by a poly-
nomial curve or by clustering. One of the main advantages of the dual
formulation is that the mapping can be represented by a kernel matrix K,
where each element is given by Kij = Φ(xi)T Φ(xj), resulting in the QP

min
z

1
2
zT Y KY z − eT z

s.t. yT z = 0 (4)
0 ≤ z ≤ τe.

Kernel functions allow the matrix K to be calculated without knowing Φ(x)
explicitly. The original attribute vectors appear only in terms of inner prod-
ucts. As an example, a commonly used kernel function is the radial basis
kernel (RBF)

Kij = e−γ‖xi−xj‖2 .
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3 Interior point methods

Interior point methods represent state-of-the-art techniques for solving lin-
ear, quadratic and non-linear optimization programmes. In this section the
key issues of implementation for QPs are discussed very briefly; for more
details, see Wright (1997).

We are interested in solving the general convex quadratic problem

min
z

1
2
zT Qz − eT z

s.t. Az = b (5)
0 ≤ z ≤ u,

where u is a vector of upper bounds, and the constraint matrix A is assumed
to have full row rank. Dual feasibility requires that AT λ+ s− v−Qz = −e,
where λ is the Lagrange multiplier associated with the linear constraint
Az = b and s, v > 0 are the Lagrange multipliers associated with the lower
and upper bounds of z respectively. An interior point method progresses
towards satisfying the KKT conditions over a series of iterations, by reducing
primal and dual infeasibilities and controlling the complementarity products,

ZSe = µe

(U − Z)V e = µe,

where µ is a strictly positive parameter. At each iteration, the method
makes a damped Newton step towards satisfying the primal feasibility, dual
feasibility and complementarity product conditions for a given µ. Then
the algorithm decreases µ before making another iteration. The algorithm
continues until both infeasibilities and the duality gap (which is proportional
to µ) fall below required tolerances.

The Newton system to be solved at each iteration can be transformed
into the augmented system equations:[

−(Q + Θ−1) AT

A 0

] [
∆z
∆λ

]
=

[
rc

rb

]
, (6)

where ∆z,∆λ are components of the Newton direction in the primal and
dual spaces respectively, Θ−1 ≡ Z−1S + (U − Z)−1V , and rc and rb are
appropriately defined residuals. If the block (Q + Θ−1) is diagonal, an
efficient method to solve such a system is to form the Schur complement
C = A (Q + Θ−1)−1 AT , solve the smaller system C∆λ = r̂b for ∆λ, and
back-substitute into (6) to calculate ∆z. Unfortunately in the case of SVM
training, the kernel matrix, and therefore Q, is a completely dense matrix.
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4 Efficient training of SVMs using IPM

In this section we describe a formulation for training a SVM that allows
the efficient use of IPM technology to solve the QP. We use Cholesky de-
composition to give good numerical stability, applied to all features at once
resulting in a more efficient implementation in terms of memory caching.
For linear SVMs, the feature matrix is used directly. Our approach can be
applied to the case of non-linear SVMs once the data has been preprocessed
using partial Cholesky decomposition with pivoting.

4.1 Linear SVMs

Using the form Q = (Y X)(Y X)T enabled by the linear kernel, we can
rewrite the quadratic objective in terms of w, and ensure the relationship (2)
between w and z to hold at optimality by introducing it into the constraints.
Consequently, we can state the classification problem (3) as the following
separable QP:

min
w,z

1
2
wT w − eT z

s.t. w − (Y X)T z = 0 (7)

yT z = 0
0 ≤ z ≤ τe.

The quadratic matrix in the objective is no longer dense, but simplified
to the diagonal matrix

Q =
[

Ik 0
0 0n

]
∈ R(n+k)×(n+k)

while the constraint matrix is in the form:

A =
[

Ik −(Y X)T

0 yT

]
∈ R(k+1)×(k+n).

Determining the Newton step requires calculating the matrix product:

C ≡ A(Q + Θ−1)−1AT

=
[

(Ik + Θ−1
w )−1 + XT Y ΘzY X −XT Y Θzy
−ytΘzY X yT Θzy

]
∈ R(k+1)×(k+1). (8)

We need to solve A(Q + Θ−1)−1AT ∆λ = r for ∆λ. Building the matrix
(8) is the most expensive operation, of order O(n(k + 1)2), while inverting
the resulting matrix is of order O((k + 1)3).
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4.2 Non-linear SVMs

The formulation in the above section can be extended to the non-linear
SVM training problem (4). The matrix resulting from a non-linear kernel
is normally dense, which results in a dense QP. It has been noted by sev-
eral researchers (see Fine and Scheinberg, 2002) that it is possible to make
a good low-rank approximation of the kernel matrix. Fine and Scheinberg
(2002) use the approximation K ≈ LLT based on partial Cholesky decom-
position with pivoting. In Woodsend and Gondzio (2007) we showed that
the approximation K ≈ LLT + diag(d) can be determined at no extra com-
putational expense. By applying a similar reformulation we can derive the
QP:

min
w,z

1
2
(wT w + zT Dz)− eT z

s.t. w − (Y L)T z = 0 (9)

yT z = 0
0 ≤ z ≤ τe.

Note that we can still exploit the separability of the objective as the Hes-
sian is again diagonal, so the computational complexity using the LLT + D
approximationg with L of rank r is O(n(r + 1)2 + nkr + (r + 1)3).

5 Choosing pivots for partial Cholesky decompo-
sition of the kernel matrix

To form the approximation K ≈ LLT using partial Cholesky decomposition,
Fine and Scheinberg (2002) chose pivots by applying the greedy heuris-
tic algorithm of selecting the largest diagonal element each time, and this
approach has been used subsequently (Chang et al., 2007; Woodsend and
Gondzio, 2007).

In this section we show that this algorithm is not the best for approxi-
mating clustered data using a low-rank matrix, particularly if the residual
diagonal forms part of the approximation.

5.1 Approximating clusters and outliers

Consider a data-set that consists of two clusters A and B, both with a large
number (nA and nB respectively, and nA ≈ nB) of very closely situated
points, and nC outlying points C which are far from either cluster (see Figure
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Cluster A
Cluster B

Outliers C

Figure 1: Data set consisting of two clusters plus outliers.

1). If the Radial Basis Kernel is used for this data set, it will generate a
kernel matrix with a large block of elements equal to or very close to 1
corresponding to cluster A, a similar block corresponding to cluster B, and
a diagonal block very close to the identity matrix corresponding to points
C. Using the notation enA = (1, 1, . . . , 1)T ∈ RnA and enB = (1, 1, . . . , 1)T ∈
RnB , the kernel matrix can be closely approximated by

K(0) =

 enAeT
nA

αenAeT
nB

αenBeT
nA

enBeT
nB

InC

 (A)
(B)
(C)

if A and B are reasonably close, while the points of C are far from both the
A and B clusters. In other words, the large blocks corresponding to clusters
A and B can be very well approximated by rank-one matrices. Note that all
the pivots have the same value at this stage.

Next we show by example that such a kernel matrix, resulting from
natural clusters in the data set, cannot be well approximated by a partial
Cholesky decomposition LLT with pivoting based on the largest diagonal
element unless the rank of L is at least nc + 2. Suppose a small rank, say
r = 2 is used. Proposition 5.1 gives the error in the approximation of K(0)

using such an approximation, when rank r = 2. Alternatively, Proposition
5.2 shows that an approximation using LLT + D with L build of merely
two columns, where pivots are chosen on some measure based on clustering,
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has minimal error. Let the notation O(ε) indicate a number very close to
zero, and blocks in the formO(ε)nA×nA indicate sub-matrices where diagonal
elements are zero and non-diagonal elements are very close to zero.

Proposition 5.1. If a low-rank approximation LLT of matrix K(0) is con-
structed, with the rank r = 2 and at each iteration the largest pivot is
chosen, the lowest Frobenius norm of the residual matrix ‖K − LLT ‖2

F ≈
(1− α2)n2

B + nC − 1.

Proof. If we assume that the first pivot chosen at random is taken from
cluster A (if nA ≈ nB then clusters A and B are interchangable), the first
approximation of the kernel matrix is

K(0) =

 enA

αenB

0nC

 [
eT
nA

αeT
nB

0T
nC

]
+ K(1),

where K(1) =

 O(ε)nA×nA O(ε)nA×nB

O(ε)nB×nA (1− α2)enBeT
nB

InC

 .

At the next iteration, the largest pivot will be found among diagonal
elements corresponding to points in C, giving

K(0) =

 enA

αenB

0nC

 [
eT
nA

αeT
nB

0T
nC

]

+

 0nA+nB

1
0nC−1

 [
0T

nA+nB
1 0T

nC−1

]
+ K(2)

where K(2) =


O(ε)nA×nA O(ε)nA×nB

O(ε)nB×nA (1− α2)enBeT
nB

0
InC−1

 .

The Frobenius norm of this residual matrix ‖K − LLT ‖2
F ≈ (1 − α2)n2

B +
nC − 1.

By using a similar argument we can prove that unless all pivots corre-
sponding to points in C are eliminated, no pivot from the cluster B and be
chosen. Hence we need a rank of at least nC + 2 to reduce the error of the
approximation to an O(ε) level.
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Proposition 5.2. If an approximation LLT + D of matrix K(0) is con-
structed, where a point in cluster A and a point in cluster B are chosen
to form the two columns of L, and D is the diagonal of the residual ma-
trix, then the Frobenius norm of the residual matrix ‖K − (LLT + D)‖F =
‖O(ε)(nA+nB)×(nA+nB)‖F .

Proof. If, instead of choosing the pivots based on the largest elements in the
diagonal, we choose a pivot from cluster A and a pivot from cluster B, then
we get

K(0) =

 enA

αenB

0nC

 [
eT
nA

αeT
nB

0T
nC

]

+

 0nA√
1− α2enB

0nC

 [
0T

nA

√
1− α2eT

nB
0T

nC

]
+ K(2)

where K(2) =
[
O(ε)(nA+nB)×(nA+nB)

InC

]
,

with a Frobenius norm ‖K−LLT ‖2
F ≈ nC . If cluster B is large and C small,

then this is obviously preferable. Additionally, if we include a residual diago-
nal into our approximation (LLT +D), the norm of the residual error matrix
can be reduced further to ‖K − (LLT + D)‖F = ‖O(ε)(nA+nB)×(nA+nB)‖F .

We can see from this example that the algorithm that chooses the largest
pivot will have to choose all the outliers C before it will select any point from
cluster B. The approximation will need to be of higher rank than the number
of outliers. We can remedy this by using the form K ≈ LLT +D and packing
all elements corresponding to outliers C into matrix D, without increasing
the rank of L.

5.2 Bounding the error in the approximation

If we approximate the original kernel matrix using the matrix LLT +D, and
use it to form the Hessian of the SVM training QP (9), how close is the per-
turbed problem to the original one? One method of judging is to measure
the error in the objective value. To do this, we consider the original non-
linear SVM dual formulation (4), with the kernel matrix forming part of the
Hessian, and the approximate QP in which the new (approximate) Hessian
K̃ is used. Let f(z) = 1

2zT Y KY zT − eT z and f̃(z) = 1
2zT Y K̃Y zT − eT z
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denote the objective functions in the original problem (4) and in its approx-
imation respectively. Bounds for the error in the approximated objective
function are given in Theorem 5.3.

Theorem 5.3. Let z∗ be the optimal solution of (4) and z̃∗ be the optimal
solution of the approximate QP. Let K = K̃ + ∆K. Then the error in the
objective value |f(z∗)− f̃(z̃∗)| is bounded by

1
2
z∗T Y ∆KY z∗ ≤ f(z∗)− f̃(z̃∗) ≤ 1

2
z̃∗T Y ∆KY z̃∗.

Proof. First we observe that the two QP problems differ only in the objective
functions; the constraints are identical. Hence any feasible solution of (4) is
also a feasible solution of the approximate problem. From the definitions of
f(z) and f̃(z), for any point z,

f(z)− f̃(z) =
1
2
zT Y KY z − 1

2
zT Y K̃Y z

=
1
2
zT Y ∆KY z. (10)

For the upper bound, consider the point z∗. It is the minimizer of f(·),
therefore f(z∗) ≤ f(z̃∗). Applying (10) to the point z̃∗ and substituting in
this inequality gives

f(z∗)− f̃(z̃∗) ≤ 1
2
z̃∗T Y ∆KY z̃∗.

Similarly, the point z̃∗ minimizes f̃(·), so f̃(z̃∗) ≤ f̃(z∗). Substituting
this relationship for f(z∗) into (10) at z∗ gives

f(z∗)− f̃(z̃∗) ≥ 1
2
z∗T Y ∆KY z∗.

A good approximation will keep these bounds as tight as possible. Below
we attempt to quantify this. Let us define the matrix norm ‖∆K‖e :=∑

i

∑
j |∆Kij |, the sum of all absolute values in ∆K.

Corollary 5.4. If the matrix K in QP (4) is approximated by the matrix
K̃, where K = K̃ +∆K, the error in the objective due to the approximation
is bounded by

|f(z∗)− f̃(z̃∗)| ≤ 1
2
τ2‖∆K‖e.
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Proof. In (4) z is bounded by 0 ≤ z ≤ τe, and only the support vectors
themselves will have non-zero values, but obviously we can only know the
values of z∗ after the approximation is made. Following Theorem 5.3, a
worst case for the bounds of the error, |f(z∗) − f̃(z̃∗)|, can be constructed
by taking all elements of z to their bounds:

|f(z∗)− f̃(z̃∗)| ≤ 1
2

∑
i

∑
j

max(τ2yiyj∆Kij , 0)

≤ 1
2
τ2

∑
i

∑
j

|yiyj∆Kij |

=
1
2
τ2

∑
i

∑
j

|∆Kij |

as yi, yj ∈ {−1,+1}.
Using the definition of ‖∆K‖e, the maximum error in the objective is

then

|f(z∗)− f̃(z̃∗)| ≤ 1
2
τ2‖∆K‖e,

and clearly minimizing ‖∆K‖e will reduce the error.

5.3 A cost measure for selecting pivots

In section 5.1 we observed that the diagonal elements of K corresponding
to outlying data points will remain large during partial Cholesky decom-
position, yet other elements in the columns will be small. An algorithm
that selects columns by choosing the largest diagonal element will construct
columns of L based on such points, yet they can be adequately represented
by a diagonal matrix D. In that example, the decision whether a pivot
should contribute to a diagonal term of D or a column of L was straightfor-
ward. In real-life examples this decision is less obvious. Moreover, we wish
to keep the rank of L as small as possible, hence we would like to encourage
an early choice of essential columns which indeed should contribute to L.
We start our discussion from an analysis of a simplified example in which
two attractive pivot candidates are available.

Let the kernel submatrix at an iteration be

K =

 u1 0 ūT

0 v1 v̄T

ū v̄ K̄

 . (11)
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The columns containing u and v are the candidates for pivoting. For sim-
plicity, we consider them after being permuted to the top of the matrix. The
elements u1 and v1 are pivot elements on the diagonal, while ū and v̄ are
vectors containing the rest of the column. K̄ contains the rest of the matrix.
To describe the effect on the residual matrix after a candidate is chosen, we
make the following assumption.

Assumption 5.5. The kernel matrix K ≥ 0, and for all pivot column
candidates K − 1

u1
uuT ≥ 0.

Assumption 5.5 corresponds to assuming that all elements of the Schur
complement will be reduced in absolute value as the result of the pivoting.
First let us observe that, by construction, kernel matrices are positive semi-
definite. For some types of kernel, it is possible to say more: for instance
K ≥ 0 for a polynomial kernel with an even power, and K > 0 for the
commonly used RBF kernel. Unfortunately for later iterations this is only
an approximation: K ≥ 0 cannot be guaranteed even for an initial kernel
matrix using the radial basis kernel. However, we have noted empirically
that the vast majority of elements of the Schur complement remain positive
during at least the early iterations of Cholesky decomposition. We exploit
these observations for the purposes of developing a heuristic, by taking that
Assumption 5.5 will hold at least for the early iterations where this heuristic
will be used.

Remark 5.6. If Assumption 5.5 holds, the residual matrix after choosing
column u will have the norm

‖K − llT ‖e = v1 + 2‖v̄‖1 + ‖K̄‖e −
1
u1
‖ū‖2

1.

Proof. If u is chosen for the pivot, the corresponding column of the Cholesky

decomposition l will be

 l1
0
l̄

, where l1 =
√

u1 and l̄ = 1
l1

ū. The residual

matrix K − llT resulting when column u is chosen will be

K − llT =

 0 0 0
0 v1 v̄T

0 v̄ K̄ − l̄l̄T

 .

The entry-wise norm defined before Corollary 5.4 will be ‖K − llT ‖e =
|v1|+ 2‖v̄‖1 + ‖K̄ − l̄l̄T ‖e.
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Under the (restrictive) Assumption 5.5,

‖K̄ − l̄l̄T ‖e = ‖K̄‖e − ‖l̄l̄T ‖e.

Furthermore, using the relationships l̄ = 1
l1

ū and l1 =
√

u1, the norm of the
sub-matrix

‖K̄ − l̄l̄T ‖e = ‖K̄‖e −
1
u1
‖ūūT ‖e.

Using the following: ‖ūūT ‖e =
∑

i

∑
j(|ūi||ūj |) =

∑
i |ūi|

∑
j |ūj | = ‖ū‖2

1,
we conclude

‖K̄ − l̄l̄T ‖e = ‖K̄‖e −
1
u1
‖ū‖2

1, and

‖K − llT ‖e = v1 + 2‖v̄‖1 + ‖K̄‖e −
1
u1
‖ū‖2

1.

There will be an analogous result if column v was used. It is now possible
to say which column should be chosen as the pivot: we will prefer column u
to v if it gives a smaller error in the residual matrix when compared to the
error resulting from choosing column v; in other words, if ‖K − (llT )(u)‖e <
‖ K − (llT )(v)‖e.

Remark 5.7. If Assumption 5.5 holds, an approximation LLT ≈ K with
minimum residual is constructed by choosing column u as the pivot in pref-
erence to column v if

1
v1
‖v‖2

1 <
1
u1
‖u‖2

1.

Proof. Using Remark 5.6 for ‖K − llT ‖e, we get

‖K − (llT )(u)‖e < ‖ K − (llT )(v)‖

v1 + 2‖v̄‖1 + ‖K̄‖e −
1
u1
‖ū‖2

1 < u1 + 2‖ū‖1 + ‖K̄‖e −
1
v1
‖v̄‖2

1

v1 + 2‖v̄‖1 +
1
v1
‖v̄‖2

1 < u1 + 2‖ū‖1 +
1
u1
‖ū‖2

1

1
v1
‖v‖2

1 <
1
u1
‖u‖2

1.

We can see from this inequality that whether column u is the best choice
of pivot depends in a non-linear way on both the pivot value u1 and the
norm of the column ‖u‖1. It is not always best to choose the largest pivot.

The measure changes if we use the residual diagonal to improve our
approximation, as shown in Remark 5.8. Let the matrix K be approximated
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using LLT +D̄ ≈ K, where D̄ is the diagonal of K̄. The residual error matrix
is therefore redefined as K− (LLT + D̄). We consider again matrix (11) and
the pivot selection that minimizes the error in ∆K = K − (LLT + D̄).

Proposition 5.8. The pivot corresponding to column u is preferable to that
of column v if

2‖v̄‖1 +
1
v1
‖v̄‖2

1 < 2‖ū‖1 +
1
u1
‖ū‖2

1.

Proof. Using the redefined residual error matrix, then when column u is
chosen as the pivot

‖∆u‖e = v1 + 2‖v̄‖1 + ‖K̄‖e −
1
u1
‖ū‖2

1 − v1 − ‖D̄‖e.

Column u is the better pivot if

2‖v̄‖1 +
1
v1
‖v̄‖2

1 < 2‖ū‖1 +
1
u1
‖ū‖2

1.

We can use the measure

mu = 2‖ū‖1 +
1
u1
‖ū‖2

1 (12)

as the basis for selecting a pivot column. mu can be thought of as a cost
measure for approximating the column with a diagonal rather than providing
an exact representation through a column in L.

5.4 An algorithm for Cholesky decomposition using column
norms

We use (12) as the basis of greedy heuristic for selecting columns to form
a Cholesky decomposition of the kernel matrix. At each iteration, we choose
the column with the highest measure, while rejecting columns with very
small pivots that would increase numerical errors during the decomposition.

A simplified version is given as Algorithm 1. In this algorithm, n is
the number of samples, r the maximum allowed number of columns of the
Cholesky factor L, and d is the diagonal of the residual matrix K−LLT . The
full set of columns J of the matrix K are partitioned into four disjoint sets:
L (columns allocated to L), D (allocated to D), P (columns postponed
from consideration in the current iteration) and U (columns available for
consideration, and not yet allocated to either L or D), where J = L ∪ D ∪
P ∪ U .
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Algorithm 1 A simplified serial algorithm to construct a Cholesky decom-
position with partial pivoting, K̃ = LLT + diag(d), using the cost measure
mu to minimize the residual K̄ − diag(d).
1: J := {1 . . . n},
2: L := ∅, D := ∅, P := ∅, U := J
3: dj := Kjj ∀j ∈ J // Initialise the diagonal

// Calculate a maximum of r columns
4: for i = 1 : r do
5: Choose j∗ : dj∗ = maxj∈U dj

6: Compute column j∗ of the Schur complement:
Skj∗ := Kkj∗ −

∑i
l=1(Lkl · Lj∗l) ∀k = i + 1, . . . , n

7: Compute the “cost” of approximating this column using just the di-
agonal, and not as a full column of L:
s̄j∗ :=

∑n
l=i+1 |Slj∗ |

mj∗ := 1
dj∗

s̄2
j∗ + 2s̄j∗

8: if dj∗ < εsmall or mj∗ < εD then
9: D := D ∪ {j∗}, U := U\{j∗}

10: else if mj∗ > εL then
11: L := L∪ {j∗}, U := U\{j∗}, form new column i of L using L·i :=

S·j∗ , update the diagonal: dj := dj − (Lji)2 ∀j ∈ U ∪ P
12: else
13: For a column where the allocation is not clear, temporarily remove

it from consideration:
P := P ∪ {j∗}, U := U\{j∗}

14: end if
15: Return columns j to U that have been in P for the required number

of iterations:
U := U ∪ {j}, P := P\{j}

16: if U = ∅ then
17: r := i
18: return
19: end if
20: end for
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In addition, we use a number of algorithm parameters as the basis of
decisions: εL is a threshold value for including a column in L, while εD is a
similar threshold value for inclusion in D. We set εD � εL. If εD ≤ mu ≤
εL then we postpone the decision regarding column u. To aid numerical
stability, columns are not chosen for pivoting if their diagonal element is
below a minimum acceptable value εsmall.

To aid readability, we present the algorithm as a serial procedure. Ini-
tially all columns are in U . At each iteration, the column with the largest
diagonal element is selected, and the corresponding column of the Schur
complement is calculated. From this we calculate the cost measure (12).
Using this information, a number of options are available: we allocate the
column to D if either the cost measure mu is low or pivoting using this col-
umn would be numerically unstable; if the cost measure is high we allocate
the column to L; or we can postpone making a decision on this column by
allocating it to P. Columns remain in this set for a number of iterations,
before being returned to U . The algorithm terminates when r columns of L
have been so constructed, or there are no more columns in U .

In this presentation we assume here that the columns are already per-
muted into the correct order; in the actual implementation, column permu-
tations are handled implicitly. Kernel functions are expensive to evaluate,
so individual elements of the matrix K are calculated as required in steps 3
and 6. Computing column j∗ of the Schur complement can be performed in
parallel, with each processor calculating elements corresponding to samples
held locally; this requires the broadcast of the attribute vector xj∗ and the
first i rows of L.

In practice it is hard to define a suitable value for εL, as it depends
on the matrix K. We used a cache of best columns, rather than the single
column j∗ shown in Algorithm 1, and chose the column with the highest cost
measure to enter L. When a column was added to L, the Schur complement
for candidate columns held in the cache were updated with the newly added
column L·i, rather than fully recalculated as shown in Step 6 of Algorithm
1.

5.5 Numerical examples

To investigate how this greedy algorithm performed, we created a data set
containing 4 clusters of 25 points each, arranged in an XOR pattern. 10
outliers were added. This is shown in Figure 2. The radial basis function
was used to create the kernel matrix, with parameter γ = (2

∑k
i=1 σ2

i )
−1

where σi is the standard deviation of attribute i of the original data X.
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Figure 2: Data set containing 4 clusters plus outliers. No points are mis-
classified within the clusters.
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Figure 3: Rank of L in the approximation LLT +D against the norm of the
residual error matrix ‖K − (LLT + D)‖e achieved, using the data set shown
in Figure 2. Choosing each pivot column based on the cost measure mu (12)
is compared against the standard heuristic of choosing the largest diagonal
element.
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Figure 4: Performance of using a cache of 20 columns gives an approximation
that is comparable to knowing the whole matrix.
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Figure 5: Accuracy of SVM training based on the two approximation tech-
niques in classifying an unseen test data set.
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We compared the greedy heuristic for constructing the partial Cholesky
decomposition, by choosing pivots based on the largest diagonal element,
and on the largest cost measure mu (12). The performance of the pivot
selection methods are shown in Figure 3. The experiments show that the
algorithm does not make fast progress in reducing the error in the approx-
imation until most of the outliers have been chosen. In contrast, using the
measure mu gives the best approximation. For example, for an error of
1% of the original kernel matrix, 5 columns are required choosing based on
mu, compared to 16 columns using the largest diagonal element. As the
optimization problem associated with SVM training scales to the square of
the number of columns, this represents an order of magnitude difference in
the time required for the optimization. For L with more than 20 columns,
there is little difference between the methods, and for many columns the
algorithm using mu suffers a little from numerical errors.

As described above, it is computationally too expensive to assess all
columns. To avoid this, we maintain a cache Schur complements of attrac-
tive columns. Figure 4 shows that, in this particular example, the algorithm
using a cache of 20 columns performs almost as well in terms of the ap-
proximation matrices it generates as an algorithm that knows the full Schur
complement matrix.

We also assessed the accuracy of the resulting SVMs in classifying a
previously unseen test set with a similar distribution of data points. The
results (Figure 5) show that an error of less than approximately 1% of the
original kernel matrix is enough to obtain a very high classification accuracy
with this particular data set, and the algorithm choosing pivots based on
the cost measure achieves this with far fewer columns in L than the one
using largest diagonal elements.

We also applied the algorithm to the United States Postal Service (USPS)
1 data set of hand-written digits, and compared the classification accuracy
of the cost measure mu to using the largest diagonal elements as pivots.
This data set comprises 7291 training and 2007 test patterns, represented as
dense vectors of dimension 257 with entries between 0 and 255. The digits
have been classified by hand and labelling is highly accurate. The classifi-
cation task set was to discriminate the digit 4 from the others. Results are
shown in Figure 5.5. For up to 200 columns of L, the cost measure consid-
erably reduces the number of columns required to achieve a certain level of
accuracy. After this point, there is little difference in the approximations. It
is also apparent from the figure that a very small number of columns (10-20)

1http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/

22



 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0  50  100  150  200  250

Ac
cu

ra
cy

 o
f p

re
di

ct
io

ns
 u

sin
g 

te
st

 s
et

Number of columns of L in approximation

Largest diagonal
Cost measure

SVMlight

Figure 6: Accuracy of predicting the USPS test set, for approximations
K ≈ LLT + D. Columns were chosen to enter L either based on largest
diagonal element or our cost measure.

gives good results, but subsequently adding columns increases the accuracy
only very slowly.

6 Implementing the QP for parallel computation

To apply formulations (7) and (9) to truly large-scale data sets, it is neces-
sary to employ linear algebra operations that exploit the block structure of
the formulations (Gondzio and Grothey, 2004).

6.1 Linear algebra operations

We use the augmented system matrix Φ =
[
−Q−Θ−1 AT

A 0

]
from (6),

where Q, Θ and A were described in Section 3.

For the formulations (7) and (9), this results in Φ having a symmetric
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bordered block diagonal structure. We can break Φ into blocks:

Φ =


Φ1 AT

1

Φ2 AT
2

. . .
...

Φp AT
p

A1 A2 . . . Ap 0

 ,

where Φi and Ai result from partitioning the data set evenly across the p
processors.

A block-based Cholesky decomposition of the matrix Φ = LDLT results
in the structure:

Φ =


L1

. . .
Lp

LA1 . . . LAp LC




D1

. . .
Dp

DC




LT
1 LT

A1
. . .

...
LT

p LT
Ap

LT
C


We can employ the Schur-complement mechanism for the blocks LC and

DC . The Cholesky decomposition can be computed by performing the series
of computations outlined below:

Φi = LiDiL
T
i ⇒ Di = Φi, Li = I (13)

LAi = AiL
−T
i D−1

i = AiΦ−1
i (14)

C = −
p∑

i=1

AiΦ−1
i AT

i (15)

= LCDCLT
C (16)

Matrix C is a dense matrix of relatively small size (r + 1)× (r + 1), and
the Cholesky decomposition C = LCDCLT

C is performed in the normal way
on a single processor.

Once the representation Φ = LDLT above is known, we can use it to

compute the solution of the system Φ
[

∆z
∆λ

]
=

[
rc

rb

]
(6) through back-

substitution. ∆z′, ∆λ′ and ∆λ′′ are vectors used for intermediate calcula-
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tions, with the same dimensions as ∆z and ∆λ.

∆λ′′ = L−1
C (rb −

p∑
i

LAirci) (17)

∆λ′ = D−1
C ∆λ′′ (18)

∆λ = L−T
C ∆λ′ (19)

∆z′i = D−1
i rci (20)

∆zi = ∆z′i − LT
Ai∆λ (21)

For the formation of LDLT , equations (13) and (14) can be calculated on
each processor individually. Outer products (15) can be calculated, and the
results gathered onto a single master processor to form C; this requires each
processor to transfer approximately 1

2(r+1)2 elements. The master processor
performs the Cholesky decomposition of C (16). Each processor needs to
calculate LAirci, which again can be performed without any inter-processor
communication, and the results gathered onto the master processor. The
master processor then performs the calculations in equations (17), (18) and
(19) of the back-substitution. Vector ∆λ is broadcast to all processors for
them to calculate equations (20) and (21) locally.

6.2 Performance

We used the SensIT data set2, collected on types of moving vehicles by using
a wireless distributed sensor networks. It consists of 100 dense attributes,
combining acoustic and seismic data. There were 78,823 samples in the
training set and 19,705 in the test set. The classification task set was to
discriminate class 3 from the other two. This is a relatively noisy data set
— benchmark accuracy is around 85%. By partitioning the data evenly
across the processors, and exploiting the structure as outlined above, we get
very good parallel efficiency results, as shown in Figure 6.2 . Training times
are competitive: our implementation on 8 processors was 7.5 times faster
than LIBSVM running serially (τ = 100).

7 Conclusions

In this paper, we have shown how to develop a parallel implementation of
Support Vector Machine training for problems involving nonlinear kernels,

2http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/
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Figure 7: Parallel efficiency, training on the SensIT data set.

and that allowed the entire data set to be used. It consisted of following the
steps:

1. Forming a partial Cholesky decomposition of the kernel matrix, taking
into account that some columns are adequately approximated using
diagonal elements alone.

2. Reformulating the problem to give an implicit inverse of the kernel
matrix.

3. Using interior point method to solve the optimization problem in a
predictable time, and Cholesky decomposition to give good numerical
stability of implicit inverses.

4. Exploiting the block structure of the augmented system matrix, to
partition the data and linear algebra computations amongst parallel
processors efficiently.

The above steps were implemented in OOPS, and the implementation was
applied to solve problems involving very large data sets. Excellent parallel
efficiency was observed on such problems.
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