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Convex Sets

A set C C R" is convex, if for all x,y € C
the straight line segment {ax + (1 —a)y : a € [0,1]} lies in C.
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Convex Sets

A set C CR" is convex, if for all x,y € C
the straight line segment {ax + (1 —a)y : a € [0,1]} lies in C.

Examples:
o) R"
o halfspaces: for given z € R",( € R the set {x € R": z"x > (}

Note:
e the intersection of convex sets is convex
e any closed convex set is the intersection of the halfspaces containing it

intersection
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(Convex) Cones

A set K CR" is a cone, if for x € K also ax € K for o > 0.
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(Convex) Cones

A set K CR"is a cone, if for x € K also ax € K for o > 0.
A set K CR"is a convex cone, if x,y € Kand a >0 = a(x+y) € K

Examples: §, {0}, R”, R}, linear subspaces {x € R" : Ax = 0}.
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(Convex) Cones
A set K CR"is a cone, if for x € K also ax € K for o > 0.
A set K CR"is a convex cone, if x,y € Kand a >0 = a(x+y) € K
Examples: §, {0}, R”, R}, linear subspaces {x € R" : Ax = 0}.

X
y

If Ki CR", Ky CR™ are cvx cones, so is K1 x Ky = {[ ] x € K,y € Kg}.

AL
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(Convex) Cones

A set K CR"is a cone, if for x € K also ax € K for o > 0.

A set K CR"is a convex cone, if x,y € Kand a >0 = a(x+y) € K
Examples: §, {0}, R”, R}, linear subspaces {x € R" : Ax = 0}.

If Ki CR", Ky C R™ are cvx cones, so is K; x K, = {[;] x € K,y € Kg}.

For a cvx cone K CR", K* := {z€ R": zTx > 0 Vx € K} is its dual cone.
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(Convex) Cones

A set K CR"is a cone, if for x € K also ax € K for o > 0.
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(Convex) Cones

A set K CR"is a cone, if for x € K also ax € K for o > 0.

A set K CR"is a convex cone, if x,y € Kand a >0 = a(x+y) € K
Examples: §, {0}, R”, R}, linear subspaces {x € R" : Ax = 0}.

If Ki CR", Ky C R™ are cvx cones, so is K; x K, = {[;] x € K,y € Kg}.

For a cvx cone K CR", K* := {z€ R": zTx > 0 Vx € K} is its dual cone.

K* is always closed!
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(Convex) Cones

A set K CR"is a cone, if for x € K also ax € K for o > 0.
A set K CR"is a convex cone, if x,y € Kand a >0 = a(x+y) € K

Examples: §, {0}, R”, R}, linear subspaces {x € R" : Ax = 0}.
If Ki CR", Ky CR™ are cvx cones, so is K1 x Ky = { {;} x € K,y € Kz}.

For a cvx cone K CR", K* := {z€ R": zTx > 0 Vx € K} is its dual cone.

: (K*)* 2K,
. equality holds iff
K is a closed convex cone!
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(Convex) Cones

A set K CR"is a cone, if for x € K also ax € K for o > 0.
A set K CR"is a convex cone, if x,y € Kand a >0 = a(x+y) € K
Examples: §, {0}, R”, R}, linear subspaces {x € R" : Ax = 0}.

If K1 CR", K; C R™ are cvx cones, so is Ky x K, = {[;] x €Ki,y € Kz}.
For a cvx cone K CR", K* := {z€ R": zTx > 0 Vx € K} is its dual cone.
Exs.: {0} =R", (R")* = {0}, (R7)* =R", (K, x Kz)* = K{ x K;.

self-dual
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(Convex) Cones
A set K CR"is a cone, if for x € K also ax € K for o > 0.
A set K CR"is a convex cone, if x,y € Kand a >0 = a(x+y) € K
Examples: §, {0}, R”, R}, linear subspaces {x € R" : Ax = 0}.
If Kt CR", K; CR™ are cvx cones, so is K1 x Ky = { {;} x € Ky, y € Kz}.
For a cvx cone K CR", K* := {z€ R": zTx > 0 Vx € K} is its dual cone.
Exs.: {0}* =R", (R")* = {0}, (R})* =R, (K1 x K2)* = K{ x K.

KN Important property for optimisation:

infoek z"x = 0 © 2 €K,
x€K " | —oo otherwise.
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Primal /Dual Linear Programs over Cones
Replace R within linear optimisation by a convex cone K C R™
min  c’x min c’x min  c’x
st. Ax=b < st. Ax=b — st. Ax=b
x>0 x € R xeK
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Primal /Dual Linear Programs over Cones
Replace R within linear optimisation by a convex cone K C R™

min ¢’ x min
st. Ax=0b = s.t.
x>0

Define the Lagrange function

L(x,y) = cTx+yT(b—

cTx min ¢’ x
Ax=b — st. Ax=0b
x € R xeK
Ax) for (x,y) € K x R™.

For y € R™ and Ax = b we have (b — Ax)Ty =0, hence

for all y € R™:

im:< L(x,y) <inf{c"x: Ax = b,x € K}.
xe
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Primal /Dual Linear Programs over Cones
Replace R within linear optimisation by a convex cone K C R™

min ¢’ x min ¢’ x min ¢’ x
st. Ax=0b = st. Ax=0b — st. Ax=0b
x>0 x € R xeK

Define the Lagrange function
L(x,y):=c"x+yT(b—Ax) for(x,y) € K x R™.
For y € R™ and Ax = b we have (b — Ax)Ty =0, hence
for all y € R™: XIQ]:( L(x,y) <inf{c"x: Ax = b,x € K}.

The best lower bound (Lagrangian relaxation) is

sup inf L(x,y) = sup[bTy + |nf xT(c = ATy)]
yER’”XG yERM
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Primal /Dual Linear Programs over Cones
Replace R within linear optimisation by a convex cone K C R™

min ¢’ x min ¢’ x min ¢’ x
st. Ax=0b = st. Ax=0b — st. Ax=0b
x>0 x € R xeK

Define the Lagrange function
L(x,y):=c"x+yT(b—Ax) for(x,y) € K x R™.
For y € R™ and Ax = b we have (b — Ax)Ty =0, hence
for all y € R™: XIQ]:( L(x,y) <inf{c"x: Ax = b,x € K}.

The best lower bound (Lagrangian relaxation) is

sup inf L(x,y) = sup[bTy + |nf xT(c = ATy)]
yER’”XG yERM

The inner inf is finite only for z = ¢ — ATy € K* giving the dual program

max b’y
st. Aly4+z=c
yeR™ ze K*
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Weak and Strong Duality

Let K C R" be a closed convex cone.

min  ¢c’x max b’y
(P) st. Ax=b (D) st. Aly+z=c
xe K yeR" ze K*

Weak duality, i.e., v(P) > v(D), always holds by construction.
Equality does NOT hold in general (see later examples)!
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Weak duality, i.e., v(P) > v(D), always holds by construction.
Equality does NOT hold in general (see later examples)!

To ensure strong duality we need to require additional properties:

A primal feasible X is strictly feasible for (P) if X lies in the interior of K,
dp>0: B(X) ={xeR" |x—X[ <p} CK

If such an X exists, (P) is strictly feasible.
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K* (3p > 0: B,(Z) C K*). If such (¥, Z) exist, (D) is strictly feasible.
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Weak and Strong Duality

Let K C R" be a closed convex cone.

min  ¢c’x max b’y
(P) st. Ax=b (D) st. Aly+z=c
xe K yeR" ze K*

Weak duality, i.e., v(P) > v(D), always holds by construction.
Equality does NOT hold in general (see later examples)!

To ensure strong duality we need to require additional properties:

A primal feasible X is strictly feasible for (P) if X lies in the interior of K,
dp>0: B(X) ={xeR" |x—X[ <p} CK

If such an X exists, (P) is strictly feasible.

A dual feasible (¥, 2) is strictly feasible for (D), if Z lies in the interior of

K* (3p > 0: B,(Z) C K*). If such (¥, Z) exist, (D) is strictly feasible.

Theorem (Strong Duality)

If (P) is strictly feasible, the dual optimum v(D) is attained.
If (D) is strictly feasible, the primal optimum v(P) is attained.
In both cases there holds v(P) = v(D).
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Self-dual Cones

Here we mainly consider three special types of cones K:

e K =R, the nonnegative orthant

e K = Q" the second order/quadratic/Lorentz/ice cream cone
e K = S the cone of positive semidefinite matrices

The detailed definitions of Q" and S will be given soon.



Cones

Conic LPs SOCP SDP Gaps/Complexity Methods

Self-dual Cones

Here we mainly consider three special types of cones K:

e K =R, the nonnegative orthant

e K = Q" the second order/quadratic/Lorentz/ice cream cone
e K = S the cone of positive semidefinite matrices

The detailed definitions of Q" and S will be given soon.
The most important properties of these three are:
e They are self-dual, i.e., K = K*. [+ homogeneous — symmetric]

min  ¢’x max by

(P) st. Ax=0b (D) st. Aly+z=c
xeK yeR" ze K
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Self-dual Cones

Here we mainly consider three special types of cones K:

e K =R, the nonnegative orthant

e K = Q" the second order/quadratic/Lorentz/ice cream cone
e K = S the cone of positive semidefinite matrices
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min  ¢’x max by
(P) st. Ax=0b (D) st. Aly+z=c
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e Interior-point codes of good quality exist that allow the simultaneous
use of all three, e.g. Mosek, SeDuMi and SDPT3.
e They allow to model and solve many important applications.
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Self-dual Cones

Here we mainly consider three special types of cones K:

e K =R, the nonnegative orthant

e K = Q" the second order/quadratic/Lorentz/ice cream cone
e K = S the cone of positive semidefinite matrices

The detailed definitions of Q" and S will be given soon.
The most important properties of these three are:

e They are self-dual, i.e., K = K*. [+ homogeneous — symmetric]
min  ¢’x max by
(P) st. Ax=0b (D) st. Aly+z=c
xeK yeR" ze K

e Interior-point codes of good quality exist that allow the simultaneous
use of all three, e.g. Mosek, SeDuMi and SDPT3.
e They allow to model and solve many important applications.

In applications K is typically composed of several subcones,
K=R] xQMx - x QM xS"x...xS

This will arise naturally and K = K* always holds for these combinations.
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The Second Order Cone

The Second-Order-Cone (SOC)
Q"= {[F] eR™ %0 2 |%I}

Xo
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The Second Order Cone

The Second-Order-Cone (SOC)
Q"= {[3] eR™: x> |IX[|}
is a convex cone,
because for x,y € Q" a > 0 we have
la(x+p)Il < allx]| + eyl < alxo + yo)-

Q" is self-dual, (Q")* = Q".

| —
Xof X
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The Second Order Cone

The Second-Order-Cone (SOC)
Q"= {[?] e R"™ x> |Ix||} T—
is a convex cone, [
because for x,y € Q" a > 0 we have
[a(x + 7)) < aflx]| + af|7]| < alxo + yo).

Q" is self-dual, (Q")* = Q".

Instead of x € Q" we often write x > 0. For a,b € R™1, a >4 b is
defined by a— b >¢ 0, (or a— b€ Q).

Methods
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The Second Order Cone

The Second-Order-Cone (SOC)
Q"= {[?] e R x> |IXII}
is a convex cone,
because for x,y € Q" a > 0 we have
[a(x + 7)) < aflx]| + af|7]| < alxo + yo).

X0

Q" is self-dual, (Q")* = Q".

Instead of x € Q" we often write x > 0. For a,b € R™1, a >4 b is
defined by a— b >¢ 0, (or a— b€ Q).

Methods

A linear program that only uses cones R and at least one Q" is a
second-order-cone program (SOCP in short).
An SOCP with just one Q" reads

min ¢’x max by
(P) st. Ax=b (D) st. Aly+z=c
x>00 yeR™ z>50

[An SOCP with exactly one single SOC as here is solvable explicitly.]
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Classification, Support-Vector
For data points in R”, that have or have not a certain property, we search
for a hyperplane that separates the points according to this property as
good as possible (goal: classify new points)
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Classification, Support-Vector
For data points in R”, that have or have not a certain property, we search
for a hyperplane that separates the points according to this property as
good as possible (goal: classify new points)

Given two disjoint finite sets G,R C R", o
find a”x + 3 (with variables a and ) with
. preferably” aTx—|—B > 1 for x € G and
a'x+ B8 < —1forxeR.

Difficulties:

e For good separation |a|| should be small.

e What to do, if classification failures
cannot be avoided?
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Classification, Support-Vector
For data points in R”, that have or have not a certain property, we search
for a hyperplane that separates the points according to this property as
good as possible (goal: classify new points)

Given two disjoint finite sets G,R C R", o o o L+ asb
find a”x + 3 (with variables a and ) with ’
. preferably” aTx—|—B > 1 for x € G and
a'x+ B8 < —1forxeR.

Difficulties:

e For good separation |a|| should be small.

e What to do, if classification failures
cannot be avoided?

One approach: Minimise simultaneously ||a|| and the sum of violations of
the inequality constraints, scalarised by parameter v > 0,

min lall + 7> ccur Sx

st. x'a—fB>1—s, xeG
xTa—f<s.—1 x€eR
aceR" B eR,secREVR
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Classification, Support-Vector
For data points in R”, that have or have not a certain property, we search
for a hyperplane that separates the points according to this property as
good as possible (goal: classify new points)

Given two disjoint finite sets G,R C R", o o o L+ asb
find a”x + 3 (with variables a and ) with ’
. preferably” aTx—|—B > 1 for x € G and
a'x+ B8 < —1forxeR.

Difficulties:

e For good separation |a|| should be small.

e What to do, if classification failures
cannot be avoided?

One approach: Minimise simultaneously ||a|| and the sum of violations of
the inequality constraints, scalarised by parameter v > 0,

min |lall + 7> cour Sx min a+~1's
st. x'a—fB>1—s, xeG st. xTa—f>1—s, xeG
xTa—f<s.—1 x€R xTa—B<s,—1 xE€R

aceR" B eR,secREVR (%] >00,8€R,5>0
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The Markowitz Model

In the Markowitz model of portfolio optimisation, a given budget is to be
invested with given expected profit so that risk is minimised.
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The Markowitz Model

In the Markowitz model of portfolio optimisation, a given budget is to be
invested with given expected profit so that risk is minimised.

x € RY with 17x = 1 represents the fraction of the budget invested into
stock 1,...,n. The profit g per investment is a random variable with
expectation g € R” and covariance matrix G € S (n x n, positive
semidefinite). Let s € R be a given profit threshold. As a risk measure
the Markowitz model uses x Gx. [better measures exist]

min  x! Gx

s.t. ng >s
17x=1
x € R



SOCP

The Markowitz Model

In the Markowitz model of portfolio optimisation, a given budget is to be
invested with given expected profit so that risk is minimised.

x € RY with 17x = 1 represents the fraction of the budget invested into
stock 1,...,n. The profit g per investment is a random variable with
expectation g € R” and covariance matrix G € S (n x n, positive
semidefinite). Let s € R be a given profit threshold. As a risk measure
the Markowitz model uses x Gx. [better measures exist]

min  x! Gx
s.t. ng >s
17x=1
x € R
Because G is positive semidefinite this is a convex quadratic problem.

[The two criteria profit against risk are now implemented by a constraint
on one of the criteria.]

How to model this as an SOCP?
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Quadratic Constraints with SOCP

Let Q € S be positive semidefinite, g € R", § € R. The convex
quadratic constraint
xTQx+q"x+8<0

may be represented as an SOCP-constraint by (factor @ = LLT)

(proof: square both sides).

LTx

1+(q" x+6
(q2 ) 2

‘ 1—(q"x+46)

Methods
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Quadratic Constraints with SOCP

Let Q € S be positive semidefinite, g € R", § € R. The convex
quadratic constraint
xTQx+q"x+8<0

may be represented as an SOCP-constraint by (factor @ = LLT)

(proof: square both sides). — constrained least squares problems!

LTx
1+(q" x+96)
2

‘ 1—(q"x+46)
- 2

Methods
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Quadratic Constraints with SOCP

Let Q € S be positive semidefinite, g € R", § € R. The convex
quadratic constraint
xTQx+q"x+8<0

may be represented as an SOCP-constraint by (factor @ = LLT)

(proof: square both sides). — constrained least squares problems!

LTx
1+(q" x+96)
2

‘ 1—(q"x+46)
- 2

Methods

For the Markowitz model just use xp > ||[L" x|| with G = LLT, then

min  Xxp

st. x=1LTx
Z'x>s
17x =
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Probabilistic Constraints, Chance Constraint

Assume profit g is distributed normally with mean g and variance
G. In addition to g7 x > s we now also require with probability at
least 7 € (0,1) that the profit is above a threshold value s < s,

P(g"x >s)>n



Cones Conic LPs SOCP SDP Gaps/Complexity Methods
Probabilistic Constraints, Chance Constraint
Assume profit g is distributed normally with mean g and variance

G. In addition to g7 x > s we now also require with probability at
least 7 € (0,1) that the profit is above a threshold value s < s,

min  x' Gx
s.t. ng >s
Plg'x>s)>n  — P(gTx > s) >
17x=1
x € R}

This is modelled using a technique of robust optimisation:
g"x > s is interpreted as an inequality with uncertain coefficients.
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Linear Constraints with Uncertain Coefficients

If the coefficients of inequality a’ x < b are only known to lie inside the
ellipsoid a € {3+ Hu: [Jul| < 1} for given H € S} (pos. semidef.) and if
x has to satisfy this inequality for all such a, this requires

HmHax a'x+u"Hx=3"x+|Hx| < b
ul|l=1
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Linear Constraints with Uncertain Coefficients

If the coefficients of inequality a’ x < b are only known to lie inside the
ellipsoid a € {3+ Hu: [Jul| < 1} for given H € S} (pos. semidef.) and if
x has to satisfy this inequality for all such a, this requires

HmHax a'x+u"Hx=3"x+|Hx| < b
ul|l=1

The latter inequality may be represented via the SOC constraint

& = b—3'x
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Linear Constraints with Uncertain Coefficients

If the coefficients of inequality a’ x < b are only known to lie inside the
ellipsoid a € {3+ Hu: [Jul| < 1} for given H € S} (pos. semidef.) and if
x has to satisfy this inequality for all such a, this requires

HmHax a'x+u"Hx=3"x+|Hx| < b
ul|l=1

The latter inequality may be represented via the SOC constraint

& = b—3'x
& = Hx
HEX

For its probabilistic interpretation let g be distributed normally around g
with covariance matrix G = H? and suppose g’ x > s needs to be
satisfied with probability 0 < 7 < 1. Then P(g”x > s) > 1 corresponds
to the constraint —g7x + ®~1(n)||Hx|| < —s. [® ...normal distribution]
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Positive Semidefinite Matrices
A symmetric matrix A € S" ;= {A € R"™": A= AT} is positive
semidefinite, if vTAv >0 Vv € R"; we write A€ S7 or A= 0.
It is positive definite (A€ S7,, A= 0), if vTAv >0 v eR"\ {0}
[For A= 0 (>0)and JC {1,...,n} we have A; ; = 0 (> 0).]

Methods



Cones

Conic LPs SOCP SDP Gaps/Complexity Methods

Positive Semidefinite Matrices
A symmetric matrix A € S" ;= {A € R"™": A= AT} is positive
semidefinite, if vTAv >0 Vv € R"; we write A€ S7 or A= 0.

It is positive definite (A€ S7,, A= 0), if vTAv >0 Vv e R\ {0}.
[For A= 0 (>0)and JC {1,...,n} we have A; ; = 0 (> 0).]

A € R is an eigenvalue and v € R"\ {0} an eigenvector of A, if Av = Av,
For each A € S there exist an eigenvalue decomposition A = PAPT
with real A = Diag(\1, ..., \,) and orthogonal P € R"™*" (i.e., PTP = ).
For P =[vi,...,v,] we get A= PAPT =37 \jvv/T.
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Positive Semidefinite Matrices
A symmetric matrix A € S" ;= {A € R"™": A= AT} is positive
semidefinite, if vTAv >0 Vv € R"; we write A€ S7 or A= 0.
It is positive definite (A€ S7,, A= 0), if vTAv >0 v eR"\ {0}
[For A= 0 (>0)and JC {1,...,n} we have A; ; = 0 (> 0).]

A € R is an eigenvalue and v € R"\ {0} an eigenvector of A, if Av = Av,
For each A € S there exist an eigenvalue decomposition A = PAPT
with real A = Diag(\1, ..., \,) and orthogonal P € R"™*" (i.e., PTP = ).
For P =[vi,...,v,] we get A= PAPT =37 \jvv/T.

For A, B € 5™ we use the Frobenius inner product

(A B) = Z AjjBjj [= vec(A)Tvec(B), frequently Ae B]

1<ij<n
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Positive Semidefinite Matrices
A symmetric matrix A € S" ;= {A € R"™": A= AT} is positive
semidefinite, if vTAv >0 Vv € R"; we write A€ S7 or A= 0.
It is positive definite (A€ S7,, A= 0), if vTAv >0 v eR"\ {0}
[For A= 0 (>0)and JC {1,...,n} we have A; ; = 0 (> 0).]

A € R is an eigenvalue and v € R"\ {0} an eigenvector of A, if Av = Av,
For each A € S there exist an eigenvalue decomposition A = PAPT
with real A = Diag(\1, ..., \,) and orthogonal P € R"™*" (i.e., PTP = ).
For P =[vi,...,v,] we get A= PAPT =37 \jvv/T.

For A, B € 5™ we use the Frobenius inner product

(A B) = Z AjjBjj [= vec(A)Tvec(B), frequently Ae B]

1<ij<n

Theorem

For A € S" the following are equivalent:

e A> 0,

o \(A)>0,i=1,...,n, [= det(A) > 0]
e A= C'C for some C € RF*", [there holds: rank(A) = rank(C)]

e (AB)>0 VB:=0.
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The Cone of Positive Semidefinite Matrices

The positive semidefinite matrices S
form a convex cone, because

for X,Y € S7, a>0andall v € R"
vi(aX +Y))v=a(vTXv+vTYV)>0.
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The Cone of Positive Semidefinite Matrices

The positive semidefinite matrices S
form a convex cone, because

for X,Y € S7, a>0andall v € R" o
vi(aX +Y))v=a(vTXv+vTYV)>0.

A€ ST & (A B) >0VB = 0 implies
S7 is self-dual, (§7)* = ST.

0%

-5
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The Cone of Positive Semidefinite Matrices

The positive semidefinite matrices S
form a convex cone, because

for X,Y € S7, a>0andall v € R" o
vila(X+ Y))v=a(vTXv+vTYV)>0.

A€ ST & (A B) >0VB = 0 implies
S7 is self-dual, (§7)* = ST.

0%

4 6

right image: S2 = [ )z< ; } > 0. v ’
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The Cone of Positive Semidefinite Matrices

The positive semidefinite matrices S
form a convex cone, because

for X, Y €57, a>0andall veR" 59
vila(X+ Y))v=a(vTXv+vTYV)>0.

A€ ST & (A B) >0VB = 0 implies
S7 is self-dual, (§7)* = ST.

0%

right image: S2 = [ )z< ; } = 0. T, ; 5

o If R € R™" is regular (=invertible), then X =0 <& R'XR=0.
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The Cone of Positive Semidefinite Matrices

The positive semidefinite matrices S
form a convex cone, because

for X, Y €57, a>0andall veR"
vila(X+ Y))v=a(vTXv+vTYV)>0.

A€ ST & (A B) >0VB = 0 implies
S7 is self-dual, (§7)* = ST.

6
8 10 10

right image: S2 = [ )z< ; } > 0. v

o If R € R™" is regular (=invertible), then X =0 <& R'XR=0.
e For A— B > 0 we also write A > B.
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The Cone of Positive Semidefinite Matrices

The positive semidefinite matrices S
form a convex cone, because

for X, Y €57, a>0andall veR"
vila(X+ Y))v=a(vTXv+vTYV)>0.

A€ ST & (A B) >0VB = 0 implies
S7 is self-dual, (§7)* = ST.

. . v 4 -5 °
right image: 5% = [ zy } = 0. T T
o If R € R™" is regular (=invertible), then X =0 <& R'XR=0.

e For A— B > 0 we also write A > B.

Frequently used in formulating applications as semidefinite programs:
Theorem (Schur Complement)

For Ac ST, C € S" and B € R™*" there holds
[ A B

BT } =0 (resp.>0) <= C»=B'A'B (resp. ~0)
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LP <+ Semidefinite Programs (SDP)

min  c’x min  (C, X)
st. Ax=b st. AX=b
x>0 X>=0
x € R} XeSsh
CTX:Z,-C;X,‘ <C7X>:Zi,j CUXU
alTX <A1,X>
Ax = AX = :
alx (Am, X)
ATy =37 aiyi ATy =357 Aiyi
max b’y max b’y
st. Aly+z=c st. Aly+Z=¢C
yeR™ z>0 yeR™ Z>0

Methods
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Semidefinite Programs (SDP) in Normal Form

min  (C, X) max by
(P) st. AX=0b (D) st. Aly+zZ=C
X >0 yeR"Z~0

If one of both is strictly feasible there holds v(P) = v(D).

Methods
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Semidefinite Programs (SDP) in Normal Form

min  (C, X) max by
(P) st. AX=0b (D) st. Aly+zZ=C
X >0 yeR"Z~0

If one of both is strictly feasible there holds v(P) = v(D).

Methods

In applications several cones X; = 0 may appear, for theory one suffices:

X, 0 -+ 0
Xi =0, X=0, ..., Xe, 0 & (_’ % =0
: . .0
0 -+ 0 X

= Semidefinite Optimisation contains Linear Optimisation (X; € S1).



SDP

Semidefinite Programs (SDP) in Normal Form

min  (C, X) max by
(P) st. AX=0b (D) st. Aly+zZ=C
X >0 yeR"Z~0

If one of both is strictly feasible there holds v(P) = v(D).

In applications several cones X; = 0 may appear, for theory one suffices:

X, 0 -+ 0
X, =0, X% =0, ..., X, =0 < (_’ N .

oo 0

0 - 0 X

= Semidefinite Optimisation contains Linear Optimisation (X; € S1).

Semidefinite Optimisation also allows to formulate SOC-constraints:

X 1 _+ _ X )_<T
[ _0} >00 Xgo Xg > =TIz Sc(:>hur 0 > 0.
X Xo X xol

[for xo = O this is checked directly]
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Illustration: X € S? intersected with (A, X) = 3
X=|% 2 |=o.
zy

=x>0,y>0 xy—2>2>0

TR
N

Methods
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Illustration: X € S? intersected with (A, X) = 3

X:{X 2]50.
z y

=x>0,y>0 xy—2>2>0

0 1
A:[l 0},,@:0—>z=o

= m € R2, like LP

— 7/,
e e a el
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Illustration: X € S? intersected with (A, X) =

- X “|=o.

z y -
=x>0,y>0xy—22>0

01
A= o |:B=0=z=0

& ;ER{HmLP

A=0,8>0
— “general elliptic case”

SEES
SSsSss
v
s,
LTI

ST
TS,
AR
LR S
TR
AR
LT

=
e
J 7
vy
o

7

Methods
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Illustration: X € S? intersected with (A, X) = 3

X:{X 2]50.
z y

=x>0,y>0 xy—2>2>0

A:[O 1},,820—)220

10
&[] e R like LP
A=0,8>0 s
— “general elliptic case”

01 1

& xy > 182, hyperbola
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Illustration: X € S? intersected

X z
z y
=x>0,y>0 xy—2>2>0

= = 0.

01
10

m € R2, like LP

A ,B=0—2z=0

=

A=0,6>0
— “general elliptic case”

01
10
& xy > 182, hyperbola

A

,ﬂ<0—>z:%ﬁ

A=w' 3=0—=vEvecto\; =0
boundary points, numerically difficult!

SDP Gaps/Complexity

with (A, X) = 3

S eSS
L 759
e A e A sy L A L7
SRR IIIAIT T T
227

Casweue
RSN

S S

SRR eI

S ==
oo  @BWN

SO _awa COTS
R eSS
ORI S STy S
BT S SO S SRR
OO S ST R S CS
Sesusriivas
poTSSS

Methods
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Linear Matrix Inequalities (LMI)
A constraint of the form
}/1A1 +Y2A2 + - +ymAm = C

with A;, C € §" is a Linear Matrix Inequality.
Feasible y € R™ are SDP-representable, {y ¢ R™: ATy + Z = C,Z = 0}.
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Linear Matrix Inequalities (LMI)
A constraint of the form
AL+ 2o+ ymAn 2 C

with A;, C € §" is a Linear Matrix Inequality.
Feasible y € R™ are SDP-representable, {y ¢ R™: ATy + Z = C,Z = 0}.

Ex.: the Lyapunov inequality requires for fixed P € R"*"
PTX +XP <0, X>O0.

In LMI-representation write y = [x11, X12, - - - , X1, X22, X23, - - - » Xnn] |, but
it is cumbersome/useless to list the A; for this constraint. It is better to
exploit the structure directly within SDP.



SDP
Linear Matrix Inequalities (LMI)
A constraint of the form
ylAl +y2A2++ymAm = C

with A;, C € §" is a Linear Matrix Inequality.
Feasible y € R™ are SDP-representable, {y ¢ R™: ATy + Z = C,Z = 0}.

Ex.: the Lyapunov inequality requires for fixed P € R"*"
PTX +XP <0, X>O0.

In LMI-representation write y = [x11, X12, - - - , X1, X22, X23, - - - » Xnn] |, but
it is cumbersome/useless to list the A; for this constraint. It is better to
exploit the structure directly within SDP.

For recognising LMIs it suffices to ensure that all matrices depend linearly
on the corresponding variables:

the matrix multiplication P7X (XP resp.) is linear in X.
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Applications of Semidefinite Optimisation

optimal control

eigenvalue optimisation

experiment design in statistics
combinatorial optimisation

global optimisation over polynomials
moment problems in probability theory
signal processing

robust truss topology design

free material design

robust optimisation

optimisation (trust-region subproblems, quadratic relaxations)
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Robust Stability of Dynamical Systems
Given a (homogenous linear) dynamical system with uncertain data,
(DS) x = P(t)x(t) with P(t) € P :=conv{Pi,..., P} C R™",

where e x(t) ...state of the system at time t.
o x:= % x(t) ... (infinitesimal) change of x(-)
e P(t) ...uncertain transition matrix at time t,

(DS) is stable if x(t) — 0 for t — oo and arbitrary P(t) € P.

[In optimal control, P would comprise the X2
possible effects of imperfect implementations

of the control. Does it do its job anyways \
even with tiny mistakes?] ,
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Robust Stability of Dynamical Systems
Given a (homogenous linear) dynamical system with uncertain data,
(DS) x = P(t)x(t) with P(t) € P :=conv{Pi,..., P} C R™",

where e x(t) ...state of the system at time t.
o x:= % x(t) ... (infinitesimal) change of x(-)
e P(t) ...uncertain transition matrix at time t,

(DS) is stable if x(t) — 0 for t — oo and arbitrary P(t) € P.

Methods

sufficient condition: there is a norm X2

Ix|[# == VxTHx with H >0

d
so that EHX(t)H%’ < 0 for all trajectories

(the system is quadratically stable,
xT Hx a quadratic Lyapunov Function).
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Robust Lyapunov Stability by SDP

(DS) x = P(t)x(t) with P(t) € P :=conv{Py,...,Pc} CR™"

d
Find H = 0 with EHX(t)H% < 0.

Methods
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Robust Lyapunov Stability by SDP

(DS) x = P(t)x(t) with P(t) € P :=conv{Py,...,Pc} CR™"

d
HMH>OmmEﬂAMﬁ<Q

%Hx(t)”%_, = %XTHX = %x"Hx+x"Hx = x"(P(t)"H + HP(t))x



Cones Conic LPs SOCP SDP Gaps/Complexity Methods

Robust Lyapunov Stability by SDP
(DS) x = P(t)x(t) with P(t) € P :=conv{Py,...,Pc} CR™"
Find H > 0 with %Hx(t)nﬁ, < 0.

%Hx(t)”%_, = %XTHX = %x"Hx+x"Hx = x"(P(t)"H + HP(t))x

If A:= PTH + HP < 0 (negative definite), then v Av < 0 Vv € R"\ {0}.
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Robust Lyapunov Stability by SDP

(DS) x = P(t)x(t) with P(t) € P :=conv{Py,...,Pc} CR™"

d
Find H = 0 with EHX(t)H%, < 0.

d
EHX(t)H%_, = %XTHX = %x"Hx+x"Hx = x"(P(t)"H + HP(t))x
If A:= PTH + HP < 0 (negative definite), then vT Av < 0 Vv € R"\ {0}.
= the system is quadratically stable, if

H >0, PTH+ HP; <0 fori=1,... k

has feasible solutions, because for any such H also each convex
combination P € P satisfies the condition PTH + HP < 0.
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Robust Lyapunov Stability by SDP

(DS) x = P(t)x(t) with P(t) € P :=conv{Py,...,Pc} CR™"

d
HMH>0mmgﬂAMﬁ<0

%Hx(t)”%_, = %XTHX = %x"Hx+x"Hx = x"(P(t)"H + HP(t))x
If A:= PTH + HP < 0 (negative definite), then vT Av < 0 Vv € R"\ {0}.
= the system is quadratically stable, if

H >0, PTH+ HP; <0 fori=1,... k

has feasible solutions, because for any such H also each convex
combination P € P satisfies the condition PTH + HP < 0.

Search for H by eigenvalue optimisation:

max A st. H>= X, PITH+HP; < -\ fori=1,... k.
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SDP and Eigenvalue Optimisation
For A€ S™ let Amin(A) 1= A1(A) < -+ < Ap(A) =: Amax(A).
There holds \;(A+ yo!) = Xi(A)+yo for i=1,...,nand yp € R.

Methods
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SDP and Eigenvalue Optimisation
For A€ S™ let Amin(A) 1= A1(A) < -+ < Ap(A) =: Amax(A).
There holds \;(A+ yo!) = Xi(A)+yo for i=1,...,nand yp € R.

In optimal control stability of a system is ensured for control parameters
y € R™ if the control dependent system matrix A(y) satisfies Amax(A(y)) < 0.

For affine A(y), e.g. A(y) := C—>_", yiA; with C, A; € 5", this leads to

i )\max C_ T
min Amax(C —A'y)
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SDP and Eigenvalue Optimisation
For A€ S™ let Amin(A) 1= A1(A) < -+ < Ap(A) =: Amax(A).
There holds \;(A+ yo!) = Xi(A)+yo for i=1,...,nand yp € R.

In optimal control stability of a system is ensured for control parameters
y € R™ if the control dependent system matrix A(y) satisfies Amax(A(y)) < 0.

For affine A(y), e.g. A(y) := C—>_", yiA; with C, A; € 5", this leads to

i )\max C_ T
min Amax(C —A'y)

To model this as SDP: Apax(A) = —Amin(—A) and
Yo = Amax(C—ATY) & yotAmin(ATy—C) 20 & Amin(vol+ATy—C) >0
Because Z = 0 < Amin(Z) > 0 we have
min vy

minm Amax(C — ATy) & st. Z=wl+ATy-C
yeR yeER™ Z=0
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Design of Experiments
In order to estimate the value of some parameter vector £ € RP,
aset R={r,€RP:i=1,...,n} of possible experiments are available.
Each execution of experiment i delivers a measured value
rT¢ + p; with independent (= 0,02 = 1) normally distributed error p;.
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Design of Experiments
In order to estimate the value of some parameter vector £ € RP,
aset R={r,€RP:i=1,...,n} of possible experiments are available.
Each execution of experiment i delivers a measured value
rT¢ + p; with independent (= 0,02 = 1) normally distributed error p;.

If m experiments a; € R (repetitions are allowed) are performed resulting
in measurements 7; = ajTE + pj, the maximum-likelihood estimate (for
rank[ay, ..., am] = p) yields an estimated

m m -1
é: Ganaj with G = (Z ajajT> ,
j=1 j=1

whose error distribution has expectation 0 and covariance matrix G.
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SDP

Design of Experiments
In order to estimate the value of some parameter vector £ € RP,
aset R={r,€RP:i=1,...,n} of possible experiments are available.
Each execution of experiment i delivers a measured value
rT¢ + p; with independent (= 0,02 = 1) normally distributed error p;.

If m experiments a; € R (repetitions are allowed) are performed resulting
in measurements 7; = ajTE + pj, the maximum-likelihood estimate (for
rank[ay, ..., am] = p) yields an estimated

m m -1
é: Ganaj with G = (Z ajajT> ,
j=1 j=1

whose error distribution has expectation 0 and covariance matrix G.

Let G and G’ be two covariance matrices of this kind and suppose

G =< G’, then the experiments of G are better, because variance of the
estimation error is smaller.

— Find a minimal (w.r.t. <) element of

n —1
{G— <Zm,~r;r,-T) :m;eNo,Zm;—m}.
i=1 i
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Relaxations
Rather than selecting m experiments, determine their relative contribution,

n -1
{G: (Za;r,-rﬂ) :lTazl,aZO}.
i=1
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Relaxations
Rather than selecting m experiments, determine their relative contribution,

n -1
{G:(Za;r,-r,-T> :lTozzl,aZO}.
i=1

There are several approaches for finding a <-minimal G. For this,
interpret G as a “confidence ellipsoid” with semi axes of length A;(G),

E={C:(C-HT6 (-9 =8}
D-optimal design: minimise the volume of the confidence ellipsoid

E-optimal design: minimise the longest semi axis
A-optimal design: minimise the sum of the semi axes




SDP

Relaxations
Rather than selecting m experiments, determine their relative contribution,

n -1
{G:(Za;r,-r,-T> :lTozzl,aZO}.
i=1

There are several approaches for finding a <-minimal G. For this,
interpret G as a “confidence ellipsoid” with semi axes of length A;(G),

E={C:(C-HT6 (-9 =8}
D-optimal design: minimise the volume of the confidence ellipsoid

E-optimal design: minimise the longest semi axis
A-optimal design: minimise the sum of the semi axes

D-optimal design: the volume is proportional to det G =[] \;(G).
Because det(G!) = det(G)~! < maximise the determinant of G1,
min — logdet X
st. X=Y" airr"
17a =1
a>0,[X =0



SDP

Relaxations
Rather than selecting m experiments, determine their relative contribution,

n -1
{G:(Za;r,-r,-T> :lTozzl,aZO}.
i=1

There are several approaches for finding a <-minimal G. For this,
interpret G as a “confidence ellipsoid” with semi axes of length A;(G),

E={C:(C-HT6 (-9 =8}
D-optimal design: minimise the volume of the confidence ellipsoid

E-optimal design: minimise the longest semi axis
A-optimal design: minimise the sum of the semi axes

E-optimal design: the longest semi axis is Amax(G).
Because Amin(G 1) = Amax(G) ™! < maximise Amin(G™1),

max —A\
st Y ainr’ =Xl
17a=1

a>0,AeR
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Relaxations
Rather than selecting m experiments, determine their relative contribution,

n -1
{G:(Za;r,-r,-T> :lTozzl,aZO}.
i=1

There are several approaches for finding a <-minimal G. For this,
interpret G as a “confidence ellipsoid” with semi axes of length A;(G),

E={C:(C-HT6 (-9 =8}
D-optimal design: minimise the volume of the confidence ellipsoid

E-optimal design: minimise the longest semi axis
A-optimal design: minimise the sum of the semi axes

A-optimal Design: Y7, Xi(G) =>F_, G; = >F_, ¢ Ge;.
For each j represent the inequality u; = ejT Gej by its Schur complement:
min 17y
S ainr’ g .
= b =1,...
eT uj - 07 J 17 P

j
17a=1,a>0,ueRP

s.t.
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Graph Partition: Max-Cut
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SDP

Graph Partition: Max-Cut
Given: graph G = (V,E), V = {1,...,n},
E C{ij:i,je V,i<j} edge weights aj
Find: S C V with maximum weight cut
0(S):={ijjeE:ieS jeV\S}

(MQ) max Z ajj [NP-compl.]
ijes(s)
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Graph Partition: Max-Cut
Given: graph G = (V,E), V = {1,...,n},
E C{ij:i,je V,i<j} edge weights aj V\S
Find: S C V with maximum weight cut
0(S):={ijjeE:ieS jeV\S}

(MQ) max Z ajj [NP-compl.]
ijeds(s)

-1 jes(s) 1—xx 1 ijed(s)
then xix; = { 1 otherwise *  © T 2 | 0 otherwise
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Graph Partition: Max-Cut
Given: graph G = (V,E), V = {1,...,n},
E C{ij:i,je V,i<j} edge weights aj
Find: S C V with maximum weight cut
0(S):={ijjeE:ieS jeV\S}

(MQ) max Z ajj [NP-compl.]
ijes(s)

Model: represent the partition by

x € {-1,1}" with x,-:{ 1 ies

-1 ieV\S
_ | -1 ijed(S) L=xx _ [ 1 ijed(s)
then Xix;j = { 1 otherwise ' ' 2 o 0 otherwise
1—xx; -
s D a= max D a—p o ¢ may xTG
ijes(S) ijeE

[C eS" C; = %Zj: iicE ajj (for | € V), C,'J' = —%a,-j (fOI’ Ij c E), 0 otherw.]
Equivalent to quadratic 0-1 optimisation!
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Semidefinite Max-Cut Relaxation
Observe: x" Cx = (Cx,x) = (C,xxT)
Properties of xx" = [x;x] for x € {—1,1}™
ex?=1 = diaglx")=1
e xx' is positive semidefinite, xxT >0

e rank(xxT) =1

Methods
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Conic LPs SOCP SDP

Semidefinite Max-Cut Relaxation

Observe: x" Cx = (Cx,x) = (C,xxT)

Properties of xx" = [x;x] for x € {—1,1}™

ex?=1 = diaglx")=1

e xx' is positive semidefinite, xxT >0

e rank(xxT) =1

Relaxation idea: replace xx' by a positive semidefinite matrix X.

max

s.t.

max x'Cx <
xe{—-1,1}"

(C.X)
diag(X) =1
X >0
[rank(X) = 1]

[with rank 1 < (MC), NP-compl.]

Methods



Cones Conic LPs SOCP SDP Gaps/Complexity Methods

Semidefinite Max-Cut Relaxation

Observe: x" Cx = (Cx,x) = (C,xxT)
Properties of xx" = [x;x] for x € {—1,1}™

ex?=1 = diaglx")=1

e xx' is positive semidefinite, xxT >0

e rank(xxT) =1
Relaxation idea: replace xx' by a positive semidefinite matrix X.
max (C,X)

T s.t. diag(X) =1
Xel{'n—al),(l}”x CX S X i 0 08
[rank(X) =1] |e°

[with rank 1 < (MC), NP-compl.] oz
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llustration for n = 3: 0
boundary described by 08

1 x y /
det| x 1 z | =0. K
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Semidefinite Max-Cut Relaxation
Observe: x" Cx = (Cx,x) = (C,xxT)
Properties of xx" = [x;x] for x € {—1,1}™
ex?=1 = diaglx")=1
e xx' is positive semidefinite, xxT >0
e rank(xxT) =1

Relaxation idea: replace xx' by a positive semidefinite matrix X.

max (C,X)
T s.t. diag(X) =1
L X =0 .
[rank(X) =1] |e° /
[with rank 1 < (MC), NP-compl.] oz /;///
L SN
Hlustration for n = 3: 04 %fggg&%‘%&m’“
boundalry ()i(esc;lbed by :: {%W@%&bﬂ )
det| x 1 z | =0. ) ‘ '
y z 1 ‘

[Approx.-alg. of GW95: factorise X, use randomised hyperplane rounding]
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Moment Matrices and Optimisation Over Polynomials
[Lasserre]
Polynomial p(x) = >, cnn PaX( " - X5 > —oc of degree 2m. Find

p. = min p(x)
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Moment Matrices and Optimisation Over Polynomials
[Lasserre]
Polynomial p(x) = >, cnn PaX( " - X5 > —oc of degree 2m. Find

ps = min p(x) = min /p(x)u(dx)

xERn? neP(RM)
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Moment Matrices and Optimisation Over Polynomials
[Lasserre]
Polynomial p(x) = >, cnn PaX( " - X5 > —oc of degree 2m. Find

= mi — mi X0 (d
pui= minplx)= min / p(x = apa / (dx)

a=(ay,...,
= Ya
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Moment Matrices and Optimisation Over Polynomials
[Lasserre]
Polynomial p(x) = >, cnn PaX( " - X5 > —oc of degree 2m. Find

P« := min p(x) = min /p(x)u(dx) — Z Pa /xf‘l - xp p(dx)

xERn? neP(RM)

Ot:(()él,...,l)é,,)

For moment vectors y = (y,) of prob. distributions the moment matrix

1 Ywo Yo
[Mm()’)]a/ﬁ - D’a+[3]v eg. Mi(y) = Y,00 Y00 Ya,)
Yo,1) Ya,1) Y(0,2

has to be positive semidefinite (necessary, not sufficient).
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Moment Matrices and Optimisation Over Polynomials
[Lasserre]
Polynomial p(x) = >, cnn PaX( " - X5 > —oc of degree 2m. Find

P« := min p(x) = min )/p(x),u(dx) — Z Pa /xf‘l...x,?"ﬂ(dx)

xERn? HeEP(RN

For moment vectors y = (y,) of prob. distributions the moment matrix

1 Ywo Yo
Mn(Vlap = Varsl,  eg Mi(y) = | Y0 Y20 Yy
Yo,1) Ya,1) Y(0,2

(
has to be positive semidefinite (necessary, not sufficient)
[p"Mp = > a3 Pabs [ x“xP p(dx) u(dx) > 0]
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Moment Matrices and Optimisation Over Polynomials
[Lasserre]
Polynomial p(x) = >, cnn PaX( " - X5 > —oc of degree 2m. Find

P« := min p(x) = min )/p(x),u(dx) — Z Pa /xf‘l...x,?"ﬂ(dx)

xERn? HeEP(RN

For moment vectors y = (y,) of prob. distributions the moment matrix
1 Ywo Yo
Mn(¥)]as = a+s],  eg Mi(y) = | a0 Ye0 Y
Yo,1) Ya,1) Y(0,2

(
has to be positive semidefinite (necessary, not sufficient)

[p"Mp = > a3 Pabs [ x“xP p(dx) u(dx) > 0]
Relax minimising over prob. distributions to

min 3 paye
st. Mpn(y) = 0.
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Moment Matrices and Optimisation Over Polynomials
[Lasserre]
Polynomial p(x) = >, cnn PaX( " - X5 > —oc of degree 2m. Find

P« := min p(x) = min )/p(x),u(dx) — Z Pa /xf‘l...x,?"ﬂ(dx)

xERn? HeEP(RN

For moment vectors y = (y,) of prob. distributions the moment matrix

1 Ywo Yo
Mn(Vlap = Varsl,  eg Mi(y) = | Y0 Y20 Yy
Yo,1) Ya,1) Y(0,2

(
has to be positive semidefinite (necessary, not sufficient)

[p"Mp = Zaﬁpapﬁjx xP p(dx) u(dx) > 0]
Relax minimising over prob. distributions to

min 3 paye
st. Mpn(y) = 0.

exact & p(x) — px is a sum of squares of polynomials (SOS).
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p < min, p(X)

Sum of Squares Decomposition
< polynomial p(x) — p of deg. 2m is nonnegative.

Methods
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Sum of Squares Decomposition
p < min, p(x) < polynomial p(x) — p of deg. 2m is nonnegative.
If p(x) — p is a SOS-polynomial then p < min, p(x). Check if
PO)—p= Y pXTex—p = Y fi(x)?
a=(a1,...,an)

for polynomials f; of degree < m.
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Sum of Squares Decomposition
p < min, p(x) < polynomial p(x) — p of deg. 2m is nonnegative.
If p(x) — p is a SOS-polynomial then p < min, p(x). Check if
pPX)=p= > paitxt—p =Y filx)
a=(ag,...,an)
for polynomials f; of degree < m.

Put z = (1, x1, X2, ..., Xn, X1 X2, X1 X3, ..., X;') and write f; as

]

fi(x)=a]z, then Y fi(x)>=z"AATz with H=AA" =0.

Methods
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Sum of Squares Decomposition
p < min, p(x) < polynomial p(x) — p of deg. 2m is nonnegative.
If p(x) — p is a SOS-polynomial then p < min, p(x). Check if

PO)—p= Y pXTex—p = Y fi(x)?
a=(a1,...,an)
for polynomials f; of degree < m.
Put z = (1, x1, X2, ..., Xn, X1 X2, X1 X3, ..., X;') and write f; as

]

fi(x)=a]z, then Y fi(x)>=z"AATz with H=AA" =0.

By comparing coefficients such a representation exists iff

3H - 0: > Hgy=pa forall monomials o
Bty=a

Methods



SDP

Sum of Squares Decomposition
p < min, p(x) < polynomial p(x) — p of deg. 2m is nonnegative.
If p(x) — p is a SOS-polynomial then p < min, p(x). Check if

PO)—p= Y pXTex—p = Y fi(x)?
a=(a1,...,an)
for polynomials f; of degree < m.
Put z = (1, x1, X2, ..., Xn, X1 X2, X1 X3, ..., X;') and write f; as

fi(x)=a]z, then Y fi(x)>=z"AATz with H=AA" =0.
By comparing coefficients such a representation exists iff

3H - 0: > Hgy=pa forall monomials o
Bty=a

Try to find min, p(x) = p. via maximising po,

min Z PaYa max <BO, H> [: —H070 _ _po]
1 ¥(1,0) Y(0,1) ot (
st | Y10 Y20 Y11 | = Bo+ g Baya =0

Y(0,1) ¥(1,1) ¥(0,2) a0
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If p(x) — p« is not SOS ...

one may approximate p, via hierarchies of semidefinite relaxations to
arbitrary precision under compactness assumptions. [very expensive]
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If p(x) — p« is not SOS ...

one may approximate p, via hierarchies of semidefinite relaxations to
arbitrary precision under compactness assumptions. [very expensive]

The approach is extendable to sets restricted by polynomial (in)equalities
— GloptiPoly
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If p(x) — p« is not SOS ...

one may approximate p, via hierarchies of semidefinite relaxations to
arbitrary precision under compactness assumptions. [very expensive]

The approach is extendable to sets restricted by polynomial (in)equalities
— GloptiPoly

For equality restrictions x? = x; (x € {0,1}") the initial relaxation is
equivalent to the semidefinite Max-Cut relaxation.
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If p(x) — p« is not SOS ...

one may approximate p, via hierarchies of semidefinite relaxations to
arbitrary precision under compactness assumptions. [very expensive]

The approach is extendable to sets restricted by polynomial (in)equalities
— GloptiPoly

For equality restrictions x? = x; (x € {0,1}") the initial relaxation is
equivalent to the semidefinite Max-Cut relaxation.

The complex hermitian case provided excellent results for optimal power
flow [LavaeiLow2012]
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Duality Gap Example

0
0 =0
1+ x0
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Duality Gap Example
min X
0 X12 0
s.t. X12 X2 0 =0
0 0 1 + X12

corresponding coefficient matrices:

0 1o
- 1
€= (2) 8 8 ’ max (C, X)
I . - - (A, X) =1
o -170 100 (. X — 0
A=l -3 0 01 A=1000 (As, X) = 0
0 0 1 0 0 0 BT
I I - (A, X) =0
00 1 000 P
A= 0 0 0 A=]0 0 1 =
100 01 0|

Methods



Cones

min

s.t.

correspondin

C:

A=

Asz=

1
Y3
s |
0 0 O

1
S d
2
0o o0 1
1
0
0

= O O
o O o

SDP

Gaps/Complexity

Duality Gap Example

Conic LPs SOCP

X12
0 X12 0

X12  X22 0 =0
0 0 1 + X12

g coefficient matrices:

Ap=

A=

OO O oo

max

st. Z=

H O O OOOo

O OO OO

Y1

T N
5 0 —Ya
Y3 Y4 N
max (C, X)
<A17X>

<A2’X>

<A3’X>

<A4aX>

X =0

Methods



Gaps/Complexity

Duality Gap Example

min X
0 X12 0

s.t. X12 X2 0 =0
0 0 1+ xp2

corresponding coefficient matrices:

C:

onNik O
O ONI=

A= - Ay=

N

As= A=

|
corP99 o0 o
o

= O O
o O o

OO O oo

max

H O O OOOo

O OO OO

n

st. Z=

T
o O —_y4 50
Y3 Y4 —Nn
max (C, X)
(A, X)=1
<A2’X>:O
<A3’X>:O
<A4aX>:0
X =0

x11=0 = x32=0, primal optimal value is 0.
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Conic LPs SOCP
min X1
0 xp 0
sit. | X2 X2 0 =0
0 0 1+ xp
corresp_onding coefficient matrices:
0 % 0
c=|%1 0 0],
L 0 0 O ]
0 -3 0
A=| -2 0 0 A=
i 0 0 1 I
0 01
As={ 0 0 O A=
|1 00 i
X11 = 0 = X1p = O,
;=0 = 1=y,

SDP

Gaps/Complexity Methods

Duality Gap Example

OO O oo

max

st. Z=

H O O OOOo

O OO OO

n

T N
o O —_y4 50
Y3 —Ya —N
max (C, X)
(A, X) =1
(A2, X) =0
(A3, X) =0
(A, X) =0
X>0

primal optimal value is 0.

dual optimal value is —1.
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Difficulty: Primal Problem is Unstable
min X2 max  yi+e€ys
€ X2 0 —yy Ay
s.t. X12 X2 0 >0 st. Z= % 0 —Vy >0
0 0 1+xo ¥z —Ya N
corresponding coefficient matrices:
0 20
- 1
=l max  (C,X)
[0 -170 100 h, X) =1
1 2 <A2aX>:E
0 0 1 00 0 (A5, X) =0
[0 0 1 000 (As, X) =0
—
A= 0 0 O A=(0 0 1 Xz0
|1 00 010

2
x33 20 = x1202> -1, x> % primal optimal value is —1.

zp=0= 1 =0,y,=0 dual optimal value is —1.
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X12

plane:
1

)_

y X12

(e

-1

€
Fore >0 all x5 € [-1,—00),
for € = 0 only x2 € {0}

projection to
feasible!

08 -06 -04 -02 0 02 04 06 08 1
X
12

00000000000

37
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Cones

00000000000

°

For e > 0 all x12 € [-1, —00),
for e = 0 only x35 € {0}

feasible!

02 04 06 08 1

mathematical reason: the set {[ﬁ))g)] X = 0} is not closed.

37
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Cones

0
0
1+ x2

X12
X22
0

€
X12
0

, X12)-plane:

(e

projection to
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08 -06 -04 -02 0

To avoid this, require strictly feasible points or apply facial reduction.

mathematical reason: the set {[ﬁ))g)] X = 0} is not closed.

55555555555
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Facial Structure and Facial Reduction
The faces of S7 are: (), {0} and

for each r-dim. linear subspace £ of R”
represented by some basis P € R™*",

Fr= {X=PUPT:UeS"}
[Barker and Carlson 1975]

Methods
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Facial Structure and Facial Reduction
The faces of S7 are: (), {0} and

for each r-dim. linear subspace £ of R”
represented by some basis P € R™*",

Fr= {X=PUPT:UeS"}
[Barker and Carlson 1975]

o dimFz = ("}

e minimal generating system: S7 = cone{w': |v| =1}



Conic LPs SOCP SDP Gaps/Complexity Methods

Facial Structure and Facial Reduction
The faces of S7 are: (), {0} and

for each r-dim. linear subspace £ of R”
represented by some basis P € R™*",

Fr= {X=PUPT:UeS"}
[Barker and Carlson 1975]

o dimFz = ("}

2
e minimal generating system: S7 = cone{w': |v| =1}
. 0 xp 0 . 0 o0
Feasible [ X2 X2 0 ] > 0 live on the face F for P = [ 10 }
0 0 1+ x12 0 1

the dual Z € F} requires positive semidefiniteness on this subspace
min X1 max  y1

s.t. [ w om0 ] € Fr s.t. PTZP:[ 0 —y4] =0
0 0 1+ x12

—Ya —Nn
Facial reduction ensures primal strict feasibility — both optima 0
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Complexity of SDP

The feasibility problem in the real number model is in NP N Co-NP,
in the Turing- or bit-model the status is still open!
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Complexity of SDP

The feasibility problem in the real number model is in NP N Co-NP,
in the Turing- or bit-model the status is still open!

Example: [Ramanal997]

min - Xm,

st. (x1—4)50,[“1]50,[“2}zo,...,[ 1 X’"—l]to.

X1 X2 Xm—1 Xm
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Complexity of SDP

The feasibility problem in the real number model is in NP N Co-NP,
in the Turing- or bit-model the status is still open!

Example: [Ramanal997]
min - Xm,
st (x1—4)>0, [“1] =0, [“2} = 0,... [ 1 X’"—l] = 0.
X1 Xo X2 X3 Xm—1 Xm
= x1 > 22,

xo > x¢ > (22)2 =22,
x3 >3 > 22,

Xm > x,2n_1 > 2(27) doubly exponential values!
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Complexity of SDP

The feasibility problem in the real number model is in NP N Co-NP,
in the Turing- or bit-model the status is still open!

Example: [Ramanal997]
min - Xm,
st (x1—4)>0, [“1] -0, [“2} = 0,... [ 1 X’"—l] = 0.
X1 Xo X2 X3 Xm—1 Xm
= x1 > 22,

xo > x¢ > (22)2 =22,
x3 >3 > 22,

Xm > x,2n 1> 2(27) doubly exponential values!

polynomial for e-solutions in bounded regions (ellipsoid method)
[Grotschel Lovasz Schrijver 1988]
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Solution Methods

interior-point methods (“polynomial™)

codes: SDPT3, Sedumi, SDPA, CSDP, Mosek, ...
penalty methods

code: Pennon

spectral bundle method (f(y) := Amax(C — ATy) + b"y)
code: ConicBundle

quadratic reformulations (replace 0 < X = LLT)
code: SDPLR

Methods
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Interior-Point Methods

based on the barrier idea take from nonlinear optimisation:
start in the interior of the feasible set,

avoid leaving it via a barrier-function.

Methods
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Interior-Point Methods
based on the barrier idea take from nonlinear optimisation:
start in the interior of the feasible set,
avoid leaving it via a barrier-function.
Dual problem .
min b
(D) s.t. ZiATy—CEO

Methods
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Interior-Point Methods
based on the barrier idea take from nonlinear optimisation:
start in the interior of the feasible set,
avoid leaving it via a barrier-function.
Dual problem .
min b
(D) s.t. ZiATy—CEO

’ barrier-function for Z € S;7:  —log detZ‘
e det Z =[] Xi(Z) is > 0 in the interior of S;/ and 0 on the boundary

e logdet Z =3 log \i(Z)
e if some A\j(Z) — 0 then —logdetZ — o0

e —logdet Z is smooth and strictly convex on the interior of S
[strongly self concordant]
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Interior-Point Methods
based on the barrier idea take from nonlinear optimisation:
start in the interior of the feasible set,
avoid leaving it via a barrier-function.
Dual problem .
min b
(D) s.t. ZiATy—CEO

’ barrier-function for Z € S;7:  —log detZ‘
e det Z =[] Xi(Z) is > 0 in the interior of S;/ and 0 on the boundary
e logdet Z =3 log \i(Z)
e if some A\j(Z) — 0 then —logdetZ — o0

e —logdet Z is smooth and strictly convex on the interior of S
[strongly self concordant]
SUMT, Fiacco and McCormick 1968: solve a sequence of barrier-problems
min b7y — plogdet(ATy — C)
Y ~——

by Newton's method for u > 0, u — 0. =z



Methods
Minimise f(y) = b"y — ulogdet(A’y — C) by Newton:
1. first order necessary (here sufficient) conditions
Vi(y)=0
2. determine step Ay so that the linearisation in the current point y.,
VE(ye) + V2 (ye) Ay =0,

satisfies the conditions for y. + Ay.
[= minimises the quadratic model of f]

3. damped Newton step: y; = y. + aAy with a € (0,1]
so that y, is at least feasible.



Methods

Minimise f(y) = b"y — ulogdet(A’y — C) by Newton:
1. first order necessary (here sufficient) conditions
Vi(y)=0
2. determine step Ay so that the linearisation in the current point y.,
VE(ye) + V2 (ye) Ay =0,

satisfies the conditions for y. + Ay.
[= minimises the quadratic model of f]

3. damped Newton step: y; = y. + aAy with a € (0,1]
so that y, is at least feasible.

Assumptions:
(A) A has full row rank. [w.l.o.g.]

(S) There exist primal and dual strictly feasible solutions.
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Minimise f(y) = bTy — ulogdet(A’y — C) by Newton:

1. Sufficient first order optimality conditions:

Vf(y)=0,use VzlogdetZ =2Z""1
b—A[u(ATy = €)' =0
yields methods of Jarre 1993, Nesterov and Nemirovskii 1994
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Minimise f(y) = bTy — ulogdet(A’y — C) by Newton:
1. Sufficient first order optimality conditions:
Vf(y)=0,use VzlogdetZ =2Z""1
b—A[u(ATy = €)' =0
yields methods of Jarre 1993, Nesterov and Nemirovskii 1994

Primal-dual approach: Z = A"y — C, X = pZ71

b—AX=0 [primal feasibility]
Z=Aly-C [dale feasibility]
XZ = pl X,Z =0 | [perturbed complementarity]
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Minimise f(y) = bTy — ulogdet(A’y — C) by Newton:
1. Sufficient first order optimality conditions:

Vf(y)=0,use VzlogdetZ =271
b— Alu(ATy - )7 =0
yields methods of Jarre 1993, Nesterov and Nemirovskii 1994

Primal-dual approach: Z = A"y — C, X = pZ71

b—AX=0 [primal feasibility]
Z=Aly-C [dale feasibility]
XZ = pl X,Z =0 | [perturbed complementarity]

e Each i > 0 has a unique solution (X,,, ., Z,)  [requires (S) and (A)]
e (yu,Zy) is the optimal solution of the dual barrier problem
e X, is the optimal solution of the primal barrier-problem

e The curve {(Xy,yu, Z,): pn > 0} is the central path.
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Minimise f(y) = bTy — ulogdet(A’y — C) by Newton:
1. Sufficient first order optimality conditions:

Vf(y)=0,use VzlogdetZ =271
b— Alu(ATy - )7 =0
yields methods of Jarre 1993, Nesterov and Nemirovskii 1994

Primal-dual approach: Z = A"y — C, X = pZ71

b—AX=0 [primal feasibility]
Z=Aly-C [dale feasibility]
XZ = pl X,Z =0 | [perturbed complementarity]

e Each i > 0 has a unique solution (X,,, ., Z,)  [requires (S) and (A)]
e (yu,Zy) is the optimal solution of the dual barrier problem
e X, is the optimal solution of the primal barrier-problem

e The curve {(Xy,yu, Z,): pn > 0} is the central path.

[Maximising the determinant (@ = 1) is relevant on its own!]



2. Primal-dual Linearisation

I b— AX +AX)=0

I Z+AZ=A'(y+Ay)-C
111 XZ + XAZ 4+ AXZ = ul

Solution (AX, Ay, AZ) is the step direction/Newton step

Difficulty: AZ is symmetric [ll] but i.g. AX is not [IlI]

Methods
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2. Primal-dual Linearisation
I b— AX +AX)=0
I Z+AZ=A'(y+Ay)-C
111 XZ + XAZ 4+ AXZ = ul

Solution (AX, Ay, AZ) is the step direction/Newton step

Difficulty: AZ is symmetric [ll] but i.g. AX is not [IlI]
Suggestions:

(a) HRVWO96/KSH97/M97: use the symmetric part,
1
S(BX + AXT)
(b) NTO7: scale Il by the matrix W = X2(X22ZX2)"2X3,
WIIAXW L4+ AZ =Xt - Z
(c) AHO98: symmetrise Il directly,

XAZ + ANZX + AXZ + ZAX =2ul — XZ — ZX
Several others exist, all differ slightly.(Todd 1999).
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Algor. Scheme for Primal-Dual Interior-Point Methods

Input: A, b, C, starting point (X%, y°, Z%) with X° = 0 and Z° = 0

. Choose ;1 = a@ with o € (0, 1].
. Compute (AX,Ay,AZ).

. Line search: determine a € (0,1] with X + aAX > 0 and Z + aAZ > 0.
Put (X,y,Z2) = (X +aAX,y+aly, Z + aAZ).

fJAX = b||, ATy + Z — C|| and (X, Z) “sufficiently small”, stop,
otherwise goto 1.

g~ W N
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Algor. Scheme for Primal-Dual Interior-Point Methods

Input: A, b, C, starting point (X%, y°, Z%) with X° = 0 and Z° = 0

. Choose ;1 = 0@ with o € (0, 1].

. Compute (AX,Ay,AZ).

. Line search: determine a € (0,1] with X + aAX > 0 and Z + aAZ > 0.

Put (X,y,Z) = (X+alAX,y+aly,Z +alZ).

fJAX = b||, ATy + Z — C|| and (X, Z) “sufficiently small”, stop,
otherwise goto 1.

Theorem (Kojima, Shindoh and Hara 1997)

(X0, y°, Z%) feasible and “centred”. Choose o =1 — % and a =1,

then each step is feasible and (X,Z) < e in

0 -0
O(y/nlog M) iterations.

g

g~ W N

[O(n?) Variable!]



Work per lteration
Computation of the HRVW/KSH/M step:

AZ=Ay+Ay)-C-Z
AX =puZ ' — X -XAzz71

solve  AXA'(Ay)Z7Y)=MAy =...

Methods
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Computation of the HRVW/KSH/M step:

AZ=ATy+Ay)-C—-Z
AX =puZ ' — X -XAzz71

solve  AXA'(Ay)Z7Y)=MAy =...

with | My = tr XA, Z 1A rB=Y Bi

X and Z71 are in general dense.

= M is a dense positive definite matrix of order m.
Cholesky factorisation needs m*/3 flops and O(m?) memory.
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AZ=ATy+Ay)-C—-Z
AX =puZ ' — X -XAzz71

solve  AXA'(Ay)Z7Y)=MAy =...

with | My = tr XA, Z 1A rB=Y Bi

X and Z71 are in general dense.

= M is a dense positive definite matrix of order m.
Cholesky factorisation needs m*/3 flops and O(m?) memory.

Line search: requires one to three Cholesky factorisations for dense X
(Z is frequently sparse) with n®/3 flops and O(n?) storage.
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Work per lteration
Computation of the HRVW/KSH/M step:

AZ=ATy+Ay)-C—-Z
AX =puZ ' — X -XAzz71

solve  AXA'(Ay)Z7Y)=MAy =...

with | My = tr XA, Z 1A rB=Y Bi

X and Z71 are in general dense.

= M is a dense positive definite matrix of order m.
Cholesky factorisation needs m*/3 flops and O(m?) memory.

Line search: requires one to three Cholesky factorisations for dense X
(Z is frequently sparse) with n®/3 flops and O(n?) storage.

In practice: split matrices into blocks exploiting semidefinite completion
techniques, exploit structure induced by these blocks, solve the big
system without M via iterative methods, ...
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