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The Bundle Method for Nonsmooth Convex Optimization

min f(y) st. yeR™
with f: R™ — R convex (nonsmooth)

f is specified by a first order oracle:
given y € R™ it returns
e f(y)eR  function value
e g(y) € R™ some subgradient
(not nec. unique)

!
satisfying fly) > f(y) +(g(¥),y —y) Vy €R™ (subg. ineq.)
Each w = (v, g

), v =1f(y) — (g,y) generates a linear minorant of f

fuly) =v+(gy <fly) VyeR"

The collected minorants form the bundle, from this we select a model
W C conv{(v,8): g =g(7'),v=f(7') — (&, 7'),i=1,...,k},

Any closed proper convex function is the sup over its linear minorants,

fly)= sup v+{g,y), choose compact W CW.
(v.8)ew
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The Bundle Method for Nonsmooth Convex Optimization

min f(y) st. yeR™
with f: R™ — R convex (nonsmooth)

f is specified by a first order oracle:
given y € R™ it returns
e f(y)eR  function value
e g(y) € R™ some subgradient
(not nec. unique)

!
satisfying fly) > f(y) +(g(¥),y —y) Vy €R™ (subg. ineq.)
Each w = (v, g

), v =1f(y) — (g,y) generates a linear minorant of f

fuly) =v+(gy <fly) VyeR"

The collected minorants form the bundle, from this we select a model
W C conv{(v,8): g =g(7'),v=f(7') — (&, 7'),i=1,...,k},

Maximizing over all w € w gives a cutting model minorizing f,
fw(y) = maxfu,(y) <f(y) VyeR"
weWwW
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Proximal Bundle Method [Lemaréchal78,Kiwiel90]
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Proximal Bundle Method [Lemaréchal78,Kiwiel90]

cutting plane model with g € 9f(9)

Input: a convex function
given by a first order oracle
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1. Find a candidate by solving

min max f,(y)
Y wew
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Proximal Bundle Method [Lemaréchal78,Kiwiel90]

solve augmented model — y

Input: a convex function »
given by a first order oracle
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1. Find a candidate by solving the quadratic model

min max £,(y)+ &lly — 9|1
Y wew
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Proximal Bundle Method [Lemaréchal78,Kiwiel90]
solve augmented model — y

Bundle Method SDP SB Method
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Proximal Bundle Method [Lemaréchal78,Kiwiel90]
solve augmented model — y

Bundle Method SDP SB Method
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Input: a convex function
given by a first order oracle ‘

1. Find a candidate by solving the quadratic model

min max £,(y)+ &lly — 9|1
Y wew

2. Evaluate the function and determine a subgradient (oracle)

3. Decide on
e null step
e descent step
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Proximal Bundle Method [Lemaréchal78,Kiwiel90]

improve cutting model in y

Input: a convex function
given by a first order oracle

1. Find a candidate by solving the quadratic model

min max £,(y) + 5y — 9l
Y wew

2. Evaluate the function and determine a subgradient (oracle)
3. Decide on

e null step

e descent step
4. Update model to contain at least aggregate and new minorant

and iterate
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The Aggregate and Convergence

Given weight 1 > 0, the quadratic subproblem is a saddle point problem

min max f()+5lly—91° = max min > tlvtegTy)+4lly - 91
v SEs1 T (reew
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The Aggregate and Convergence

Given weight 1 > 0, the quadratic subproblem is a saddle point problem

min max £,(y)+5[ly—9I1> = max min > &(v+g'y)+ blly -9
Y wew £,20 Yy ,\
> &=l (v.8)ew
Determining the saddle point (¥,&) over R" x conv W yields
e w=(%,8), the aggregate (the “best” minorant in conv V),
®7=J— & thenext candidate for evaluation.

The progress f(y) — f(¥) is compared to the predicted decrease
f(9) — (7)) = f(9) =7 — (9.8) + ;|g|*> > 0,

This decides on descent step (§ < y) or null step (y < 7, new w).

Theorem (e.g. [BoGiLeSa2003])
Let % denote the center of iteration k, then f(§*) — inf f.

If, in addition, y*® = y* for k > ko (finitely many descent steps)
then 9% minimizes f and (f(9*) — for (7%))k>k, 4 O

f bounded below = ||g¥|| % 0



Bundle Method

The bundle framework offers a lot of flexibility and can be extended in
many directions:

e add scaling/ “second order” information via the proximal term

e allow constraints on y

e Lagrangian relaxation/decomposition or sums of convex functions
e generate good primal approximations in Lagrangian relaxation

e solve the dual to primal cutting plane approaches

e use specialized cutting models (quadratic subproblem solvable?)
e asynchronous parallel approaches

For me it offers the potential for
“A general tool like the simplex method for LP”

— ConicBundle, contains much but not yet all of this ...

Here: choose model and proximal term +3 |y — (/%
for the maximum eigenvalue function/semidefinite prog.



SDP

LP <> SDP
max (c,x) max (C, X)
st. Ax=b st. AX=0b
x>0 X>=0
x € R nonneg. orthant X € S pos. semidef. matrices

(polyhedral)

(non-polyhedral)

<C,X> = Ei CiXj <C’X> — Zi,j CIJXIJ
(a1, x) (A1, X)
Ax = : AX =
(am: x) (Am: X)
ATy = Yo aiyi ATy = S Ay
min (b, y) min (b, )
s.t. AT_y —zZ=C s.t. ATy _7=C
z20 Z=0
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Example
max §C7)§> min
st. (,X)=1 B
X =0 st. Z=yl-C=>=0
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Example
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X=0 .t =
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Example

max (C, X .
s.t. é/,X>>: 1 I‘;lltn é —vI—C>0 [_> Ve = )\max(C)]
X =0 S A

W:={X=0:(,X)=1} = conv{w’: (/,w")=vTv=1}

max (C,X) = max (C,w') = max v Cv = Amax(C
XeW< ) Hv\|2:1< > lIvil=1 (©



SDP

Example
e Y cro Y= dmalO)
X0 " =

W:={X=0:(,X)=1} = conv{w’: (/,w")=vTv=1}

max (C,X) = max (C,w') = max v Cv = Amax(C
XeW< ) Hv\|2:1< > lIvil=1 (©

set of primal optimal solutions:
conv{w” : (I,w’) =1,v7 Cv = Auax(C)} [v = Pu]
= conv{PuuTPT : <I, uuT> = 1}
= {PUPT : (I,U)y=1,U >0}

columns of P form an orthonormal basis of the eigenspace of Amax(C).



SB Method

Spectral Bundle Method [H.,RendI00]

For constant trace, the dual is an eigenvalue optimization problem

max (C,X) min_ aAmax(C — A'y) + (b, y)
st. (ILX)=a y €R”

AX =b

X =0,

For bounded trace, the dual is

max (C,X) min _ max{0, aAmax(C — ATy)} + (b, y)
st. (I,X)<a y €RT

AX =b

X0,

In the following we consider constant trace with a =1,
and solve the eigenvalue problem by a specialized bundle approach.

The matrix C — Z,A,-y,- inherits the structure of cost matrix and
constraints [ Amax by iterative methods like Lanczos]
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evaluate by computing Amax(C — ATy), [Lanczos]
any eigenvector v to Amax, ||v|| = 1, yields a subgradient via w’ € W
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with parameters P, € R"*", PkTPk =1, and an “aggregate” X, € W.



SB Method

A semidefinite model for f(y) := Anax(C — ATy) + b7y
With W= {W = 0: tr W =1}

fly)= Vryea?/(v(W, C— ATy> +bTy

evaluate by computing Amax(C — ATy), [Lanczos]
any eigenvector v to Amax, ||v|| = 1, yields a subgradient via w’ € W

For any subset W, C W one obtains a cutting model

fw\k(y):maxWGWk<W,C7ATy>+bTy <f(y) VYyeR"™

We use

Wi = {PcUP] +aXi:trU+a=1,U*0,a >0} cw

with parameters Py € R”X’,fkTPk = I, and an “aggregate” Xk €W.
Convergence: P =vand X or no X and big r with ("3') < m.
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Spectral Bundle Model

cutting plane and augmented model
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Solving the augmented model min f5(y) + 5|y —

min - max__ <C—AT,W>+<b,y>+gHy_)A’||2
Y wew

= max__ min (C,W)—i—(b—.AW,y>—i—g”y—f’H2
Wew ¥

Conclusions

yII?
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Solving the augmented model min f5(y) + 5|y —

min - max__ <C—AT,W>+<b,y>+gHy—f/H2
Y wWew

= max_ min (C,W)+(b—AW,y)+ glly - 9|17
Wew ¥

Solve unconstrained quadratic inner optimization over y explicitly:

Conclusions

yII?

yr(W)y=y— %(b — AW) [ “step size/trust region control”]



Bundle Method SDP SB Method Second Order Approaches SB Adaptation Experiments Conclusions

Solving the augmented model min f5(y) + 5[ly — 7||°
min  max__ (C— ATy, W)+ (b,y) + ﬁHy - 917
Y Wew 2

= max_ min (C,W)+(b—AW,y)+ glly - 9|17
Wew ¥

Solve unconstrained quadratic inner optimization over y explicitly:

yr(W)y=y— i(b — AW) [ “step size/trust region control”]

Substitute for y to obtain a quadratic semidefinite problem in W,

min i |b— AW|* — (W, C — AT9) — (b,9)
(QSP) s.t. W = PUPT—‘rOéX
trU+a=1
U*>0,aa>0.

small if r is small (U € S}) — interior point system matrix ("5) +1 [I]
— “best (eps)subgradient” W, = PU,PT + a, X
— new candidate y, =y, (W,).
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Second Order Approaches

[Overton8*, OvertonWomersley95, Oustry200%]
Local quadratic convergence for correct multiplicity t in the optimum y*,

A; 0

c-ay =101 | i 0 1o

)\T:...:)\:>)\:+1>...>)\:
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Second Order Approaches

[Overton8*, OvertonWomersley95, Oustry200%]
Local quadratic convergence for correct multiplicity t in the optimum y*,

A; 0

c-ay =101 | i 0 1o

)\T:...:)\:>)\:‘+1>...>)\:

1. Guess tx, compute Qf, Qﬁ‘ and an interior subgradient Uy by

min||b— AQUQ/ ||*st. trU=1, U>0
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Second Order Approaches

[Overton8*, OvertonWomersley95, Oustry200%]
Local quadratic convergence for correct multiplicity t in the optimum y*,

C-AYy =[] & o )T
0 A}
Al=-=A>A > > A
1. Guess tx, compute Qf, Qé‘ and an interior subgradient Uy by
min||b— AQUQ/ ||*st. trU=1, U>0
2. Compute the Newton candidate by solving

min 3 lly — $ll3, + (byy) +6
st. 0l =Q/(C—ATy)@

where

He =24 ((QuUkQT) @ (Qa[\f1 — M]T1QT)) AT [regularity > 0]
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Adaptation of Step 2 for Spectral Bundle

min 3|y — 912 + (b, y) + 6

st. 0l =Q(C—ATy)Q is relaxed to

Step 2

min Ly — 9113 + (b,y) + 6

_ T T
st. 0l = Qf(C—ATy)@n, = 0= Amax(Q (C—A"y)Q1).



Bundle Method SDP SB Method Second Order Approaches SB Adaptation Experiments Conclusions

Adaptation of Step 2 for Spectral Bundle

min Ly — 9112, 4+ (b,y) + 6

st. 0l =Q(C—ATy)Q is relaxed to

Step 2

min 3y = 9llf + (b,y) + 6

_ T T
st. 0l = Qf(C—ATy)@n, = 0= Amax(Q (C—A"y)Q1).

With W := {Q UQlT :trU =1, U = 0} the problem reads

. 1 O
min maz<\<W7 C — ATy> +bTy+ Sy _}/H%-I
Y wew 2
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Adaptation of Step 2 for Spectral Bundle

min 3|y = 9l + (b,y) +6
st. 0l =Q(C—ATy)&

Step 2 is relaxed to

. 1 A2
min 3y — 93 + (b.y) + 6 - o
s.t. ol = QlT(C —ATy)Ql, = = Amax(Qy (C— A" y)C).

With W := {Q UQlT :trU =1, U = 0} the problem reads

. 1 O
min maz<\<W7 C — ATy> +bTy+ Sy _}/H%-I
Y wew 2

Dualize, then yi(W)=9 —H Y (b— AW)

min  %(|b— AW|2,_, — (W,C — AT9) — (b, y)

s.t. W = Ql yle;
(QsP) L

'y <

0.

<<




SB Adaptation
Scope of a second order bundle method

If QSP is solved by an interior point method with r columns,

each iteration of QSP requires the factorization of a (”51) matrix.

For m constraints we can expect r ~ \/m.
— Several O(m3) operations for each solution of QSP.



SB Adaptation

Scope of a second order bundle method

If QSP is solved by an interior point method with r columns,

each iteration of QSP requires the factorization of a (”51) matrix.

For m constraints we can expect r ~ \/m.
— Several O(m3) operations for each solution of QSP.

Typically, a full interior point code requires several O(n3) and one
O(m?3) operation per iteration.

— Second order SB is unlikely to be attractive for m > n,
but might be relevant for small m < n or if r is small.

— Emphasis on large n and rather small m.
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Scaling Variants

¢ No scaling, bounded bundle (SB)
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Scaling Variants

No scaling, bounded bundle (SB)
No scaling, fat bundle (CB)

Modified Newton (CB-fN): full eigenvalue decomposition,
minimum norm subgradient, compute full Newton H (+pl/)

Low-Rank Newton (CB-IrN): collect approximate subspace
to large eigenvalues, compute min. norm subgradient for this,
low rank approximation of Newton matrix (+p/)

Approximate Low-Rank Newton (CB-alrN): collect
approx. subspace to large eigenvalues, use subgradient induced
by W, of (QSP), approximate Newton matrix with available
low rank information (+pl)

Diagonal Low-Rank (CB-diag): Collect approximate

subspace to large eigenvalues, use subgradient W, of (QSP)
and the diagonal of the approximate Newton matrix (+p/)



SB Adaptation

Low Rank Structure
H =24 ((QUG]) ® (@Al — o] 1QT)) AT
decompose U = Qu/\uQuT, set Q1 = @1 Q, and rewrite H as
H=2A((Gre Q)M @ Pl — Al ) (G o QF)) AT

Truncate [\1/ — Ap]1...h and Q2 — Qp,

,,,,,



SB Adaptation

Low Rank Structure
H =24 ((QUG]) ® (@Al — o] 1QT)) AT
decompose U = Qu/\uQuT, set Q1 = @1 Q, and rewrite H as
H=2A((Gre Q)M @ Pl — Al ) (G o QF)) AT

Truncate [A1/ — A2]1,h and Q2 — @p,
compute a QR-decomposition of A(Q1 ® Qn) — QuR

Hn =2QaR(Ay @ Ml = Aoyt IR Q

- QA QT, Qui=QuQ
truncate Ay — /A\H, @H
— A =pl+20uAnQ}

for some regularization parameter p > 0.
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Implementation Details

Multiplicity Detection.

Use Tapia indicators based on the development of the eigenvalues of
the last two iterates of the (QSP) solver.

Bundle Update.

e maintain approximate subspace Q to large eigenvalues

e old P: keep the active subspace of (QSP)
and that having a large contribution to diag(H)

e add the (5) top most Ritz vectors of Q

Update of @, for the Low Rank Representation?

Heuristic: dynamically enlarge Q in case of too many null steps



Experiments

Numerical Experiments

Sparse SDP Random Generator: A; nonzero submatrices of order p
small instances:

n € {100, 300,500}, m € {100, 500, 1000}, p € {3,5,7}
larger instances:

ne{l,...,6}-1000, m e {1,3,5} - 1000, p € {3,4,5}

Intel(R) Core(TM) i7 CPU 920 machines
8 MB cache, 12 GB RAM, openSUSE Linux 11.1 (x86-64)
in single processor mode

ConicBundle: start scaling at 1072
Termination: 10~ or 10000 evaluations

compare to SDPT3 4.0 beta [Todd TohTiitiincii]
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Small Instances: n € {100, 300,500} and m = 500

Time required for relative precision 0.0001
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Larger Instances: n € {1,...,6}-1000 and m = 1000
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Larger Instances: n € {1,...,6} - 1000 and m = 3000
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Larger Instances: n € {1,...,6}-1000 and m = 5000
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Max-Cut 3D-Grids: n®, n € {10, 15,20,25}
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Experiments

Number of Descent Steps, Small Instances

relative precision 107°, average and variance over 15 instances

n m| CBns | CB-fN | CB-IfN | CB-alrN | CB-diag | SDPT3 SB
100 100 | 37 (6.11) 20 (3.44) 33 (6.86)| 33 (6.09) 38 (21.3) 11 (0.573) *43 (10.4)
300 100 | 43 (5.96) 22 (4.7) 38 (8.5) 39 (9.86) 37 (8.65) 13 (0.49) 53 (10.2)
500 100 | 58 (12.7)| 27 (6.67) 50 (11.1) 51 (11. 2) 52 (20 ) 14 (0.611) 69 (25.1)
100 500 | 42 (5.44) 27 (3.07) 42 (5.56)| 42 (5.3 ) 50 (15.4) 11 (0.499) *48 (3. 35)
300 500 | 59 (11.1)| 34 (5.04) 56 (10.2) 57 (11.3) 57 (11.6) 13 (0.806) 54 (6.3)
500 500 | 66 (11.5) 37 (5.23) 62 (12.2) 63 (12.4) 59 (15.9) 14 (0.596) 64 (15.6)
100 1000 | 51 ( 7 ) 32 (3.25) 50 (8.13)| 49 (8.26) 60 (17.9) 10 (0.249) *55 (2.46)
300 1000 | 59 (6.76)| 36 (5.84) 59 (6.81) 59 (6.31)| 60 ( 7.8 ) 12 (0.442) *55 (3.26)
500 1000 | 67 (10.8)| 42 (5.44) 67 (11.2) 67 (11.1)| 67 (10.5) 13 (0.442) *58 (3.64)

x not all instances achieved the required precision



Experiments

Number of Oracle Calls, Small Instances

relative precision 107°, average and variance over 15 instances

n m| CBns | CBfN | CB-I'N | CB-alrN CB—diag SDPT3 SB
100 100 | 75 (25.6) 44 (24.9) 49 (15.8) 52 (15.6) 54 (31.3) 11 (0.573) 255 ( 504 )
300 100 | 155 (60.4) 75 (44.2) 104 (41.4) 110 (49.1) 86 (29.3) 13 (0.49) 279 ( 171 )
500 100 | 314 (135) 95 (44.6) 195 (102) 199 (108) 163(132) 4 (0.611) 464 (399 )
100 500 | 83 (18.8) 68 (27.8) 69 (13.7) 68 (12.6) 76 (20.7) 11 (0.499) *119453 (1.03-105)
300 500 | 178 (110) 142 (132)| 125 (46.3) 127 (54.4) 107 (32.3) 13 (0.806) 280 (207 )
500 500 | 295 (211) 180 (129) 187 (99.9) 188 (99.8)| 143 (75.5) 14 (0.596) 532 (462 )
100 1000 | 117 (35.6) 90 (25.4) 96 ( 21 ) 97 (22.6) 113 ( 34 ) 10 (0.249) *213306 (3.65-10%)
300 1000 | 151 (41.8) 110 (59.8) 123 (23.3) 124 (24.1)| 118 (19.9) 12 (0.442) *25553 (3.58-10%)
500 1000 | 238 (159) 152 (65.1) 177 (83.8) 178 (86.7)| 148 ( 37 )| 13 (0.442) *15803 (3.12-10%)

* not all instances achieved the required precision
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Conclusions

Conclusions

Scaling works well and behaves as (or even better than) expected:

e The number of oracle calls is reduced significantly
Newton < Low Rank < fat Bundle
e CB-diag is more stable, accurate, and efficient than SB

e Newton is attractive for small matrices and many constraints,
but interior point methods seem preferable.

[In the end the QSP system is of size O(m).]
e Diagonal low rank scaling is attractive for large matrices and
few constraints.

e Scaling allows a relative precision of 107 routinely with fast
initial convergence.

e The cost of solving QSP might be reducible by Toh's approach.

— Scope of scaled CB: fast low precision results, cutting plane
approaches, high precision results with large matrices and few
constraints.



Thank you for your attention!



	The Bundle Method and the Aggregate
	SDP and Eigenvalue Optimization
	The Spectral Bundle Method
	Second Order Approaches
	Adaptation to the Spectral Bundle Method
	Numerical Experiments
	Conclusions

